Nanoparticles based on essential metals and their phytotoxicity
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
28446250
PubMed Central
PMC5406882
DOI
10.1186/s12951-017-0268-3
PII: 10.1186/s12951-017-0268-3
Knihovny.cz E-zdroje
- Klíčová slova
- Agriculture, Essential metal nanoparticles, Fertilizers, Nanomaterials, Nanoparticles uptake, Phytotoxicity,
- MeSH
- fyziologie rostlin účinky léků MeSH
- kovové nanočástice chemie toxicita MeSH
- kovy chemie metabolismus toxicita MeSH
- nanotechnologie * metody MeSH
- rostliny účinky léků metabolismus MeSH
- testy toxicity metody MeSH
- zemědělství * metody MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- kovy MeSH
Nanomaterials in agriculture are becoming popular due to the impressive advantages of these particles. However, their bioavailability and toxicity are key features for their massive employment. Herein, we comprehensively summarize the latest findings on the phytotoxicity of nanomaterial products based on essential metals used in plant protection. The metal nanoparticles (NPs) synthesized from essential metals belong to the most commonly manufactured types of nanomaterials since they have unique physical and chemical properties and are used in agricultural and biotechnological applications, which are discussed. The paper discusses the interactions of nanomaterials and vascular plants, which are the subject of intensive research because plants closely interact with soil, water, and atmosphere; they are also part of the food chain. Regarding the accumulation of NPs in the plant body, their quantification and localization is still very unclear and further research in this area is necessary.
Zobrazit více v PubMed
Knauer K, Bucheli TD. Nano-materials: research needs in agriculture. Rev Suisse Agric. 2009;41:341–345.
Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS. Nanoparticulate material delivery to plants. Plant Sci. 2010;179:154–163. doi: 10.1016/j.plantsci.2010.04.012. DOI
Ghormade V, Deshpande MV, Paknikar KM. Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol Adv. 2011;29:792–803. doi: 10.1016/j.biotechadv.2011.06.007. PubMed DOI
Perez-de-Luque A, Rubiales D. Nanotechnology for parasitic plant control. Pest Manag Sci. 2009;65:540–545. doi: 10.1002/ps.1732. PubMed DOI
Aitken RJ, Chaudhry MQ, Boxall ABA, Hull M. Manufacture and use of nanomaterials: current status in the UK and global trends. Occup Med. 2006;56:300–306. doi: 10.1093/occmed/kql051. PubMed DOI
Grillo R, Rosa AH, Fraceto LF. Engineered nanoparticles and organic matter: a review of the state-of-the-art. Chemosphere. 2015;119:608–619. doi: 10.1016/j.chemosphere.2014.07.049. PubMed DOI
Handford CE, Dean M, Henchion M, Spence M, Elliott CT, Campbell K. Implications of nanotechnology for the agri-food industry: opportunities, benefits and risks. Trends Food Sci Technol. 2014;40:226–241. doi: 10.1016/j.tifs.2014.09.007. DOI
Husen A, Siddiqi KS. Phytosynthesis of nanoparticles: concept, controversy and application. Nanoscale Res Lett. 2014;9:1–24. doi: 10.1186/1556-276X-9-229. PubMed DOI PMC
Jampilek J, Kral’ova K. Application of nanotechnology in agriculture and food industry, its prospects and risks. Ecol Chem Eng S. 2015;22:321–361.
Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW. Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot. 2012;35:64–70. doi: 10.1016/j.cropro.2012.01.007. DOI
Ju-Nam Y, Lead JR. Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications. Sci Total Environ. 2008;400:396–414. doi: 10.1016/j.scitotenv.2008.06.042. PubMed DOI
Parisi C, Vigani M, Rodriguez-Cerezo E. Agricultural Nanotechnologies: what are the current possibilities? Nano Today. 2015;10:124–127. doi: 10.1016/j.nantod.2014.09.009. DOI
Bhagat Y, Gangadhara K, Rabinal C, Chaudhari G, Ugale P. Nanotechnology in agriculture: a review. J Pure App Microbiol. 2015;9:737–747.
Bindraban PS, Dimkpa C, Nagarajan L, Roy A, Rabbinge R. Revisiting fertilisers and fertilisation strategies for improved nutrient uptake by plants. Biol Fertil Soils. 2015;51:897–911. doi: 10.1007/s00374-015-1039-7. DOI
Dasgupta N, Ranjan S, Mundekkad D, Ramalingam C, Shanker R, Kumar A. Nanotechnology in agro-food: from field to plate. Food Res Int. 2015;69:381–400. doi: 10.1016/j.foodres.2015.01.005. DOI
Garcia M, Forbe T, Gonzalez E. Potential applications of nanotechnology in the agro-food sector. Ciencia Tecnol Aliment. 2010;30:573–581. doi: 10.1590/S0101-20612010000300002. DOI
Savage N, Diallo MS. Nanomaterials and water purification: opportunities and challenges. J Nanopart Res. 2005;7:331–342. doi: 10.1007/s11051-005-7523-5. DOI
Servin A, Elmer W, Mukherjee A, De la Torre-Roche R, Hamdi H, White JC, Bindraban P, Dimkpa C. A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. J Nanopart Res. 2015;17:1–21. doi: 10.1007/s11051-015-2907-7. DOI
Jeyasubramanian K, Thoppey UUG, Hikku GS, Selvakumar N, Subramania A, Krishnamoorthy K. Enhancement in growth rate and productivity of spinach grown in hydroponics with iron oxide nanoparticles. RSC Adv. 2016;6:15451–15459. doi: 10.1039/C5RA23425E. DOI
Alidoust D, Isoda A. Effect of gamma Fe2O3 nanoparticles on photosynthetic characteristic of soybean (Glycine max (L.) Merr.): foliar spray versus soil amendment. Acta Physiol Plant. 2013;35:3365–3375. doi: 10.1007/s11738-013-1369-8. DOI
Lee S, Kim S, Lee I. Effects of soil-plant interactive system on response to exposure to ZnO nanoparticles. J Microbiol Biotechnol. 2012;22:1264–1270. doi: 10.4014/jmb.1203.03004. PubMed DOI
Mirzajani F, Askari H, Hamzelou S, Farzaneh M, Ghassempour A. Effect of silver nanoparticles on Oryza sativa L. and its rhizosphere bacteria. Ecotox Environ Safe. 2013;88:48–54. doi: 10.1016/j.ecoenv.2012.10.018. PubMed DOI
Hussain HI, Yi ZF, Rookes JE, Kong LXX, Cahill DM. Mesoporous silica nanoparticles as a biomolecule delivery vehicle in plants. J Nanopart Res. 2013;15:1–15. doi: 10.1007/s11051-013-1676-4. DOI
Slomberg DL, Schoenfisch MH. Silica nanoparticle phytotoxicity to Arabidopsis thaliana. Environ Sci Technol. 2012;46:10247–10254. PubMed
Liu QL, Chen B, Wang QL, Shi XL, Xiao ZY, Lin JX, Fang XH. Carbon nanotubes as molecular transporters for walled plant cells. Nano Lett. 2009;9:1007–1010. doi: 10.1021/nl803083u. PubMed DOI
Lin SJ, Reppert J, Hu Q, Hudson JS, Reid ML, Ratnikova TA, Rao AM, Luo H, Ke PC. Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small. 2009;5:1128–1132. doi: 10.1002/smll.200800677. PubMed DOI
Koo Y, Wang J, Zhang QB, Zhu HG, Chehab EW, Colvin VL, Alvarez PJJ, Braam J. Fluorescence reports intact quantum dot uptake into roots and trans location to leaves of Arabidopsis thaliana and subsequent ingestion by insect herbivores. Environ Sci Technol. 2015;49:626–632. doi: 10.1021/es5050562. PubMed DOI
Zhu ZJ, Wang HH, Yan B, Zheng H, Jiang Y, Miranda OR, Rotello VM, Xing BS, Vachet RW. Effect of surface charge on the uptake and distribution of gold nanoparticles in four plant species. Environ Sci Technol. 2012;46:12391–12398. doi: 10.1021/es301977w. PubMed DOI
Kurepa J, Paunesku T, Vogt S, Arora H, Rabatic BM, Lu JJ, Wanzer MB, Woloschak GE, Smalle JA. Uptake and distribution of ultrasmall anatase TiO2 alizarin red S nanoconjugates in Arabidopsis thaliana. Nano Lett. 2010;10:2296–2302. doi: 10.1021/nl903518f. PubMed DOI PMC
Larue C, Laurette J, Herlin-Boime N, Khodja H, Fayard B, Flank AM, Brisset F, Carriere M. Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp.): influence of diameter and crystal phase. Sci Total Environ. 2012;431:197–208. doi: 10.1016/j.scitotenv.2012.04.073. PubMed DOI
Gonzalez-Melendi P, Fernandez-Pacheco R, Coronado MJ, Corredor E, Testillano PS, Risueno MC, Marquina C, Ibarra MR, Rubiales D, Perez-De-Luque A. Nanoparticles as smart treatment-delivery systems in plants: assessment of different techniques of microscopy for their visualization in plant tissues. Ann Bot. 2008;101:187–195. doi: 10.1093/aob/mcm283. PubMed DOI PMC
Zhu H, Han J, Xiao JQ, Jin Y. Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Environ Monit. 2008;10:713–717. doi: 10.1039/b805998e. PubMed DOI
Huang XL, Stein BD, Cheng H, Malyutin A, Tsvetkova IB, Baxter DV, Remmes NB, Verchot J, Kao C, Bronstein LM, Dragnea B. Magnetic virus-like nanoparticles in N. benthamiana plants: a new paradigm for environmental and agronomic biotechnological research. ACS Nano. 2011;5:4037–4045. doi: 10.1021/nn200629g. PubMed DOI PMC
Ruffini Castiglione M, Cremonini R. Nanoparticles and higher plants. Caryologia. 2009;62:161–165. doi: 10.1080/00087114.2004.10589681. DOI
Ma XM, Geiser-Lee J, Deng Y, Kolmakov A. Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ. 2010;408:3053–3061. doi: 10.1016/j.scitotenv.2010.03.031. PubMed DOI
Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL. Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem. 2011;59:3485–3498. doi: 10.1021/jf104517j. PubMed DOI PMC
Arruda SCC, Silva ALD, Galazzi RM, Azevedo RA, Arruda MAZ. Nanoparticles applied to plant science: a review. Talanta. 2015;131:693–705. doi: 10.1016/j.talanta.2014.08.050. PubMed DOI
Wang WC, Freemark K. The use of plants for environmental monitoring and assessment. Ecotox Environ Safe. 1995;30:289–301. doi: 10.1006/eesa.1995.1033. PubMed DOI
Miralles P, Church TL, Harris AT. Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants. Environ Sci Technol. 2012;46:9224–9239. doi: 10.1021/es202995d. PubMed DOI
Wang WC. Literature-review on higher-plants for toxicity testing. Water Air Soil Pollut. 1991;59:381–400. doi: 10.1007/BF00211845. DOI
Petersen EJ, Zhang LW, Mattison NT, O’Carroll DM, Whelton AJ, Uddin N, Nguyen T, Huang QG, Henry TB, Holbrook RD, Chen KL. Potential release pathways, environmental fate, and ecological risks of carbon nanotubes. Environ Sci Technol. 2011;45:9837–9856. doi: 10.1021/es201579y. PubMed DOI
Dimkpa CO, Calder A, Britt DW, McLean JE, Anderson AJ. Responses of a soil bacterium, Pseudomonas chlororaphis O6 to commercial metal oxide nanoparticles compared with responses to metal ions. Environ Pollut. 2011;159:1749–1756. doi: 10.1016/j.envpol.2011.04.020. PubMed DOI
Peralta-Videa JR, Zhao LJ, Lopez-Moreno ML, de la Rosa G, Hong J, Gardea-Torresdey JL. Nanomaterials and the environment: a review for the biennium 2008–2010. J Hazard Mater. 2011;186:1–15. doi: 10.1016/j.jhazmat.2010.11.020. PubMed DOI
Lee CW, Mahendra S, Zodrow K, Li D, Tsai YC, Braam J, Alvarez PJJ. Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana (vol 29, pg 669, 2010) Environ Toxicol Chem. 2010;29:1399. doi: 10.1002/etc.234. PubMed DOI
Racuciu M, Creanga DE. TMA-OH coated magnetic nanoparticles internalized in vegetal tissue. Rom J Phys. 2007;52:395–402.
Parsons JG, Lopez ML, Gonzalez CM, Peralta-Videa JR, Gardea-Torresdey JL. Toxicity and biotransformation of uncoated and coated nickel hydroxide nanoparticles on mesquite plants. Environ Toxicol Chem. 2010;29:1146–1154. PubMed
Adhikari T, Sarkar D, Mashayekhi H, Xing BS. Growth and enzymatic activity of maize (Zea mays L.) plant: solution culture test for copper dioxide nano particles. J Plant Nutr. 2016;39:102–118.
He LL, Liu Y, Mustapha A, Lin MS. Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res. 2011;166:207–215. doi: 10.1016/j.micres.2010.03.003. PubMed DOI
Dimkpa CO, McLean JE, Britt DW, Anderson AJ. Antifungal activity of ZnO nanoparticles and their interactive effect with a biocontrol bacterium on growth antagonism of the plant pathogen Fusarium graminearum. Biometals. 2013;26:913–924. doi: 10.1007/s10534-013-9667-6. PubMed DOI
Giannousi K, Avramidis I, Dendrinou-Samara C. Synthesis, characterization and evaluation of copper based nanoparticles as agrochemicals against Phytophthora infestans. RSC Adv. 2013;3:21743–21752. doi: 10.1039/c3ra42118j. DOI
Gajjar P, Pettee B, Britt DW, Huang WJ, Johnson WP, Anderson AJ: Antimicrobial activity of commercial nanoparticles. In: Hendy SC, Brown IWM, editors. Advanced materials and nanotechnology, proceedings. volume 1151 (AIP conference proceedings). Melville: American Institute of Physics; 2009. p. 130–2.
Jones N, Ray B, Ranjit KT, Manna AC. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett. 2008;279:71–76. doi: 10.1111/j.1574-6968.2007.01012.x. PubMed DOI
Schrick B, Blough JL, Jones AD, Mallouk TE. Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel–iron nanoparticles. Chem Mat. 2002;14:5140–5147. doi: 10.1021/cm020737i. DOI
Zhang WX. Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res. 2003;5:323–332. doi: 10.1023/A:1025520116015. DOI
Nurmi JT, Tratnyek PG, Sarathy V, Baer DR, Amonette JE, Pecher K, Wang CM, Linehan JC, Matson DW, Penn RL, Driessen MD. Characterization and properties of metallic iron nanoparticles: spectroscopy, electrochemistry, and kinetics. Environ Sci Technol. 2005;39:1221–1230. doi: 10.1021/es049190u. PubMed DOI
Fageria NK. Manganese. In: Fageria NK, editor. The use of nutrients in crop plants. London: CRC Press; 2008. pp. 333–58.
Pradhan S, Patra P, Das S, Chandra S, Mitra S, Dey KK, Akbar S, Palit P, Goswami A. Photochemical modulation of biosafe manganese nanoparticles on Vigna radiata: a detailed molecular, biochemical, and biophysical study. Environ Sci Technol. 2013;47:13122–13131. doi: 10.1021/es402659t. PubMed DOI
Liu RQ, Lal R. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci Total Environ. 2015;514:131–139. doi: 10.1016/j.scitotenv.2015.01.104. PubMed DOI
Singh S, Thiyagarajan P, Kant KM, Anita D, Thirupathiah S, Rama N, Tiwari B, Kottaisamy M, Rao MSR. Structure, microstructure and physical properties of ZnO based materials in various forms: bulk, thin film and nano. J Phys D Appl Phys. 2007;40:6312–6327. doi: 10.1088/0022-3727/40/20/S15. DOI
Huang ZB, Zheng X, Yan DH, Yin GF, Liao XM, Kang YQ, Yao YD, Huang D, Hao BQ. Toxicological effect of ZnO nanoparticles based on bacteria. Langmuir. 2008;24:4140–4144. doi: 10.1021/la7035949. PubMed DOI
Zhou J, Xu NS, Wang ZL. Dissolving behavior and stability of ZnO wires in biofluids: a study on biodegradability and biocompatibility of ZnO nanostructures. Adv Mater. 2006;18:2432–2435. doi: 10.1002/adma.200600200. DOI
Gogos A, Knauer K, Bucheli TD. Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. J Agric Food Chem. 2012;60:9781–9792. doi: 10.1021/jf302154y. PubMed DOI
Ishaque M, Schnabel G, Anspaugh DD: Agrochemical formulation comprising a pesticide, an organic uv photoprotective filter and coated metal oxide nanoparticles. In: Patentscope, vol. WO/2009/153231; 2009.
Milani N, McLaughlin MJ, Stacey SP, Kirby JK, Hettiarachchi GM, Beak DG, Cornelis G. Dissolution kinetics of macronutrient fertilizers coated with manufactured zinc oxide nanoparticles. J Agric Food Chem. 2012;60:3991–3998. doi: 10.1021/jf205191y. PubMed DOI
Raliya R, Tarafdar JC, Biswas P. Enhancing the mobilization of native phosphorus in the mung bean rhizosphere using ZnO nanoparticles synthesized by soil fungi. J Agric Food Chem. 2016;64:3111–3118. doi: 10.1021/acs.jafc.5b05224. PubMed DOI
Savi GD, Piacentini KC, de Souza SR, Costa MEB, Santos CMR, Scussel VM. Efficacy of zinc compounds in controlling Fusarium head blight and deoxynivalenol formation in wheat (Triticum aestivum L.) Int J Food Microbiol. 2015;205:98–104. doi: 10.1016/j.ijfoodmicro.2015.04.001. PubMed DOI
Dimkpa CO, McLean JE, Latta DE, Manangon E, Britt DW, Johnson WP, Boyanov MI, Anderson AJ. CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. J Nanopart Res. 2012;14:1–15. doi: 10.1007/s11051-012-1125-9. PubMed DOI
Martineau N, McLean JE, Dimkpa CO, Britt DW, Anderson AJ. Components from wheat roots modify the bioactivity of ZnO and CuO nanoparticles in a soil bacterium. Environ Pollut. 2014;187:65–72. doi: 10.1016/j.envpol.2013.12.022. PubMed DOI
Schneider KH, Karpov A, Voss H, Dunker S, Merk M, Kopf A, Kondo S. Method for treating phytopathogenic microorganisms using surface-modified nanoparticulate copper salts. In: Patentscope, vol. WO/2011/067186; 2011.
Juarez-Maldonado A, Ortega-Ortiz H, Perez-Labrada F, Cadenas-Pliego G, Benavides-Mendoza A. Cu nanoparticles absorbed on chitosan hydrogels positively alter morphological, production, and quality characteristics of tomato. J Appl Bot Food Qual. 2016;89:183–189.
Trujillo-Reyes J, Majumdar S, Botez CE, Peralta-Videa JR, Gardea-Torresdey JL. Exposure studies of core-shell Fe/Fe3O4 and Cu/CuO NPs to lettuce (Lactuca sativa) plants: are they a potential physiological and nutritional hazard? J Hazard Mater. 2014;267:255–263. doi: 10.1016/j.jhazmat.2013.11.067. PubMed DOI
Fu PP, Xia QS, Hwang HM, Ray PC, Yu HT. Mechanisms of nanotoxicity: generation of reactive oxygen species. J Food Drug Anal. 2014;22:64–75. doi: 10.1016/j.jfda.2014.01.005. PubMed DOI PMC
Martinez-Fernandez D, Komarek M. Comparative effects of nanoscale zero-valent iron (nZVI) and Fe2O3 nanoparticles on root hydraulic conductivity of Solanum lycopersicum L. Environ Exp Bot. 2016;131:128–136. doi: 10.1016/j.envexpbot.2016.07.010. DOI
Kanel SR, Manning B, Charlet L, Choi H. Removal of arsenic(III) from groundwater by nanoscale zero-valent iron. Environ Sci Technol. 2005;39:1291–1298. doi: 10.1021/es048991u. PubMed DOI
Feng LY, Cao MH, Ma XY, Zhu YS, Hu CW. Superparamagnetic high-surface-area Fe3O4 nanoparticles as adsorbents for arsenic removal. J Hazard Mater. 2012;217:439–446. doi: 10.1016/j.jhazmat.2012.03.073. PubMed DOI
Ali A, Zafar H, Zia M, Haq IU, Phull AR, Ali JS, Hussain A. Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol Sci Appl. 2016;9:49–67. doi: 10.2147/NSA.S99986. PubMed DOI PMC
Rui MM, Ma CX, Hao Y, Guo J, Rui YK, Tang XL, Zhao Q, Fan X, Zhang ZT, Hou TQ, Zhu SY. Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea) Front Plant Sci. 2016;7:1–10. doi: 10.3389/fpls.2016.00815. PubMed DOI PMC
Raju D, Mehta UJ, Beedu SR. Biogenic green synthesis of monodispersed gum kondagogu (Cochlospermum gossypium) iron nanocomposite material and its application in germination and growth of mung bean (Vigna radiata) as a plant model. IET Nanobiotechnol. 2016;10:141–146. doi: 10.1049/iet-nbt.2015.0112. PubMed DOI PMC
Delfani M, Firouzabadi MB, Farrokhi N, Makarian H. Some physiological responses of black-eyed pea to iron and magnesium nanofertilizers. Commun Soil Sci Plant Anal. 2014;45:530–540. doi: 10.1080/00103624.2013.863911. DOI
Ghafariyan MH, Malakouti MJ, Dadpour MR, Stroeve P, Mahmoudi M. Effects of magnetite nanoparticles on soybean chlorophyll. Environ Sci Technol. 2013;47:10645–10652. PubMed
Mukhopadhyay MJ, Sharma A. Manganese in cell-metabolism of higher-plants. Bot Rev. 1991;57:117–149. doi: 10.1007/BF02858767. DOI
Pradhan S, Patra P, Mitra S, Dey KK, Jain S, Sarkar S, Roy S, Palit P, Goswami A. Manganese nanoparticles: impact on non-nodulated plant as a potent enhancer in nitrogen metabolism and toxicity study both in vivo and in vitro. J Agric Food Chem. 2014;62:8777–8785. doi: 10.1021/jf502716c. PubMed DOI
Liu RQ, Zhang HY, Lal R. Effects of stabilized nanoparticles of copper, zinc, manganese, and iron oxides in low concentrations on lettuce (Lactuca sativa) seed germination: nanotoxicants or nanonutrients? Water Air Soil Pollut. 2016;227:1–14. doi: 10.1007/s11270-015-2689-7. DOI
Rai M, Ingle A, Gupta I, Gaikwad S, Gade A, Rubilar O, Duran N. Cyto-, geno-, and ecotoxicity of copper nanoparticles. In: Duran N, Guterres SS, Alves OL, editors. Nanotoxicology: materials, methodologies, and assessments. Berlin: Springer; 2014. pp. 325–345.
Ma HB, Williams PL, Diamond SA. Ecotoxicity of manufactured ZnO nanoparticles—a review. Environ Pollut. 2013;172:76–85. doi: 10.1016/j.envpol.2012.08.011. PubMed DOI
Anjum NA, Adam V, Kizek R, Duarte AC, Pereira E, Iqbal M, Lukatkin AS, Ahmad I. Nanoscale copper in the soil-plant system—toxicity and underlying potential mechanisms. Environ Res. 2015;138:306–325. doi: 10.1016/j.envres.2015.02.019. PubMed DOI
Letelier ME, Sanchez-Jofre S, Peredo-Silva L, Cortes-Troncoso J, Aracena-Parks P. Mechanisms underlying iron and copper ions toxicity in biological systems: pro-oxidant activity and protein-binding effects. Chem-Biol Interact. 2010;188:220–227. doi: 10.1016/j.cbi.2010.06.013. PubMed DOI
Jin T, Sun D, Su JY, Zhang H, Sue HJ. Antimicrobial efficacy of zinc oxide quantum dots against Listeria monocytogenes, Salmonella enteritidis, and Escherichia coli O157:H7. J Food Sci. 2009;74:M46–M52. doi: 10.1111/j.1750-3841.2008.01013.x. PubMed DOI
Hossain Z, Mustafa G, Sakata K, Komatsu S. Insights into the proteomic response of soybean towards Al2O3, ZnO, and Ag nanoparticles stress. J Hazard Mater. 2016;304:291–305. doi: 10.1016/j.jhazmat.2015.10.071. PubMed DOI
Mukherjee A, Sun YP, Morelius E, Tamez C, Bandyopadhyay S, Niu GH, White JC, Peralta-Videa JR, Gardea-Torresdey JL. Differential toxicity of bare and hybrid ZnO nanoparticles in green pea (Pisum sativum L.): a life cycle study. Front. Plant Sci. 2016;6:1–13. PubMed PMC
Yang ZZ, Chen J, Dou RZ, Gao X, Mao CB, Wang L. Assessment of the phytotoxicity of metal oxide nanoparticles on two crop plants, maize (Zea mays L.) and rice (Oryza sativa L.) Int J Environ Res Public Health. 2015;12:15100–15109. doi: 10.3390/ijerph121214963. PubMed DOI PMC
Xiang L, Zhao HM, Li YW, Huang XP, Wu XL, Zhai T, Yuan Y, Cai QY, Mo CH. Effects of the size and morphology of zinc oxide nanoparticles on the germination of Chinese cabbage seeds. Environ Sci Pollut Res. 2015;22:10452–10462. doi: 10.1007/s11356-015-4172-9. PubMed DOI
Huang YC, Fan R, Grusak MA, Sherrier JD, Huang CP. Effects of nano-ZnO on the agronomically relevant Rhizobium-legume symbiosis. Sci Total Environ. 2014;497:78–90. doi: 10.1016/j.scitotenv.2014.07.100. PubMed DOI
Wang P, Menzies NW, Lombi E, McKenna BA, Johannessen B, Glover CJ, Kappen P, Kopittke PM. Fate of ZnO nanoparticles in soils and cowpea (Vigna unguiculata) Environ Sci Technol. 2013;47:13822–13830. doi: 10.1021/es403466p. PubMed DOI
Landa P, Vankova R, Andrlova J, Hodek J, Marsik P, Storchova H, White JC, Vanek T. Nanoparticle-specific changes in Arabidopsis thaliana gene expression after exposure to ZnO, TiO2, and fullerene soot. J Hazard Mater. 2012;241:55–62. doi: 10.1016/j.jhazmat.2012.08.059. PubMed DOI
Priester JH, Ge Y, Mielke RE, Horst AM, Moritz SC, Espinosa K, Gelb J, Walker SL, Nisbet RM, An YJ, et al. Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruption. Proc Natl Acad Sci USA. 2012;109:E2451–E2456. doi: 10.1073/pnas.1205431109. PubMed DOI PMC
Kim S, Lee S, Lee I. Alteration of phytotoxicity and oxidant stress potential by metal oxide nanoparticles in Cucumis sativus. Water Air Soil Pollut. 2012;223:2799–2806. doi: 10.1007/s11270-011-1067-3. DOI
Shaymurat T, Gu JX, Xu CS, Yang ZK, Zhao Q, Liu YX, Liu YC. Phytotoxic and genotoxic effects of ZnO nanoparticles on garlic (Allium sativum L.): a morphological study. Nanotoxicology. 2012;6:241–248. doi: 10.3109/17435390.2011.570462. PubMed DOI
Zhao LJ, Sun YP, Hernandez-Viezcas JA, Servin AD, Hong J, Niu GH, Peralta-Videa JR, Duarte-Gardea M, Gardea-Torresdey JL. Influence of CeO2 and ZnO nanoparticles on cucumber physiological markers and bioaccumulation of Ce and Zn: a life cycle study. J Agric Food Chem. 2013;61:11945–11951. doi: 10.1021/jf404328e. PubMed DOI
Minocha S, Mumper RJ. Effect of carbon coating on the physico-chemical properties and toxicity of copper and nickel nanoparticles. Small. 2012;8:3289–3299. doi: 10.1002/smll.201200478. PubMed DOI
Piret JP, Mejia J, Lucas S, Zouboulis CC, Saout C, Toussaint O. Sonicated and stirred copper oxide nanoparticles induce similar toxicity and pro-inflammatory response in N-hTERT keratinocytes and SZ95 sebocytes. J Nanopart Res. 2014;16:1–18. doi: 10.1007/s11051-014-2337-y. DOI
Yruela I. Copper in plants: acquisition, transport and interactions. Funct Plant Biol. 2009;36:409–430. doi: 10.1071/FP08288. PubMed DOI
Dimkpa CO, Latta DE, McLean JE, Britt DW, Boyanov MI, Anderson AJ. Fate of CuO and ZnO nano- and microparticles in the plant environment. Environ Sci Technol. 2013;47:4734–4742. doi: 10.1021/es304736y. PubMed DOI
Zhao LJ, Huang YX, Hu J, Zhou HJ, Adeleye AS, Keller AA. H-1 NMR and GC-MS based metabolomics reveal defense and detoxification mechanism of cucumber plant under nano-Cu stress. Environ Sci Technol. 2016;50:2000–2010. doi: 10.1021/acs.est.5b05011. PubMed DOI
Atha DH, Wang HH, Petersen EJ, Cleveland D, Holbrook RD, Jaruga P, Dizdaroglu M, Xing BS, Nelson BC. Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environ Sci Technol. 2012;46:1819–1827. doi: 10.1021/es202660k. PubMed DOI
Martinez-Fernandez D, Barroso D, Komarek M. Root water transport of Helianthus annuus L. under iron oxide nanoparticle exposure. Environ Sci Pollut Res. 2016;23:1732–1741. doi: 10.1007/s11356-015-5423-5. PubMed DOI
Gui X, Deng YQ, Rui YK, Gao BB, Luo WH, Chen SL, Nhan LV, Li XG, Liu ST, Han YN, et al. Response difference of transgenic and conventional rice (Oryza sativa) to nanoparticles (gamma Fe2O3) Environ Sci Pollut Res. 2015;22:17716–17723. doi: 10.1007/s11356-015-4976-7. PubMed DOI
Krug HF. Nanosafety research-are we on the right track? Angew Chem Int Edit. 2014;53:12304–12319. PubMed
Nau K, Bohmer N, Kuhnel D, Marquardt C, Paul F, Steinbach C, Krug HF. The DaNa(2.0) knowledge base on nanomaterials—communicating current nanosafety research based on evaluated literature data. J Mater Educ. 2016;38:93–108.
Dietz KJ, Herth S. Plant nanotoxicology. Trends Plant Sci. 2011;16:582–589. doi: 10.1016/j.tplants.2011.08.003. PubMed DOI
Wang P, Lombi E, Zhao FJ, Kopittke PM. Nanotechnology: a new opportunity in plant sciences. Trends Plant Sci. 2016;21:699–712. doi: 10.1016/j.tplants.2016.04.005. PubMed DOI
Zhao LJ, Peralta-Videa JR, Ren MH, Varela-Ramirez A, Li CQ, Hernandez-Viezcas JA, Aguilera RJ, Gardea-Torresdey JL. Transport of Zn in a sandy loam soil treated with ZnO NPs and uptake by corn plants: electron microprobe and confocal microscopy studies. Chem Eng J. 2012;184:1–8. doi: 10.1016/j.cej.2012.01.041. DOI
Shi JY, Peng C, Yang YQ, Yang JJ, Zhang H, Yuan XF, Chen YX, Hu TD. Phytotoxicity and accumulation of copper oxide nanoparticles to the Cu-tolerant plant Elsholtzia splendens. Nanotoxicology. 2014;8:179–188. doi: 10.3109/17435390.2013.766768. PubMed DOI