Prolyl hydroxylase substrate adenylosuccinate lyase is an oncogenic driver in triple negative breast cancer

. 2019 Nov 15 ; 10 (1) : 5177. [epub] 20191115

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31729379

Grantová podpora
P30 ES010126 NIEHS NIH HHS - United States
P30 NS045892 NINDS NIH HHS - United States
R01 AI136581 NIAID NIH HHS - United States
U54 HD079124 NICHD NIH HHS - United States
Wellcome Trust - United Kingdom
R00 CA160351 NCI NIH HHS - United States
R21 CA223675 NCI NIH HHS - United States
R01 CA211732 NCI NIH HHS - United States

Odkazy

PubMed 31729379
PubMed Central PMC6858455
DOI 10.1038/s41467-019-13168-4
PII: 10.1038/s41467-019-13168-4
Knihovny.cz E-zdroje

Protein hydroxylation affects protein stability, activity, and interactome, therefore contributing to various diseases including cancers. However, the transiency of the hydroxylation reaction hinders the identification of hydroxylase substrates. By developing an enzyme-substrate trapping strategy coupled with TAP-TAG or orthogonal GST- purification followed by mass spectrometry, we identify adenylosuccinate lyase (ADSL) as an EglN2 hydroxylase substrate in triple negative breast cancer (TNBC). ADSL expression is higher in TNBC than other breast cancer subtypes or normal breast tissues. ADSL knockout impairs TNBC cell proliferation and invasiveness in vitro and in vivo. An integrated transcriptomics and metabolomics analysis reveals that ADSL activates the oncogenic cMYC pathway by regulating cMYC protein level via a mechanism requiring ADSL proline 24 hydroxylation. Hydroxylation-proficient ADSL, by affecting adenosine levels, represses the expression of the long non-coding RNA MIR22HG, thus upregulating cMYC protein level. Our findings highlight the role of ADSL hydroxylation in controlling cMYC and TNBC tumorigenesis.

Zobrazit více v PubMed

Bianchini G, Balko JM, Mayer IA, Sanders ME, Gianni L. Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease. Nat. Rev. Clin. Oncol. 2016;13:674–690. doi: 10.1038/nrclinonc.2016.66. PubMed DOI PMC

Liedtke C, et al. Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. JCO. 2008;26:1275–1281. doi: 10.1200/JCO.2007.14.4147. PubMed DOI

Takada M, et al. EglN2 contributes to triple negative breast tumorigenesis by functioning as a substrate for the FBW7 tumor suppressor. Oncotarget. 2017;8:6787–6795. doi: 10.18632/oncotarget.14290. PubMed DOI PMC

Cockman ME, Webb JD, Kramer HB, Kessler BM, Ratcliffe PJ. Proteomics-based identification of novel factor inhibiting hypoxia-inducible factor (FIH) substrates indicates widespread asparaginyl hydroxylation of ankyrin repeat domain-containing proteins. Mol. Cell. Proteom. 2009;8:535–546. doi: 10.1074/mcp.M800340-MCP200. PubMed DOI PMC

Kmoch S, et al. Human adenylosuccinate lyase (ADSL), cloning and characterization of full-length cDNA and its isoform, gene structure and molecular basis for ADSL deficiency in six patients. Hum. Mol. Genet. 2000;9:1501–1513. doi: 10.1093/hmg/9.10.1501. PubMed DOI

Sciacovelli M, et al. Fumarate is an epigenetic modifier that elicits epithelial-to-mesenchymal transition. Nature. 2016;537:544–547. doi: 10.1038/nature19353. PubMed DOI PMC

Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490:61–70. doi: 10.1038/nature11412. PubMed DOI PMC

Prat A, et al. Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res. 2010;12:R68. doi: 10.1186/bcr2635. PubMed DOI PMC

Curtis C, et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature. 2012;486:346–352. doi: 10.1038/nature10983. PubMed DOI PMC

Kaelin WG., Jr Common pitfalls in preclinical cancer target validation. Nat. Rev. Cancer. 2017;17:425–440. doi: 10.1038/nrc.2017.32. PubMed DOI

Zhang Q, et al. Control of cyclin D1 and breast tumorigenesis by the EglN2 prolyl hydroxylase. Cancer Cell. 2009;16:413–424. doi: 10.1016/j.ccr.2009.09.029. PubMed DOI PMC

Hoxhaj G, et al. The mTORC1 signaling network senses changes in cellular purine nucleotide levels. Cell Rep. 2017;21:1331–1346. doi: 10.1016/j.celrep.2017.10.029. PubMed DOI PMC

Emmanuel N, et al. Purine nucleotide availability regulates mTORC1 activity through the Rheb GTPase. Cell Rep. 2017;19:2665–2680. doi: 10.1016/j.celrep.2017.05.043. PubMed DOI

Stine ZE, Walton ZE, Altman BJ, Hsieh AL, Dang CV. MYC, metabolism, and cancer. Cancer Disco. 2015;5:1024–1039. doi: 10.1158/2159-8290.CD-15-0507. PubMed DOI PMC

Domise M, et al. AMP-activated protein kinase modulates tau phosphorylation and tau pathology in vivo. Sci. Rep. 2016;6:26758. doi: 10.1038/srep26758. PubMed DOI PMC

Bazin J, et al. Global analysis of ribosome-associated noncoding RNAs unveils new modes of translational regulation. PNAS. 2017;114:E10018–E10027. doi: 10.1073/pnas.1708433114. PubMed DOI PMC

Dimartino D, et al. The long non-coding RNA lnc-31 interacts with Rock1 mRNA and mediates its YB-1-dependent translation. Cell Rep. 2018;23:733–740. doi: 10.1016/j.celrep.2018.03.101. PubMed DOI PMC

Yoon J-H, Abdelmohsen K, Gorospe M. Posttranscriptional gene regulation by long noncoding RNA. J. Mol. Biol. 2013;425:3723–3730. doi: 10.1016/j.jmb.2012.11.024. PubMed DOI PMC

Jaakkola P, et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science. 2001;292:468–472. doi: 10.1126/science.1059796. PubMed DOI

Ivan M, et al. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science. 2001;292:464–468. doi: 10.1126/science.1059817. PubMed DOI

Rodriguez J, von Kriegsheim A. Mass spectrometry and bioinformatic analysis of hydroxylation-dependent protein-protein interactions. Methods Mol. Biol. 2018;1742:27–36. doi: 10.1007/978-1-4939-7665-2_3. PubMed DOI

Guo J, et al. pVHL suppresses kinase activity of Akt in a proline-hydroxylation-dependent manner. Science. 2016;353:929–932. doi: 10.1126/science.aad5755. PubMed DOI PMC

Di Conza G, Trusso Cafarello S, Zheng X, Zhang Q, Mazzone M. PHD2 targeting overcomes breast cancer cell death upon glucose starvation in a PP2A/B55α-mediated manner. Cell Rep. 2017;18:2836–2844. doi: 10.1016/j.celrep.2017.02.081. PubMed DOI PMC

Zheng X, et al. Prolyl hydroxylation by EglN2 destabilizes FOXO3a by blocking its interaction with the USP9x deubiquitinase. Genes Dev. 2014;28:1429–1444. doi: 10.1101/gad.242131.114. PubMed DOI PMC

Lee SB, et al. An ID2-dependent mechanism for VHL inactivation in cancer. Nature. 2016;529:172–177. doi: 10.1038/nature16475. PubMed DOI PMC

Rodriguez, J. et al. PHD3 regulates p53 protein stability by hydroxylating proline 359. Cell Rep.24, 1316–1329 (2018). PubMed PMC

Heir P, et al. Oxygen-dependent regulation of erythropoietin receptor turnover and signaling. J. Biol. Chem. 2016;291:7357–7372. doi: 10.1074/jbc.M115.694562. PubMed DOI PMC

Rodriguez J, et al. Substrate-trapped interactors of PHD3 and FIH cluster in distinct signaling pathways. Cell Rep. 2016;14:2745–2760. doi: 10.1016/j.celrep.2016.02.043. PubMed DOI PMC

Jurecka A, Zikanova M, Kmoch S, Tylki-Szymańska A. Adenylosuccinate lyase deficiency. J. Inherit. Metab. Dis. 2015;38:231–242. doi: 10.1007/s10545-014-9755-y. PubMed DOI PMC

Reed VL, Mack DO, Smith LD. Adenylosuccinate lyase as an indicator of breast and prostate malignancies: a preliminary report. Clin. Biochem. 1987;20:349–351. doi: 10.1016/S0009-9120(87)80085-1. PubMed DOI

Terzuoli L, et al. Determination of p185 and adenylosuccinate lyase (ASL) activity in preneoplastic colon lesions and intestinal mucosa of human subjects. Clin. Biochem. 1998;31:523–528. doi: 10.1016/S0009-9120(98)00058-7. PubMed DOI

Bardot V, et al. Purine and pyrimidine metabolism in human gliomas: relation to chromosomal aberrations. Br. J. Cancer. 1994;70:212–218. doi: 10.1038/bjc.1994.282. PubMed DOI PMC

Park H, et al. Adenylosuccinate lyase enhances aggressiveness of endometrial cancer by increasing killer cell lectin-like receptor C3 expression by fumarate. Lab. Invest. 2018;98:449–461. doi: 10.1038/s41374-017-0017-0. PubMed DOI

McDonald ER, et al. Project DRIVE: a compendium of cancer dependencies and synthetic lethal relationships uncovered by large-scale, deep RNAi screening. Cell. 2017;170:577–592.e10. doi: 10.1016/j.cell.2017.07.005. PubMed DOI

Liu Yen-Chun, Li Feng, Handler Jesse, Huang Cheng Ran Lisa, Xiang Yan, Neretti Nicola, Sedivy John M., Zeller Karen I., Dang Chi V. Global Regulation of Nucleotide Biosynthetic Genes by c-Myc. PLoS ONE. 2008;3(7):e2722. doi: 10.1371/journal.pone.0002722. PubMed DOI PMC

Wang X, et al. Purine synthesis promotes maintenance of brain tumor initiating cells in glioma. Nat. Neurosci. 2017;20:661–673. doi: 10.1038/nn.4537. PubMed DOI PMC

Dejure FR, et al. The M. Y. C. mRNA 3′‐UTR couples RNA polymerase II function to glutamine and ribonucleotide levels. EMBO J. 2017;36:1854–1868. doi: 10.15252/embj.201796662. PubMed DOI PMC

Cui Z, An X, Li J, Liu Q, Liu W. LncRNA MIR22HG negatively regulates miR-141-3p to enhance DAPK1 expression and inhibits endometrial carcinoma cells proliferation. Biomed. Pharmacother. 2018;104:223–228. doi: 10.1016/j.biopha.2018.05.046. PubMed DOI

Zhang D-Y, et al. Identification and functional characterization of long non-coding RNA MIR22HG as a tumor suppressor for hepatocellular carcinoma. Theranostics. 2018;8:3751–3765. doi: 10.7150/thno.22493. PubMed DOI PMC

Su, W. et al. Silencing of long noncoding RNA MIR22HG triggers cell survival/death signaling via oncogenes YBX1, MET, and p21 in lung cancer. Cancer Res. 78, 3207–3219 (2018). PubMed PMC

Xiong J, Du Q, Liang Z. Tumor-suppressive microRNA-22 inhibits the transcription of E-box-containing c-Myc target genes by silencing c-Myc binding protein. Oncogene. 2010;29:4980–4988. doi: 10.1038/onc.2010.241. PubMed DOI

Turriziani B, et al. Biology (Basel) 2014. On-beads digestion in conjunction with data-dependent mass spectrometry: a shortcut to quantitative and dynamic interaction proteomics; pp. 320–332. PubMed PMC

Dobin A, et al. Bioinformatics. 2013. STAR: ultrafast universal RNA-seq aligner; pp. 15–21. PubMed PMC

Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods. 2017;14:417–419. doi: 10.1038/nmeth.4197. PubMed DOI PMC

Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC

Bierau J, Pooters INA, Visser D, Bakker JA. An HPLC-based assay of adenylosuccinate lyase in erythrocytes. Nucleos. Nucleot. Nucl. Acids. 2011;30:908–917. doi: 10.1080/15257770.2011.621008. PubMed DOI

Zikánová M, Krijt J, Hartmannová H, Kmoch S. Preparation of 5-amino-4-imidazole-N-succinocarboxamide ribotide, 5-amino-4-imidazole-N-succinocarboxamide riboside and succinyladenosine, compounds usable in diagnosis and research of adenylosuccinate lyase deficiency. J. Inherit. Metab. Dis. 2005;28:493–499. doi: 10.1007/s10545-005-0493-z. PubMed DOI

Diamond TL, et al. Macrophage tropism of HIV-1 depends on efficient cellular dNTP utilization by reverse transcriptase. J. Biol. Chem. 2004;279:51545–51553. doi: 10.1074/jbc.M408573200. PubMed DOI PMC

Liu X, Ser Z, Locasale JW. Development and quantitative evaluation of a high-resolution metabolomics technology. Anal. Chem. 2014;86:2175–2184. doi: 10.1021/ac403845u. PubMed DOI PMC

Perez-Riverol Y, et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 2019;47:D442–D450. doi: 10.1093/nar/gky1106. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Pathway-specific effects of ADSL deficiency on neurodevelopment

. 2022 Feb 08 ; 11 () : . [epub] 20220208

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...