Characterization of Growth and Cell Cycle Events Affected by Light Intensity in the Green Alga Parachlorella kessleri: A New Model for Cell Cycle Research
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34203860
PubMed Central
PMC8232753
DOI
10.3390/biom11060891
PII: biom11060891
Knihovny.cz E-zdroje
- Klíčová slova
- Parachlorella kessleri, cell cycle pattern, deuterated lipid, deuterated starch, deuterium, energy reserves, growth processes, light intensity, reproduction events,
- MeSH
- buněčné kultury * MeSH
- buněčný cyklus * MeSH
- Chlorophyta růst a vývoj MeSH
- světlo * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Multiple fission is a cell cycle variation leading to the production of more than two daughter cells. Here, we used synchronized cultures of the chlorococcal green alga Parachlorella kessleri to study its growth and pattern of cell division under varying light intensities. The time courses of DNA replication, nuclear and cellular division, cell size, total RNA, protein content, dry matter and accumulation of starch were observed at incident light intensities of 110, 250 and 500 µmol photons m-2s-1. Furthermore, we studied the effect of deuterated water on Parachlorella kessleri growth and division, to mimic the effect of stress. We describe a novel multiple fission cell cycle pattern characterized by multiple rounds of DNA replication leading to cell polyploidization. Once completed, multiple nuclear divisions were performed with each of them, immediately followed by protoplast fission, terminated by the formation of daughter cells. The multiple fission cell cycle was represented by several consecutive doublings of growth parameters, each leading to the start of a reproductive sequence. The number of growth doublings increased with increasing light intensity and led to division into more daughter cells. This study establishes the baseline for cell cycle research at the molecular level as well as for potential biotechnological applications, particularly directed synthesis of (deuterated) starch and/or neutral lipids as carbon and energy reserves.
Faculty of Science University of South Bohemia 37005 České Budějovice Czech Republic
The University of Tokyo Future Center Initiative Wakashiba 178 4 4 Kashiwa Chiba 277 0871 Japan
Zobrazit více v PubMed
Mukherjee B., Moroney J.V. Algal carbon dioxide concentrating mechanisms. eLS. 2020 doi: 10.1002/9780470015902.a0000314.pub4. DOI
Spalding M.H. Microalgal carbon-dioxide-concentrating mechanisms: Chlamydomonas inorganic carbon transporters. J. Exp. Bot. 2008;59:1463–1473. doi: 10.1093/jxb/erm128. PubMed DOI
Zachleder V., Bišová K., Vítová M. The cell cycle of microalgae. In: Borowitzka M.A., Beardall J., Raven J.A., editors. The Physiology of Microalgae. Volume 6. Springer; Dordrecht, The Netherlands: 2016. pp. 3–46.
Bišová K., Zachleder V. Cell-cycle regulation in green algae dividing by multiple fission. J. Exp. Bot. 2014;65:2585–2602. doi: 10.1093/jxb/ert466. PubMed DOI
Zachleder V., Bišová K., Vítová M., Kubínová A., Hendrychová J. Variety of cell cycle patterns in the alga Scenedesmus quadricauda (Chlorophyta) as revealed by application of illumination regimes and inhibitors. Eur. J. Phycol. 2002;37:361–371. doi: 10.1017/S0967026202003815. DOI
Zachleder V., Schläfli O., Boschetti A. Growth-controlled oscillation in activity of histone H1 kinase during the cell cycle of Chlamydomonas reinhardtii (Chlorophyta) J. Phycol. 1997;33:673–681. doi: 10.1111/j.0022-3646.1997.00673.x. DOI
Zachleder V., Šetlík I. Timing of events in overlapping cell reproductive sequences and their mutual interactions in the alga Scenedesmus quadricauda. J. Cell Sci. 1990;97:631–638. doi: 10.1242/jcs.97.4.631. DOI
Zachleder V., van den Ende H. Cell-cycle events in the green alga Chlamydomonas eugametos and their control by environmental factors. J. Cell Sci. 1992;102:469–474. doi: 10.1242/jcs.102.3.469. DOI
Tukaj Z., Kubínová A., Zachleder V. Effect of irradiance on growth and reproductive processes during the cell cycle in Scenedesmus armatus (Chlorophyta) J. Phycol. 1996;32:624–631. doi: 10.1111/j.0022-3646.1996.00624.x. DOI
Krienitz L., Hegewald E.H., Hepperle D., Huss V.A.R., Rohr T., Wolf M. Phylogenetic relationship of Chlorella and Parachlorella gen nov (Chlorophyta, Trebouxiophyceae) Phycologia. 2004;43:529–542. doi: 10.2216/i0031-8884-43-5-529.1. DOI
Řezanka T., Podojil M. The very long-chain fatty-acids of the green-alga Chlorella kessleri. Lipids. 1984;19:472–473. doi: 10.1007/BF02537412. DOI
Ota S., Matsuda T., Takeshita T., Yamazaki T., Kazama Y., Abe T., Kawano S. Phenotypic spectrum of Parachlorella kessleri (Chlorophyta) mutants produced by heavy-ion irradiation. Bioresour. Technol. 2013;149:432–438. doi: 10.1016/j.biortech.2013.09.079. PubMed DOI
Ota S., Yoshihara M., Yamazaki T., Takeshita T., Hirata A., Konomi M., Oshima K., Hattori M., Bišová K., Zachleder V., et al. Deciphering the relationship among phosphate dynamics, electron-dense body and lipid accumulation in the green alga Parachlorella kessleri. Sci. Rep. 2016;6:25731. doi: 10.1038/srep25731. PubMed DOI PMC
Ota S., Morita A., Ohnuki S., Hirata A., Sekida S., Okuda K., Ohya Y., Kawano S. Carotenoid dynamics and lipid droplet containing astaxanthin in response to light in the green alga Haematococcus pluvialis. Sci. Rep. 2018;8:5617. doi: 10.1038/s41598-018-23854-w. PubMed DOI PMC
Ota S., Oshima K., Yamazaki T., Takeshita T., Bišová K., Zachleder V., Hattori M., Kawano S. The Parachlorella genome and transcriptome endorse active RWP-RK, meiosis and flagellar genes in trebouxiophycean algae. Cytologia. 2019;84:323–330. doi: 10.1508/cytologia.84.323. DOI
Fernandes B., Teixeira J., Dragone G., Vicente A.A., Kawano S., Bišová K., Přibyl P., Zachleder V., Vítová M. Relationship between starch and lipid accumulation induced by nutrient depletion and replenishment in the microalga Parachlorella kessleri. Bioresour. Technol. 2013;144:268–274. doi: 10.1016/j.biortech.2013.06.096. PubMed DOI
Hirai Y., Tamura M., Otani J., Ishikawa F. NEK6-mediated phosphorylation of human TPP1 regulates telomere length through telomerase recruitment. Genes Cells. 2016 doi: 10.1111/gtc.12391. PubMed DOI
Mizuno Y., Sato A., Watanabe K., Hirata A., Takeshita T., Ota S., Sato N., Zachleder V., Tsuzuki M., Kawano S. Sequential accumulation of starch and lipid induced by sulfur deficiency in Chlorella and Parachlorella species. Bioresour. Technol. 2013;129:150–155. doi: 10.1016/j.biortech.2012.11.030. PubMed DOI
Takeshita T., Ivanov I.N., Oshima K., Ishii K., Kawamoto H., Ota S., Yamazaki T., Hirata A., Kazama Y., Abe T., et al. Comparison of lipid productivity of Parachlorella kessleri heavy-ion beam irradiation mutant PK4 in laboratory and 150-L mass bioreactor, identification and characterization of its genetic variation. Algal Res. 2018;35:416–426. doi: 10.1016/j.algal.2018.09.005. DOI
Taleb A., Legrand J., Takache H., Taha S., Pruvost J. Investigation of lipid production by nitrogen-starved Parachlorella kessleri under continuous illumination and day/night cycles for biodiesel application. J. Appl. Phycol. 2017 doi: 10.1007/s10811-017-1286-0. DOI
Rathod J.P., Prakash G., Pandit R., Lali A.M. Agrobacterium-mediated transformation of promising oil-bearing marine algae Parachlorella kessleri. Photosynth. Res. 2013;118:141–146. doi: 10.1007/s11120-013-9930-2. PubMed DOI
Sato N., Tsuzuki M., Kawaguchi A. Glycerolipid synthesis in Chlorella kessleri 11h - I. Existence of a eukaryotic pathway. Biochim. Biophys. Acta. 2003;1633:27–34. doi: 10.1016/S1388-1981(03)00069-6. PubMed DOI
Saleh M.M., Matorin D.N., Zayadan B.K., Todorenko D.A., Lukashov E.P., Gaballah M.M. Differentiation between two strains of microalga Parachlorella kessleri using modern spectroscopic method. Bot. Stud. 2014;55:53. doi: 10.1186/s40529-014-0053-7. PubMed DOI PMC
Li X., Přibyl P., Bišová K., Kawano S., Cepák V., Zachleder V., Čížková M., Brányiková I., Vítová M. The microalga Parachlorella kessleri––a novel highly efficient lipid producer. Biotechnol. Bioeng. 2013;110:97–107. doi: 10.1002/bit.24595. PubMed DOI
Přibyl P., Cepák V., Zachleder V. Production of lipids in 10 strains of Chlorella and Parachlorella, and enhanced lipid productivity in Chlorella vulgaris. Appl. Microbiol. Biotechnol. 2012;94:549–561. doi: 10.1007/s00253-012-3915-5. PubMed DOI
Takeshita T., Ota S., Yamazaki T., Hirata A., Zachleder V., Kawano S. Starch and lipid accumulation in eight strains of six Chlorella species under comparatively high light intensity and aeration culture conditions. Bioresour. Technol. 2014;158:127–134. doi: 10.1016/j.biortech.2014.01.135. PubMed DOI
Brányiková I., Maršálková B., Doucha J., Brányik T., Bišová K., Zachleder V., Vítová M. Microalgae-novel highly efficient starch producers. Biotechnol. Bioeng. 2011;108:766–776. doi: 10.1002/bit.23016. PubMed DOI
Izumo A., Fujiwara S., Oyama Y., Satoh A., Fujita N., Nakamura Y., Tsuzuki M. Physicochemical properties of starch in Chlorella change depending on the CO2 concentration during growth: Comparison of structure and properties of pyrenoid and stroma starch. Plant Sci. 2007;172:1138–1147. doi: 10.1016/j.plantsci.2007.03.001. DOI
Gao Y., Feng J., Lv J., Liu Q., Nan F., Liu X., Xie S. Physiological changes of Parachlorella kessleri ty02 in lipid accumulation under nitrogen stress. Int. J. Environ. Res. Public Health. 2019;16:1188. doi: 10.3390/ijerph16071188. PubMed DOI PMC
You Z., Zhang Q., Peng Z., Miao X. Lipid droplets mediate salt stress tolerance in Parachlorella kessleri. Plant Physiol. 2019;181:510–526. doi: 10.1104/pp.19.00666. PubMed DOI PMC
Zachleder V., Vítová M., Hlavová M., Moudříková Š., Mojzeš P., Heumann H., Becher J.R., Bišová K. Stable isotope compounds - production, detection, and application. Biotechnol. Adv. 2018;36:784–797. doi: 10.1016/j.biotechadv.2018.01.010. PubMed DOI
Yang J. Deuterium: Discovery and Applications in Organic Chemistry. Elsevier; Amsterdam, The Netherlands: 2016.
Lehmann W.D. A timeline of stable isotopes and mass spectrometry in the life sciences. Mass Spectrom. Rev. 2017;36:58–85. doi: 10.1002/mas.21497. PubMed DOI
Hirakura Y., Sugiyama T., Takeda M., Ikeda M., Yoshioka T. Deuteration as a tool in investigating the role of protons in cell signaling. Biochim. Biophys. Acta. 2011;1810:218–225. doi: 10.1016/j.bbagen.2010.10.005. PubMed DOI
Salomonsson L., Branden G., Brzezinski P. Deuterium isotope effect of proton pumping in cytochrome c oxidase. Biochim. Biophys. Acta. 2008;1777:343–350. doi: 10.1016/j.bbabio.2007.09.009. PubMed DOI
De Kouchkovsky Y., Haraux F., Sigalat C. Effect of hydrogen-deuterium exchange on energy-coupled processes in thylakoids. FEBS Lett. 1982;139:245–249. doi: 10.1016/0014-5793(82)80862-4. DOI
Evans B.R., Bali G., Reeves D.T., O’Neill H.M., Sun Q., Shah R., Ragauskas A.J. Effect of D2O on growth properties and chemical structure of annual ryegrass (Lolium multiflorum) J. Agric. Food Chem. 2014;62:2595–2604. doi: 10.1021/jf4055566. PubMed DOI
Sacchi G.A., Cocucci M. Effects of deuterium oxide on growth, proton extrusion, potassium influx, and in vitro plasma membrane activities in maize root segments. Plant Physiol. 1992;100:1962–1967. doi: 10.1104/pp.100.4.1962. PubMed DOI PMC
Saha S.K., Hayes J., Moane S., Murray P. Tagging of biomolecules with deuterated water (D2O) in commercially important microalgae. Biotechnol. Lett. 2013;35:1067–1072. doi: 10.1007/s10529-013-1176-8. PubMed DOI
Gireesh T., Jayadeep A., Rajasekharan K.N., Menon V.P., Vairamany M., Tang G., Nair P.P., Sudhakaran P.R. Production of deuterated b-carotene by metabolic labelling of Spirulina platensis. Biotechnol. Lett. 2001;23:447–449. doi: 10.1023/A:1010378401621. DOI
Doucha J., Lívanský K. Productivity, CO2/O2 exchange and hydraulics in outdoor open high density microalgal (Chlorella sp.) photobioreactors operated in a Middle and Southern European climate. J. Appl. Phycol. 2006;18:811–826. doi: 10.1007/s10811-006-9100-4. DOI
Vítová M., Hendrychová J., Cepák V., Zachleder V. Visualization of DNA-containing structures in various species of Chlorophyta, Rhodophyta and Cyanophyta using SYBR green I dye. Folia Microbiol. 2005;50:333–340. doi: 10.1007/BF02931414. PubMed DOI
Hlavová M., Vítová M., Bišová K. Synchronization of green algae by light and dark regimes for cell cycle and cell division studies. In: Caillaud M.-C., editor. Plant Cell Division. Springer Science; Berlin, Germany: 2016. pp. 3–16. PubMed
Takeshita T., Takeda K., Ota S., Yamazaki T., Kawano S. A simple method for measuring the starch and ĺipid contents in the cell of microalgae. Cytologia. 2015;80:475–481. doi: 10.1508/cytologia.80.475. DOI
Wanka F. Die bestimmung der nucleinsäuren in Chlorella pyrenoidosa. Planta. 1962;58:594–619. doi: 10.1007/BF01914751. DOI
Lukavský J., Tetík K., Vendlová J. Extraction of nucleic acid from the alga Scenedesmus quadricauda. Arch. Hydrobiol. Algol. Stud. 1973;9:416–426.
Decallonne J.R., Weyns C.J. A shortened procedure of the diphenylamine reaction for measurement of deoxyribonucleic acid by using light activation. Anal. Biochem. 1976;74:448–456. doi: 10.1016/0003-2697(76)90225-6. PubMed DOI
Zachleder V. Optimization of nucleic acids assay in green and blue-green algae: Extraction procedures and the light-activated reaction for DNA. Arch. Hydrobiol. Algol. Stud. 1984;36:313–328. doi: 10.1127/algol_stud/67/1984/313. DOI
Miller G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959;31:426–428. doi: 10.1021/ac60147a030. DOI
Zachleder V., Brányiková I. Starch overproduction by means of algae. In: Bajpai R.K., Prokop A., Zappi M., editors. Algal Biorefineries. Volume 1. Springer; Dordrecht, The Netherlands: 2014. pp. 217–240.
Morimura Y. Synchronous culture of Chlorella I. Kinetic analysis of the life cycle of Chlorella ellipsoidea as affected by changes of temperature and light intensity. Plant Cell Physiol. 1959;1:49–62.
Morimura Y., Yanagi S., Tamiya H. Synchronous mass culture of Chlorella. Plant Cell Physiol. 1961;5:85–93.
Vítová M., Bišová K., Umysová D., Hlavová M., Kawano S., Zachleder V., Čížková M. Chlamydomonas reinhardtii: Duration of its cell cycle and phases at growth rates affected by light intensity. Planta. 2011;233:75–86. doi: 10.1007/s00425-010-1282-y. PubMed DOI
Reinecke D.L., Castillo-Flores A., Boussiba S., Zarka A. Polyploid polynuclear consecutive cell-cycle enables large genome-size in Haematococcus pluvialis. Algal Res. 2018;33:456–461. doi: 10.1016/j.algal.2018.06.013. DOI
Shen C.-H. The Genome. In: Shen C.-H., editor. Diagnostic Molecular Biology. Academic Press; Cambridge, MA, USA: 2019. pp. 117–141.
Carvalheira G.M.G. Plant polytene chromosomes. Gen. Mol. Biol. 2000;23:1043–1050. doi: 10.1590/S1415-47572000000400050. DOI
Matsunaga S., Katagiri Y., Nagashima Y., Sugiyama T., Hasegawa J., Hayashi K., Sakamoto T. New insights into the dynamics of plant cell nuclei and chromosomes. In: Jeon K.W., editor. International Review of Cell and Molecular Biology. Volume 305. Academic Press; Cambridge, MA, USA: 2013. pp. 253–301. PubMed
Wanka F. Possible role of the pyrenoid in the reproductional phase of the cell cycle of Chlorella. Colloq. Intern. CNRS. 1975;240:132–136.
Šetlík I., Berková E., Doucha J., Kubín S., Vendlová J., Zachleder V. The coupling of synthetic and reproduction processes in Scenedesmus quadricauda. Arch. Hydrobiol. Algol. Stud. 1972;7:172–213.
Kaftan D., Meszaros T., Whitmarsh J., Nedbal L. Characterization of photosystem II activity and heterogeneity during the cell cycle of the green alga Scenedesmus quadricauda. Plant Physiol. 1999;120:433. doi: 10.1104/pp.120.2.433. PubMed DOI PMC
Šetlíková E., Šetlík I., Kuepper H., Kasalický V., Prášil O. The photosynthesis of individual algal cells during the cell cycle of Scenedesmus quadricauda studied by chlorophyll fluorescence kinetic microscopy. Photosynth. Res. 2005;84:113–120. doi: 10.1007/s11120-005-0479-6. PubMed DOI
Fernandez F.G., Alias C.B., Pérez J.A.S., Sevilla J.M.F., González M.J.I., Grima E.M. Production of 13C polyunsaturated fatty acids from the microalga Phaeodactylum tricornutum. J. Appl. Phycol. 2003;15:229–237. doi: 10.1023/A:1023871715805. DOI
Blake M.I., Crespi H.L., Mohan V., Katz J.J. Isolation of fully deuterated metabolites from Scenedesmus obliquus grown in deuterium oxide. J. Pharm. Sci. 1961;50:425–429. doi: 10.1002/jps.2600500512. DOI
Hattori A., Crespi H.L., Katz J.J. Effect of side-chain deuteration on protein stability. Biochemistry. 1965;4:1213–1225. doi: 10.1021/bi00883a002. PubMed DOI
Closs D.L., Katz J.J., Pennington M.R., Thomas H.R., Strain J. Hydrogen exchange at methine and C-10 positions in chlorophyll. Am. Chem. Soc. 1963;85:3809. doi: 10.1021/ja00906a020. DOI