Characterization of Growth and Cell Cycle Events Affected by Light Intensity in the Green Alga Parachlorella kessleri: A New Model for Cell Cycle Research

. 2021 Jun 15 ; 11 (6) : . [epub] 20210615

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34203860

Multiple fission is a cell cycle variation leading to the production of more than two daughter cells. Here, we used synchronized cultures of the chlorococcal green alga Parachlorella kessleri to study its growth and pattern of cell division under varying light intensities. The time courses of DNA replication, nuclear and cellular division, cell size, total RNA, protein content, dry matter and accumulation of starch were observed at incident light intensities of 110, 250 and 500 µmol photons m-2s-1. Furthermore, we studied the effect of deuterated water on Parachlorella kessleri growth and division, to mimic the effect of stress. We describe a novel multiple fission cell cycle pattern characterized by multiple rounds of DNA replication leading to cell polyploidization. Once completed, multiple nuclear divisions were performed with each of them, immediately followed by protoplast fission, terminated by the formation of daughter cells. The multiple fission cell cycle was represented by several consecutive doublings of growth parameters, each leading to the start of a reproductive sequence. The number of growth doublings increased with increasing light intensity and led to division into more daughter cells. This study establishes the baseline for cell cycle research at the molecular level as well as for potential biotechnological applications, particularly directed synthesis of (deuterated) starch and/or neutral lipids as carbon and energy reserves.

Zobrazit více v PubMed

Mukherjee B., Moroney J.V. Algal carbon dioxide concentrating mechanisms. eLS. 2020 doi: 10.1002/9780470015902.a0000314.pub4. DOI

Spalding M.H. Microalgal carbon-dioxide-concentrating mechanisms: Chlamydomonas inorganic carbon transporters. J. Exp. Bot. 2008;59:1463–1473. doi: 10.1093/jxb/erm128. PubMed DOI

Zachleder V., Bišová K., Vítová M. The cell cycle of microalgae. In: Borowitzka M.A., Beardall J., Raven J.A., editors. The Physiology of Microalgae. Volume 6. Springer; Dordrecht, The Netherlands: 2016. pp. 3–46.

Bišová K., Zachleder V. Cell-cycle regulation in green algae dividing by multiple fission. J. Exp. Bot. 2014;65:2585–2602. doi: 10.1093/jxb/ert466. PubMed DOI

Zachleder V., Bišová K., Vítová M., Kubínová A., Hendrychová J. Variety of cell cycle patterns in the alga Scenedesmus quadricauda (Chlorophyta) as revealed by application of illumination regimes and inhibitors. Eur. J. Phycol. 2002;37:361–371. doi: 10.1017/S0967026202003815. DOI

Zachleder V., Schläfli O., Boschetti A. Growth-controlled oscillation in activity of histone H1 kinase during the cell cycle of Chlamydomonas reinhardtii (Chlorophyta) J. Phycol. 1997;33:673–681. doi: 10.1111/j.0022-3646.1997.00673.x. DOI

Zachleder V., Šetlík I. Timing of events in overlapping cell reproductive sequences and their mutual interactions in the alga Scenedesmus quadricauda. J. Cell Sci. 1990;97:631–638. doi: 10.1242/jcs.97.4.631. DOI

Zachleder V., van den Ende H. Cell-cycle events in the green alga Chlamydomonas eugametos and their control by environmental factors. J. Cell Sci. 1992;102:469–474. doi: 10.1242/jcs.102.3.469. DOI

Tukaj Z., Kubínová A., Zachleder V. Effect of irradiance on growth and reproductive processes during the cell cycle in Scenedesmus armatus (Chlorophyta) J. Phycol. 1996;32:624–631. doi: 10.1111/j.0022-3646.1996.00624.x. DOI

Krienitz L., Hegewald E.H., Hepperle D., Huss V.A.R., Rohr T., Wolf M. Phylogenetic relationship of Chlorella and Parachlorella gen nov (Chlorophyta, Trebouxiophyceae) Phycologia. 2004;43:529–542. doi: 10.2216/i0031-8884-43-5-529.1. DOI

Řezanka T., Podojil M. The very long-chain fatty-acids of the green-alga Chlorella kessleri. Lipids. 1984;19:472–473. doi: 10.1007/BF02537412. DOI

Ota S., Matsuda T., Takeshita T., Yamazaki T., Kazama Y., Abe T., Kawano S. Phenotypic spectrum of Parachlorella kessleri (Chlorophyta) mutants produced by heavy-ion irradiation. Bioresour. Technol. 2013;149:432–438. doi: 10.1016/j.biortech.2013.09.079. PubMed DOI

Ota S., Yoshihara M., Yamazaki T., Takeshita T., Hirata A., Konomi M., Oshima K., Hattori M., Bišová K., Zachleder V., et al. Deciphering the relationship among phosphate dynamics, electron-dense body and lipid accumulation in the green alga Parachlorella kessleri. Sci. Rep. 2016;6:25731. doi: 10.1038/srep25731. PubMed DOI PMC

Ota S., Morita A., Ohnuki S., Hirata A., Sekida S., Okuda K., Ohya Y., Kawano S. Carotenoid dynamics and lipid droplet containing astaxanthin in response to light in the green alga Haematococcus pluvialis. Sci. Rep. 2018;8:5617. doi: 10.1038/s41598-018-23854-w. PubMed DOI PMC

Ota S., Oshima K., Yamazaki T., Takeshita T., Bišová K., Zachleder V., Hattori M., Kawano S. The Parachlorella genome and transcriptome endorse active RWP-RK, meiosis and flagellar genes in trebouxiophycean algae. Cytologia. 2019;84:323–330. doi: 10.1508/cytologia.84.323. DOI

Fernandes B., Teixeira J., Dragone G., Vicente A.A., Kawano S., Bišová K., Přibyl P., Zachleder V., Vítová M. Relationship between starch and lipid accumulation induced by nutrient depletion and replenishment in the microalga Parachlorella kessleri. Bioresour. Technol. 2013;144:268–274. doi: 10.1016/j.biortech.2013.06.096. PubMed DOI

Hirai Y., Tamura M., Otani J., Ishikawa F. NEK6-mediated phosphorylation of human TPP1 regulates telomere length through telomerase recruitment. Genes Cells. 2016 doi: 10.1111/gtc.12391. PubMed DOI

Mizuno Y., Sato A., Watanabe K., Hirata A., Takeshita T., Ota S., Sato N., Zachleder V., Tsuzuki M., Kawano S. Sequential accumulation of starch and lipid induced by sulfur deficiency in Chlorella and Parachlorella species. Bioresour. Technol. 2013;129:150–155. doi: 10.1016/j.biortech.2012.11.030. PubMed DOI

Takeshita T., Ivanov I.N., Oshima K., Ishii K., Kawamoto H., Ota S., Yamazaki T., Hirata A., Kazama Y., Abe T., et al. Comparison of lipid productivity of Parachlorella kessleri heavy-ion beam irradiation mutant PK4 in laboratory and 150-L mass bioreactor, identification and characterization of its genetic variation. Algal Res. 2018;35:416–426. doi: 10.1016/j.algal.2018.09.005. DOI

Taleb A., Legrand J., Takache H., Taha S., Pruvost J. Investigation of lipid production by nitrogen-starved Parachlorella kessleri under continuous illumination and day/night cycles for biodiesel application. J. Appl. Phycol. 2017 doi: 10.1007/s10811-017-1286-0. DOI

Rathod J.P., Prakash G., Pandit R., Lali A.M. Agrobacterium-mediated transformation of promising oil-bearing marine algae Parachlorella kessleri. Photosynth. Res. 2013;118:141–146. doi: 10.1007/s11120-013-9930-2. PubMed DOI

Sato N., Tsuzuki M., Kawaguchi A. Glycerolipid synthesis in Chlorella kessleri 11h - I. Existence of a eukaryotic pathway. Biochim. Biophys. Acta. 2003;1633:27–34. doi: 10.1016/S1388-1981(03)00069-6. PubMed DOI

Saleh M.M., Matorin D.N., Zayadan B.K., Todorenko D.A., Lukashov E.P., Gaballah M.M. Differentiation between two strains of microalga Parachlorella kessleri using modern spectroscopic method. Bot. Stud. 2014;55:53. doi: 10.1186/s40529-014-0053-7. PubMed DOI PMC

Li X., Přibyl P., Bišová K., Kawano S., Cepák V., Zachleder V., Čížková M., Brányiková I., Vítová M. The microalga Parachlorella kessleri––a novel highly efficient lipid producer. Biotechnol. Bioeng. 2013;110:97–107. doi: 10.1002/bit.24595. PubMed DOI

Přibyl P., Cepák V., Zachleder V. Production of lipids in 10 strains of Chlorella and Parachlorella, and enhanced lipid productivity in Chlorella vulgaris. Appl. Microbiol. Biotechnol. 2012;94:549–561. doi: 10.1007/s00253-012-3915-5. PubMed DOI

Takeshita T., Ota S., Yamazaki T., Hirata A., Zachleder V., Kawano S. Starch and lipid accumulation in eight strains of six Chlorella species under comparatively high light intensity and aeration culture conditions. Bioresour. Technol. 2014;158:127–134. doi: 10.1016/j.biortech.2014.01.135. PubMed DOI

Brányiková I., Maršálková B., Doucha J., Brányik T., Bišová K., Zachleder V., Vítová M. Microalgae-novel highly efficient starch producers. Biotechnol. Bioeng. 2011;108:766–776. doi: 10.1002/bit.23016. PubMed DOI

Izumo A., Fujiwara S., Oyama Y., Satoh A., Fujita N., Nakamura Y., Tsuzuki M. Physicochemical properties of starch in Chlorella change depending on the CO2 concentration during growth: Comparison of structure and properties of pyrenoid and stroma starch. Plant Sci. 2007;172:1138–1147. doi: 10.1016/j.plantsci.2007.03.001. DOI

Gao Y., Feng J., Lv J., Liu Q., Nan F., Liu X., Xie S. Physiological changes of Parachlorella kessleri ty02 in lipid accumulation under nitrogen stress. Int. J. Environ. Res. Public Health. 2019;16:1188. doi: 10.3390/ijerph16071188. PubMed DOI PMC

You Z., Zhang Q., Peng Z., Miao X. Lipid droplets mediate salt stress tolerance in Parachlorella kessleri. Plant Physiol. 2019;181:510–526. doi: 10.1104/pp.19.00666. PubMed DOI PMC

Zachleder V., Vítová M., Hlavová M., Moudříková Š., Mojzeš P., Heumann H., Becher J.R., Bišová K. Stable isotope compounds - production, detection, and application. Biotechnol. Adv. 2018;36:784–797. doi: 10.1016/j.biotechadv.2018.01.010. PubMed DOI

Yang J. Deuterium: Discovery and Applications in Organic Chemistry. Elsevier; Amsterdam, The Netherlands: 2016.

Lehmann W.D. A timeline of stable isotopes and mass spectrometry in the life sciences. Mass Spectrom. Rev. 2017;36:58–85. doi: 10.1002/mas.21497. PubMed DOI

Hirakura Y., Sugiyama T., Takeda M., Ikeda M., Yoshioka T. Deuteration as a tool in investigating the role of protons in cell signaling. Biochim. Biophys. Acta. 2011;1810:218–225. doi: 10.1016/j.bbagen.2010.10.005. PubMed DOI

Salomonsson L., Branden G., Brzezinski P. Deuterium isotope effect of proton pumping in cytochrome c oxidase. Biochim. Biophys. Acta. 2008;1777:343–350. doi: 10.1016/j.bbabio.2007.09.009. PubMed DOI

De Kouchkovsky Y., Haraux F., Sigalat C. Effect of hydrogen-deuterium exchange on energy-coupled processes in thylakoids. FEBS Lett. 1982;139:245–249. doi: 10.1016/0014-5793(82)80862-4. DOI

Evans B.R., Bali G., Reeves D.T., O’Neill H.M., Sun Q., Shah R., Ragauskas A.J. Effect of D2O on growth properties and chemical structure of annual ryegrass (Lolium multiflorum) J. Agric. Food Chem. 2014;62:2595–2604. doi: 10.1021/jf4055566. PubMed DOI

Sacchi G.A., Cocucci M. Effects of deuterium oxide on growth, proton extrusion, potassium influx, and in vitro plasma membrane activities in maize root segments. Plant Physiol. 1992;100:1962–1967. doi: 10.1104/pp.100.4.1962. PubMed DOI PMC

Saha S.K., Hayes J., Moane S., Murray P. Tagging of biomolecules with deuterated water (D2O) in commercially important microalgae. Biotechnol. Lett. 2013;35:1067–1072. doi: 10.1007/s10529-013-1176-8. PubMed DOI

Gireesh T., Jayadeep A., Rajasekharan K.N., Menon V.P., Vairamany M., Tang G., Nair P.P., Sudhakaran P.R. Production of deuterated b-carotene by metabolic labelling of Spirulina platensis. Biotechnol. Lett. 2001;23:447–449. doi: 10.1023/A:1010378401621. DOI

Doucha J., Lívanský K. Productivity, CO2/O2 exchange and hydraulics in outdoor open high density microalgal (Chlorella sp.) photobioreactors operated in a Middle and Southern European climate. J. Appl. Phycol. 2006;18:811–826. doi: 10.1007/s10811-006-9100-4. DOI

Vítová M., Hendrychová J., Cepák V., Zachleder V. Visualization of DNA-containing structures in various species of Chlorophyta, Rhodophyta and Cyanophyta using SYBR green I dye. Folia Microbiol. 2005;50:333–340. doi: 10.1007/BF02931414. PubMed DOI

Hlavová M., Vítová M., Bišová K. Synchronization of green algae by light and dark regimes for cell cycle and cell division studies. In: Caillaud M.-C., editor. Plant Cell Division. Springer Science; Berlin, Germany: 2016. pp. 3–16. PubMed

Takeshita T., Takeda K., Ota S., Yamazaki T., Kawano S. A simple method for measuring the starch and ĺipid contents in the cell of microalgae. Cytologia. 2015;80:475–481. doi: 10.1508/cytologia.80.475. DOI

Wanka F. Die bestimmung der nucleinsäuren in Chlorella pyrenoidosa. Planta. 1962;58:594–619. doi: 10.1007/BF01914751. DOI

Lukavský J., Tetík K., Vendlová J. Extraction of nucleic acid from the alga Scenedesmus quadricauda. Arch. Hydrobiol. Algol. Stud. 1973;9:416–426.

Decallonne J.R., Weyns C.J. A shortened procedure of the diphenylamine reaction for measurement of deoxyribonucleic acid by using light activation. Anal. Biochem. 1976;74:448–456. doi: 10.1016/0003-2697(76)90225-6. PubMed DOI

Zachleder V. Optimization of nucleic acids assay in green and blue-green algae: Extraction procedures and the light-activated reaction for DNA. Arch. Hydrobiol. Algol. Stud. 1984;36:313–328. doi: 10.1127/algol_stud/67/1984/313. DOI

Miller G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959;31:426–428. doi: 10.1021/ac60147a030. DOI

Zachleder V., Brányiková I. Starch overproduction by means of algae. In: Bajpai R.K., Prokop A., Zappi M., editors. Algal Biorefineries. Volume 1. Springer; Dordrecht, The Netherlands: 2014. pp. 217–240.

Morimura Y. Synchronous culture of Chlorella I. Kinetic analysis of the life cycle of Chlorella ellipsoidea as affected by changes of temperature and light intensity. Plant Cell Physiol. 1959;1:49–62.

Morimura Y., Yanagi S., Tamiya H. Synchronous mass culture of Chlorella. Plant Cell Physiol. 1961;5:85–93.

Vítová M., Bišová K., Umysová D., Hlavová M., Kawano S., Zachleder V., Čížková M. Chlamydomonas reinhardtii: Duration of its cell cycle and phases at growth rates affected by light intensity. Planta. 2011;233:75–86. doi: 10.1007/s00425-010-1282-y. PubMed DOI

Reinecke D.L., Castillo-Flores A., Boussiba S., Zarka A. Polyploid polynuclear consecutive cell-cycle enables large genome-size in Haematococcus pluvialis. Algal Res. 2018;33:456–461. doi: 10.1016/j.algal.2018.06.013. DOI

Shen C.-H. The Genome. In: Shen C.-H., editor. Diagnostic Molecular Biology. Academic Press; Cambridge, MA, USA: 2019. pp. 117–141.

Carvalheira G.M.G. Plant polytene chromosomes. Gen. Mol. Biol. 2000;23:1043–1050. doi: 10.1590/S1415-47572000000400050. DOI

Matsunaga S., Katagiri Y., Nagashima Y., Sugiyama T., Hasegawa J., Hayashi K., Sakamoto T. New insights into the dynamics of plant cell nuclei and chromosomes. In: Jeon K.W., editor. International Review of Cell and Molecular Biology. Volume 305. Academic Press; Cambridge, MA, USA: 2013. pp. 253–301. PubMed

Wanka F. Possible role of the pyrenoid in the reproductional phase of the cell cycle of Chlorella. Colloq. Intern. CNRS. 1975;240:132–136.

Šetlík I., Berková E., Doucha J., Kubín S., Vendlová J., Zachleder V. The coupling of synthetic and reproduction processes in Scenedesmus quadricauda. Arch. Hydrobiol. Algol. Stud. 1972;7:172–213.

Kaftan D., Meszaros T., Whitmarsh J., Nedbal L. Characterization of photosystem II activity and heterogeneity during the cell cycle of the green alga Scenedesmus quadricauda. Plant Physiol. 1999;120:433. doi: 10.1104/pp.120.2.433. PubMed DOI PMC

Šetlíková E., Šetlík I., Kuepper H., Kasalický V., Prášil O. The photosynthesis of individual algal cells during the cell cycle of Scenedesmus quadricauda studied by chlorophyll fluorescence kinetic microscopy. Photosynth. Res. 2005;84:113–120. doi: 10.1007/s11120-005-0479-6. PubMed DOI

Fernandez F.G., Alias C.B., Pérez J.A.S., Sevilla J.M.F., González M.J.I., Grima E.M. Production of 13C polyunsaturated fatty acids from the microalga Phaeodactylum tricornutum. J. Appl. Phycol. 2003;15:229–237. doi: 10.1023/A:1023871715805. DOI

Blake M.I., Crespi H.L., Mohan V., Katz J.J. Isolation of fully deuterated metabolites from Scenedesmus obliquus grown in deuterium oxide. J. Pharm. Sci. 1961;50:425–429. doi: 10.1002/jps.2600500512. DOI

Hattori A., Crespi H.L., Katz J.J. Effect of side-chain deuteration on protein stability. Biochemistry. 1965;4:1213–1225. doi: 10.1021/bi00883a002. PubMed DOI

Closs D.L., Katz J.J., Pennington M.R., Thomas H.R., Strain J. Hydrogen exchange at methine and C-10 positions in chlorophyll. Am. Chem. Soc. 1963;85:3809. doi: 10.1021/ja00906a020. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...