Growth under Different Trophic Regimes and Synchronization of the Red Microalga Galdieria sulphuraria
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34202768
PubMed Central
PMC8301940
DOI
10.3390/biom11070939
PII: biom11070939
Knihovny.cz E-zdroje
- Klíčová slova
- Galdieria, cell cycle, cell division, growth, light intensity, red algae, synchronization, temperature, trophic regimes,
- MeSH
- buněčný cyklus fyziologie MeSH
- heterotrofní procesy fyziologie MeSH
- kultivované buňky MeSH
- mikrořasy cytologie růst a vývoj MeSH
- Rhodophyta cytologie růst a vývoj MeSH
- teplota MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The extremophilic unicellular red microalga Galdieria sulphuraria (Cyanidiophyceae) is able to grow autotrophically, or mixo- and heterotrophically with 1% glycerol as a carbon source. The alga divides by multiple fission into more than two cells within one cell cycle. The optimal conditions of light, temperature and pH (500 µmol photons m-2 s-1, 40 °C, and pH 3; respectively) for the strain Galdieria sulphuraria (Galdieri) Merola 002 were determined as a basis for synchronization experiments. For synchronization, the specific light/dark cycle, 16/8 h was identified as the precondition for investigating the cell cycle. The alga was successfully synchronized and the cell cycle was evaluated. G. sulphuraria attained two commitment points with midpoints at 10 and 13 h of the cell cycle, leading to two nuclear divisions, followed subsequently by division into four daughter cells. The daughter cells stayed in the mother cell wall until the beginning of the next light phase, when they were released. Accumulation of glycogen throughout the cell cycle was also described. The findings presented here bring a new contribution to our general understanding of the cell cycle in cyanidialean red algae, and specifically of the biotechnologically important species G. sulphuraria.
Zobrazit více v PubMed
Merola A., Castaldo R., De Luca P., Gambardella R., Musacchio A., Taddei R. Revision of Cyanidium caldarium. Three species of acidophilic algae. Plant Biosyst. 1981;115:189–195. doi: 10.1080/11263508109428026. DOI
Matsuzaki M., Misumi O., Shin-i T., Maruyama S., Takahara M., Miyagishima S., Mori T., Nishida K., Yagisawa F., Nishida K., et al. Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature. 2004;428:653–657. doi: 10.1038/nature02398. PubMed DOI
Schonknecht G., Chen W.H., Ternes C.M., Barbier G.G., Shrestha R.P., Stanke M., Brautigam A., Baker B.J., Banfield J.F., Garavito R.M., et al. Gene transfer from bacteria and archaea facilitated evolution of an extremophilic eukaryote. Science. 2013;339:1207–1210. doi: 10.1126/science.1231707. PubMed DOI
Qiu H., Price D.C., Weber A.P., Reeb V., Yang E.C., Lee J.M., Kim S.Y., Yoon H.S., Bhattacharya D. Adaptation through horizontal gene transfer in the cryptoendolithic red alga Galdieria phlegrea. Curr. Biol. 2013;23:865–866. doi: 10.1016/j.cub.2013.08.046. PubMed DOI
Rossoni A.W., Price D.C., Seger M., Lyska D., Lammers P., Bhattacharya D., Weber A.P.M. The genomes of polyextremophilic cyanidiales contain 1% horizontally transferred genes with diverse adaptive functions. eLife. 2019;8 doi: 10.7554/eLife.45017. PubMed DOI PMC
De Luca P., Taddei R., Varano L. Cyanidioschyzon merolae: A new alga of thermal acidic environments. Webbia. 1978;33:37–44. doi: 10.1080/00837792.1978.10670110. DOI
Seckbach J. Evolutionary Pathways and Enigmatic Algae: Cyanidium Caldarium (Rhodophyta) and Related Cells. Kluwer Academic Publisher; Dordrecht, The Netherlands: 1994.
Gross W., Küver J., Tischendorf G., Bouchaala N., Büsch W. Cryptoendolithic growth of the red alga Galdieria sulphuraria in volcanic areas. Eur. J. Phycol. 1998;33:25–31. doi: 10.1080/09670269810001736503. DOI
Ciniglia C., Yoon H.S., Pollio A., Pinto G., Bhattacharya D. Hidden biodiversity of the extremophilic Cyanidiales red algae. Mol. Ecol. 2004;13:1827–1838. doi: 10.1111/j.1365-294X.2004.02180.x. PubMed DOI
Reeb V., Bhattacharya D. Red Algae in the Genomic Age. Volume 13. Springer; Dordrecht, The Netherlands: 2010. The Thermo-Acidophilic Cyanidiophyceae (Cyanidiales) pp. 409–426. Cellular Origin, Life in Extreme Habitats and Astrobiology. DOI
Vítová M., Goecke F., Sigler K., Řezanka T. Lipidomic analysis of the extremophilic red alga Galdieria sulphuraria in response to changes in pH. Algal Res. 2016;13:218–226. doi: 10.1016/j.algal.2015.12.005. DOI
Hirooka S., Tomita R., Fujiwara T., Ohnuma M., Kuroiwa H., Kuroiwa T., Miyagishima S. Efficient open cultivation of cyanidialean red algae in acidified seawater. Sci. Rep. 2020;10:1–12. doi: 10.1038/s41598-020-70398-z. PubMed DOI PMC
Yoshimura E., Nagasaka S., Sato Y., Satake K., Mori S. Extraordinary high aluminium tolerance of the acidophilic thermophilic alga, Cyanidium caldarium. Soil Sci. Plant. Nutr. 1999;45:721–724. doi: 10.1080/00380768.1999.10415835. DOI
Nagasaka S., Nishizawa N.K., Watanabe T., Mori S., Yoshimura E. Evidence that electron-dense bodies in Cyanidium caldarium have an iron-storage role. Biometals. 2003;16:465–470. doi: 10.1023/A:1022563600525. PubMed DOI
Minoda A., Sawada H., Suzuki S., Miyashita S., Inagaki K., Yamamoto T., Tsuzuki M. Recovery of rare earth elements from the sulfothermophilic red alga Galdieria sulphuraria using aqueous acid. Appl. Microbiol. Biotechnol. 2015;99:1513–1519. doi: 10.1007/s00253-014-6070-3. PubMed DOI
Cizkova M., Mezricky P., Mezricky D., Rucki M., Zachleder V., Vitova M. Bioaccumulation of rare earth elements from waste luminophores in the red algae, Galdieria phlegrea. Waste Biomass Valor. 2020 doi: 10.1007/s12649-020-01182-3. DOI
Čížková M., Vítová M., Zachleder V. The Red Microalga Galdieria as a Promising Organisms for Applications in Biotechnolgy. In: Vítová M., editor. Microalgae. From Physiology to Application. IntechOpen; London, UK: 2020. pp. 1–17.
Varshney P., Mikulic P., Vonshak A., Beardall J., Wangikar P.P. Extremophilic micro-algae and their potential contribution in biotechnology. Biores. Technol. 2015;184:363–372. doi: 10.1016/j.biortech.2014.11.040. PubMed DOI
Ju X., Igarashi K., Miyashita S., Mitsuhashi H., Inagaki K., Fujii S., Sawada H., Kuwabara T., Minoda A. Effective and selective recovery of gold and palladium ions from metal wastewater using a sulfothermophilic red alga, Galdieria sulphuraria. Biores. Technol. 2016;211:759–764. doi: 10.1016/j.biortech.2016.01.061. PubMed DOI
Gross W., Schnarrenberger C. Heterotrophic growth of two strains of the acido-thermophilic red alga Galdieria sulphuraria. Plant Cell Physiol. 1995;36:633–638.
Oesterhelt C., Schnarrenberger C., Gross W. Characterization of a sugar/polyol uptake system in the red alga Galdieria sulphuraria. Eur. J. Phycol. 1999;34:271–277. doi: 10.1080/09670269910001736322. DOI
Oesterhelt C., Schmalzlin E., Schmitt J.M., Lokstein H. Regulation of photosynthesis in the unicellular acidophilic red alga Galdieria sulphuraria. Plant J. 2007;51:500–511. doi: 10.1111/j.1365-313X.2007.03159.x. PubMed DOI
Lopez G., Yate C., Ramos F.A., Cala M.P., Restrepo S., Baena S. Production of polyunsaturated fatty acids and lipids from autotrophic, mixotrophic and heterotrophic cultivation of Galdieria sp. strain USBA-GBX-832. Sci. Rep. 2019;9 doi: 10.1038/s41598-019-46645-3. PubMed DOI PMC
Li C., Lesnik K.L., Liu H. Conversion of waste glycerol from biodiesel production into value-added products. Energies. 2013;6:4739–4768. doi: 10.3390/en6094739. DOI
Xu S., Elsayed M., Ismail G.A., Li C., Wang S., El-Fatah Abomohra A. Evaluation of bioethanol and biodiesel production from Scenedesmus obliquus grown in biodiesel waste glycerol: A sequential integrated route for enhanced energy recovery. Energy Convers. Manag. 2019;197:111907. doi: 10.1016/j.enconman.2019.111907. DOI
Martinez-Garcia M., Kormpa A., van der Maarel M.J.E.C. The glycogen of Galdieria sulphuraria as alternative to starch for the production of slowly digestible and resistant glucose polymers. Carbohydr. Polym. 2017;169:75–82. doi: 10.1016/j.carbpol.2017.04.004. PubMed DOI
Martinez-Garcia M., Stuart M.C.A., van der Maarel M.J.E. Characterization of the highly branched glycogen from the thermoacidophilic red microalga Galdieria sulphuraria and comparison with other glycogens. Int. J. Biol. Macromol. 2016;89:12–18. doi: 10.1016/j.ijbiomac.2016.04.051. PubMed DOI
John P.C.L. Control of the cell division cycle in Chlamydomonas. Microbiol. Sci. 1984;1:96–101. PubMed
Zachleder V., Šetlík I. Timing of events in overlapping cell reproductive sequences and their mutual interactions in the alga Scenedesmus quadricauda. J. Cell Sci. 1990;97:631–638. doi: 10.1242/jcs.97.4.631. DOI
Vítová M., Bišová K., Umysová D., Hlavová M., Kawano S., Zachleder V., Čížková M. Chlamydomonas reinhardtii: Duration of its cell cycle and phases at growth rates affected by light intensity. Planta. 2011;233:75–86. doi: 10.1007/s00425-010-1282-y. PubMed DOI
Šetlík I., Zachleder V., Doucha J., Berková E., Bartoš J. The nature of temperature block in the sequence of reproductive processes in Chlorella vulgaris BEIJERINCK. Arch. Hydrobiol. 1975;14:70–104.
Donnan L., Carvill E.P., Gilliland T.J., John P.C.L. The cell-cycles of Chlamydomonas and Chlorella. N. Phytol. 1985;99:1–40. doi: 10.1111/j.1469-8137.1985.tb03634.x. DOI
Vítová M., Bišová K., Hlavová M., Kawano S., Zachleder V., Čížková M. Chlamydomonas reinhardtii: Duration of its cell cycle and phases at growth rates affected by temperature. Planta. 2011;234:599–608. doi: 10.1007/s00425-011-1427-7. PubMed DOI
Vítová M., Zachleder V. Points of commitment to reproductive events as a tool for analysis of the cell cycle in synchronous cultures of algae. Folia Microbiol. 2005;50:141–149. doi: 10.1007/BF02931463. PubMed DOI
Calhoun S., Bell T.A.S., Dahlin L.R., Kunde Y., LaButti K., Louie K.B., Kuftin A., Treen D., Dilworth D., Mihaltcheva S., et al. A multi-omic characterization of temperature stress in a halotolerant Scenedesmus strain for algal biotechnology. Commun. Biol. 2021;4 doi: 10.1038/s42003-021-01859-y. PubMed DOI PMC
Zachleder V., van den Ende H. Cell-cycle events in the green alga Chlamydomonas eugametos and their control by environmental factors. J. Cell Sci. 1992;102:469–474. doi: 10.1242/jcs.102.3.469. DOI
Zachleder V., Ivanov I., Vítová M., Bišová K. Effects of cyclin-dependent kinase activity on the coordination of growth and the cell cycle in green algae at different temperatures. J. Exp. Bot. 2019;70:845–858. doi: 10.1093/jxb/ery391. PubMed DOI
Zachleder V., Ivanov I., Vitova M., Bisova K. Cell cycle arrest by supraoptimal temperature in the alga Chlamydomonas reinhardtii. Cells. 2019;8:1237. doi: 10.3390/cells8101237. PubMed DOI PMC
Semenenko V.E., Vladimirova M.G., Orleanskaya O.B. Physiological characteristics of Chlorella sp. K under conditions of high extremal temperatures I. Uncoupling effect of extreme temperatures on the cellular functions of Chlorella. Physiol. Plants. 1967;14:612–625.
Hemme D., Veyel D., Muhlhaus T., Sommer F., Juppner J., Unger A.K., Sandmann M., Fehrle I., Schonfelder S., Steup M., et al. Systems-wide analysis of acclimation responses to long-term heat stress and recovery in the photosynthetic model organism Chlamydomonas reinhardtii. Plant Cell. 2014;26:4270–4297. doi: 10.1105/tpc.114.130997. PubMed DOI PMC
Selvaratnam T., Pegallapati A.K., Montelya F., Rodriguez G., Nirmalakhandan N., Van Voorhies W., Lammers P.J. Evaluation of a thermo-tolerant acidophilic alga, Galdieria sulphuraria, for nutrient removal from urban wastewaters. Biores. Technol. 2014;156:395–399. doi: 10.1016/j.biortech.2014.01.075. PubMed DOI
Albertano P., Ciniglia C., Pinto G., Pollio A. The taxonomic position of Cyanidium, Cyanidioschyzon and Galdieria: An update. Hydrobiologia. 2000;433:137–143. doi: 10.1023/A:1004031123806. DOI
Jong L.W., Fujiwara T., Hirooka S., Miyagishima S.Y. Cell size for commitment to cell division and number of successive cell divisions in cyanidialean red algae. Protoplasma. 2021 doi: 10.1007/s00709-021-01628-y. PubMed DOI
Bišová K., Zachleder V. Cell cycle regulation in green algae dividing by multiple fission. J. Exp. Bot. 2014;65:2585–2602. doi: 10.1093/jxb/ert466. PubMed DOI
Zachleder V., Bišová K., Vítová M. The Cell Cycle of Microalgae. In: Borowitzka M.A., Raven J.A., editors. The Physiology of Microalgae. 6th ed. Springer International Publishing Switzerland; Cham, Switzerland: 2016. pp. 3–46.
Reed S.I. The selection of S. cerevisiae mutants defective in the start event of cell division. Genetics. 1980;95:561–577. doi: 10.1093/genetics/95.3.561. PubMed DOI PMC
Pardee A.B. A restriction point for control of normal animal cell proliferation. Proc. Nat. Acad. Sci. USA. 1974;71:1286–1290. doi: 10.1073/pnas.71.4.1286. PubMed DOI PMC
Cross F.R., Umen J.G. The Chlamydomonas cell cycle. Plant J. 2015 doi: 10.1111/tpj.12795. PubMed DOI PMC
Reinecke D.L., Castillo-Flores A., Boussiba S., Zarka A. Polyploid polynuclear consecutive cell-cycle enables large genome-size in Haematococcus pluvialis. Algal Res. Biomass Biofuels Bioprod. 2018;33:456–461. doi: 10.1016/j.algal.2018.06.013. DOI
Zachleder V., Ivanov I.N., Kselíková V., Bialevich V., Vítová M., Ota S., Takeshita T., Kawano S., Bišová K. Characterization of growth and cell cycle events as affected by light intensity in the green alga Parachlorella kessleri, as a new model for cell cycle research. Biomolecules. 2021;11:891. doi: 10.3390/biom11060891. PubMed DOI PMC
Hlavová M., Vítová M., Bišová K. Synchronization of Green Algae by Light and Dark Regimes for Cell Cycle and Cell Division Studies. In: Caillaud M.-C., Walker J.M., editors. Plant Cell Division. Springer Science; New York, NY, USA: 2016. pp. 3–16. Methods in Molecular Biology. PubMed
Miyagishima S.Y., Fujiwara T., Sumiya N., Hirooka S., Nakano A., Kabeya Y., Nakamura M. Translation-independent circadian control of the cell cycle in a unicellular photosynthetic eukaryote. Nat. Commun. 2014;5:3807. doi: 10.1038/ncomms4807. PubMed DOI
Imoto Y., Fujiwara T., Yoshida Y., Kuroiwa H., Maruyama S., Kuroiwa T. Division of cell nuclei, mitochondria, plastids, and microbodies mediated by mitotic spindle poles in the primitive red alga Cyanidioschyzon merolae. Protoplasma. 2010;241:63–74. doi: 10.1007/s00709-010-0107-y. PubMed DOI
Moriyama T., Terasawa K., Sekine K., Toyoshima M., Koike M., Fujiwara M., Sato N. Characterization of cell-cycle-driven and light-driven gene expression in a synchronous culture system in the unicellular rhodophyte Cyanidioschyzon merolae. Microbiol. Sgm. 2010;156:1730–1737. doi: 10.1099/mic.0.037754-0. PubMed DOI
Kanesaki Y., Imamura S., Minoda A., Tanaka K. External light conditions and internal cell cycle phases coordinate accumulation of chloroplast and mitochondrial transcripts in the red alga Cyanidioschyzon merolae. DNA Res. 2012;19:289–303. doi: 10.1093/dnares/dss013. PubMed DOI PMC
Sumiya N., Fujiwara T., Era A., Miyagishima S. Chloroplast division checkpoint in eukaryotic algae. Proc. NatL. Acad. Sci. USA. 2016;113:7629–7638. doi: 10.1073/pnas.1612872113. PubMed DOI PMC
Fujiwara T., Hirooka S., Ohbayashi R., Onuma R., Miyagishima S.Y. Relationship between cell cycle and diel transcriptomic changes in metabolism in a unicellular red alga. Plant Physiol. 2020;183:1484–1501. doi: 10.1104/pp.20.00469. PubMed DOI PMC
Ichinose T.M., Iwane A.H. Long-term live cell cycle imaging of single Cyanidioschyzon merolae cells. Protoplasma. 2021;258:651–660. doi: 10.1007/s00709-020-01592-z. PubMed DOI PMC
Sheath R.G., Hellebust J.A., Sawa T. Floridean starch metabolism of Porphyridium purpureum (Rhodphyta) II Changes during the cell cycle. Phycologia. 1979;18:185–190. doi: 10.2216/i0031-8884-18-3-185.1. DOI
Simon-Bercovitch B., Bar-Zvi D., Arad S.M. Cell-wall formation during the cell cycle of Porphyridium sp. (Rhodophyta) J. Phycol. 1999;35:78–83. doi: 10.1046/j.1529-8817.1999.3510078.x. DOI
Knappe J. Synchronkulturen von Porphyridium cruentum und ihr photosynthetisches Verhalten. Plant Biol. 1972;85:425–434. doi: 10.1111/j.1438-8677.1972.tb04143.x. DOI
Kopecky J., Lukavska A., Verbovikova E., Pfuendel E. Changes in the photosynthetic pigment patterns during the synchronous life cycle of Porphyridium purpureum. Arch. Hydrobiol. Suppl. 2004;154:121–132. doi: 10.1127/1864-1318/2004/0114-0121. DOI
Rebolloso Fuentes M.M., García Sánchez J.L., Fernández Sevilla J.M., Acién Fernández F.G., Sánchez Pérez J.A., Molina Grima E. Outdoor continuous culture of Porphyridium cruentum in a tubular photobioreactor: Quantitative analysis of the daily cyclic variation of culture parameters. J. Biotechnol. 1999;70:271–288. doi: 10.1016/S0168-1656(99)00080-2. DOI
Brányiková I., Maršálková B., Doucha J., Brányik T., Bišová K., Zachleder V., Vítová M. Microalgae-novel highly efficient starch producers. Biotechnol. Bioeng. 2011;108:766–776. doi: 10.1002/bit.23016. PubMed DOI
Šetlík I., Zachleder V. The Multiple Fission Cell Reproductive Patterns in Algae. In: Nurse P., Streiblová E., editors. The Microbial Cell Cycle. CRC Press Inc.; Boca Raton, FL, USA: 1984. pp. 253–279.
Zachleder V., Cepák V. Visualization of DNA containing structures by fluorochrome DAPI in those algal cells which are not freely permeable to the dye. Arch. Hydrobiol. Algol. Stud. 1987;47:157–168.
Vítová M., Hendrychová J., Cepák V., Zachleder V. Visualization of DNA-containing structures in vivo in various species of Chlorophyta, Rhodophyta and Cyanophyta using SYBR Green I dye. Folia Microbiol. 2005;50:333–340. doi: 10.1007/BF02931414. PubMed DOI
Wanka F. Die Bestimmung der Nucleinsäuren in Chlorella pyrenoidosa. Planta. 1962;58:594–619. doi: 10.1007/BF01914751. DOI
Lukavský J., Tetík K., Vendlová J. Extraction of nucleic acid from the alga Scenedesmus quadricauda. Arch. Hydrobiol. Algol. Stud. 1973;9:416–426.
Decallonne J.R., Weyns C.J. A shortened procedure of the diphenylamine reaction for measurement of deoxyribonucleic acid by using light activation. Anal. Biochem. 1976;74:448–456. doi: 10.1016/0003-2697(76)90225-6. PubMed DOI
Zachleder V. Optimization of nucleic acids assay in green and blue-green algae: Extraction procedures and the light-activated reaction for DNA. Arch. Hydrobiol. 1984;67:313–328. doi: 10.1127/algol_stud/67/1984/313. DOI
Lowry O.H., Rosenbrough N.S., Farr A.L., Randall R.J. Protein measurement with the folin-phenol reagent. J. Biol. Chem. 1951;193:265–275. doi: 10.1016/S0021-9258(19)52451-6. PubMed DOI
Pinto G., Ciniglia C., Cascone C., Pollio A. Algae and Cyanobacteria in Extreme Environments. Volume 11. Springer; Dordrecht, The Netherlands: 2007. Species Composition of Cyanidiales Assemblages in Pisciarelli (Campi Flegrei, Italy) and Description of Galdieria Phlegrea sp. NOV; pp. 489–502. Cellular Origin, Life in Extreme Habitats and Astrobiology.
Eren A., Iovinella M., Yoon H.S., Cennamo P., de Stefano M., de Castro O., Ciniglia C. Genetic structure of Galdieria populations from Iceland. Polar Biol. 2018;41:1681–1691. doi: 10.1007/s00300-018-2308-3. DOI
Ciniglia C., Yang E.C., Pollio A., Pinto G., Iovinella M., Vitale L., Yoon H.S. Cyanidiophyceae in Iceland: Plastid rbcL gene elucidates origin and dispersal of extremophilic Galdieria sulphuraria and G. maxima (Galdieriaceae, Rhodophyta) Phycologia. 2014;53:542–551. doi: 10.2216/14-032.1. DOI
Gross W., Oesterhelt C., Tischendorf G., Lederer F. Characterization of a non-thermophilic strain of the red algal genus Galdieria isolated from SOOS (Czech Republic) Eur. J. Phycol. 2002;37:477–482. doi: 10.1017/S0967026202003773. DOI
Thangaraj B., Jolley C.C., Sarrou I., Bultema J.B., Greyslak J., Whitelegge J.P., Lin S., Kouril R., Subramanyam R., Boekema E.J., et al. Efficient Light Harvesting in a Dark, Hot, Acidic environment: The structure and function of PSI-LHCI from Galdieria sulphuraria. Biophys. J. 2011;100:135–143. doi: 10.1016/j.bpj.2010.09.069. PubMed DOI PMC
Liu L., Sanchez-Arcos C., Pohnert G., Wei D. Untargeted metabolomics unveil changes in autotrophic and mixotrophic Galdieria sulphuraria exposed to high-light intensity. Int. J. Mol. Sci. 2021;22:1247. doi: 10.3390/ijms22031247. PubMed DOI PMC
Curien G., Lyska D., Guglielmino E., Westhoff P., Janetzko J., Tardif M., Hallopeau C., Brugiere S., Dal Bo D., Decelle J., et al. Mixotrophic growth of the extremophile Galdieria sulphuraria reveals the flexibility of its carbon assimilation metabolism. N. Phytol. 2021;231:326–338. doi: 10.1111/nph.17359. PubMed DOI PMC
Kuroiwa T., Nagashima H., Fukuda I. Chloroplast division without DNA synthesis during the life cycle of the unicellular alga Cyanidium caldarium M-8 as revealed by quantitative fluorescence microscopy. Protoplasma. 1989;149:120–129. doi: 10.1007/BF01322984. DOI
Zachleder V., Schläfli O., Boschetti A. Growth-controlled oscillation in activity of histone H1 kinase during the cell cycle of Chlamydomonas reinhardtii (Chlorophyta) J. Phycol. 1997;33:673–681. doi: 10.1111/j.0022-3646.1997.00673.x. DOI
Ball S., Colleoni C., Cenci U., Raj J.N., Tirtiaux C. The evolution of glycogen and starch metabolism in eukaryotes gives molecular clues to understand the establishment of plastid endosymbiosis. J. Exp. Bot. 2011;62:1775–1801. doi: 10.1093/jxb/erq411. PubMed DOI
Sakurai T., Aoki M., Ju X., Ueda T., Nakamura Y., Fujiwara S., Umemura T., Tsuzuki M., Minoda A. Profiling of lipid and glycogen accumulations under different growth conditions in the sulfothermophilic red alga Galdieria sulphuraria. Biores. Technol. 2016;200:861–866. doi: 10.1016/j.biortech.2015.11.014. PubMed DOI
Salbitani G., Cipolletta S., Vona V., Di Martino C., Carfagna S. Heterotrophic cultures of Galdieria phlegrea shift to autotrophy in the presence or absence of glycerol. J. Plant Growth Regul. 2021;40:371–378. doi: 10.1007/s00344-020-10109-0. DOI
Carbone D.A., Olivieri G., Pollio A., Melkonian M. Comparison of Galdieria growth and photosynthetic activity in different culture systems. AMB Express. 2020;10:170. doi: 10.1186/s13568-020-01110-7. PubMed DOI PMC
Systemic analysis of lipid metabolism from individuals to multi-organism systems