Chlamydomonas reinhardtii: duration of its cell cycle and phases at growth rates affected by light intensity
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- buněčný cyklus účinky záření MeSH
- časové faktory MeSH
- Chlamydomonas reinhardtii cytologie růst a vývoj účinky záření MeSH
- cirkadiánní proteiny Period metabolismus MeSH
- cirkadiánní rytmus genetika účinky záření MeSH
- kultivované buňky MeSH
- mutace genetika MeSH
- světlo * MeSH
- tma MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cirkadiánní proteiny Period MeSH
In the cultures of the alga Chlamydomonas reinhardtii, division rhythms of any length from 12 to 75 h were found at a range of different growth rates that were set by the intensity of light as the sole source of energy. The responses to light intensity differed in terms of altered duration of the phase from the beginning of the cell cycle to the commitment to divide, and of the phase after commitment to cell division. The duration of the pre-commitment phase was determined by the time required to attain critical cell size and sufficient energy reserves (starch), and thus was inversely proportional to growth rate. If growth was stopped by interposing a period of darkness, the pre-commitment phase was prolonged corresponding to the duration of the dark interval. The duration of the post-commitment phase, during which the processes leading to cell division occurred, was constant and independent of growth rate (light intensity) in the cells of the same division number, or prolonged with increasing division number. It appeared that different regulatory mechanisms operated through these two phases, both of which were inconsistent with gating of cell division at any constant time interval. No evidence was found to support any hypothetical timer, suggested to be triggered at the time of daughter cell release.
Zobrazit více v PubMed
J Cell Sci. 1996 Dec;109 ( Pt 12):2947-57 PubMed
Science. 1990 Nov 9;250(4982):805-8 PubMed
Genetics. 1972 Apr;70(4):537-48 PubMed
Curr Opin Microbiol. 2008 Dec;11(6):541-6 PubMed
Curr Biol. 2008 Sep 9;18(17):R816-R825 PubMed
Plant Physiol. 2006 Sep;142(1):305-17 PubMed
Plant Cell Physiol. 2005 Jun;46(6):931-6 PubMed
Proc Natl Acad Sci U S A. 1960 Jan;46(1):83-91 PubMed
FEBS Lett. 2009 Dec 17;583(24):3938-47 PubMed
Plant Cell. 1989 Dec;1(12):1185-93 PubMed
Plant Physiol. 2005 Feb;137(2):475-91 PubMed
Plant Physiol. 1990 Jun;93(2):425-31 PubMed
J Cell Biol. 1995 May;129(4):1061-9 PubMed
Plant Physiol. 2005 Feb;137(2):399-409 PubMed
Plant Physiol. 2007 Jul;144(3):1360-9 PubMed
Science. 2008 Oct 31;322(5902):697-701 PubMed
J Cell Sci. 1993 Apr;104 ( Pt 4):1163-73 PubMed
Nature. 1979 Jul 5;280(5717):17-9 PubMed
Mol Cell Biol. 2006 Feb;26(3):863-70 PubMed
Plant Physiol. 1986 Jan;80(1):20-2 PubMed
Folia Microbiol (Praha). 2005;50(2):141-9 PubMed
J Cell Biol. 1980 Apr;85(1):136-45 PubMed
Plant Cell. 2009 Nov;21(11):3436-49 PubMed
PLoS Genet. 2010 May 20;6(5):e1000957 PubMed
Nature. 1983 Aug 18-24;304(5927):630-3 PubMed
Photochem Photobiol. 2002 Jul;76(1):105-15 PubMed
To Divide or Not to Divide? How Deuterium Affects Growth and Division of Chlamydomonas reinhardtii
Cell Cycle Arrest by Supraoptimal Temperature in the Alga Chlamydomonas reinhardtii
Growth and the cell cycle in green algae dividing by multiple fission