Starch Production in Chlamydomonas reinhardtii through Supraoptimal Temperature in a Pilot-Scale Photobioreactor

. 2021 May 01 ; 10 (5) : . [epub] 20210501

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34062892

Grantová podpora
15-09231S Czech Science Foundation
EF16_027/0007990 Ministry of Education, Youth and Sports of the Czech Republic

An increase in temperature can have a profound effect on the cell cycle and cell division in green algae, whereas growth and the synthesis of energy storage compounds are less influenced. In Chlamydomonas reinhardtii, laboratory experiments have shown that exposure to a supraoptimal temperature (39 °C) causes a complete block of nuclear and cellular division accompanied by an increased accumulation of starch. In this work we explore the potential of supraoptimal temperature as a method to promote starch production in C. reinhardtii in a pilot-scale photobioreactor. The method was successfully applied and resulted in an almost 3-fold increase in the starch content of C. reinhardtii dry matter. Moreover, a maximum starch content at the supraoptimal temperature was reached within 1-2 days, compared with 5 days for the control culture at the optimal temperature (30 °C). Therefore, supraoptimal temperature treatment promotes rapid starch accumulation and suggests a viable alternative to other starch-inducing methods, such as nutrient depletion. Nevertheless, technical challenges, such as bioreactor design and light availability within the culture, still need to be dealt with.

Zobrazit více v PubMed

Vítová M., Bišová K., Hlavová M., Kawano S., Zachleder V., Čížková M. Chlamydomonas reinhardtii: Duration of its cell cycle and phases at growth rates affected by temperature. Planta. 2011;234:599–608. doi: 10.1007/s00425-011-1427-7. PubMed DOI

Vítová M., Bišová K., Umysová D., Hlavová M., Kawano S., Zachleder V., Čížková M. Chlamydomonas reinhardtii: Duration of its cell cycle and phases at growth rates affected by light intensity. Planta. 2011;233:75–86. doi: 10.1007/s00425-010-1282-y. PubMed DOI

Ras M., Steyer J.-P., Bernard O. Temperature effect on microalgae: A crucial factor for outdoor production. Rev. Environ. Sci. Biotechnol. 2013;12:153–164. doi: 10.1007/s11157-013-9310-6. DOI

Singh S.P., Singh P. Effect of temperature and light on the growth of algae species: A review. Renew. Sustain. Energy Rev. 2015;50:431–444. doi: 10.1016/j.rser.2015.05.024. DOI

Zachleder V., Ivanov I., Vítová M., Bišová K. Effects of cyclin-dependent kinase activity on the coordination of growth and the cell cycle in green algae at different temperatures. J. Exp. Bot. 2019;70:845–858. doi: 10.1093/jxb/ery391. PubMed DOI

Zachleder V., Ivanov I., Vítová M., Bišová K. Cell cycle arrest by supraoptimal temperature in the alga Chlamydomonas reinhardtii. Cells. 2019;8:1237. doi: 10.3390/cells8101237. PubMed DOI PMC

Semenenko V.E., Vladimirova M.G., Opleanskaja O.B., Raikov N.I., Kovanova E.S. Physiological characteristics of Chlorella sp. K under conditions of high extremal temperatures II. Changes in biosynthesis, ultrastructure and activity of photosynthetic apparatus of Chlorella at uncoupling cellular functions at extreme temperature. Russian J. Plant Physiol. 1969;16:210–220.

Semenenko V.E., Vladimirova M.G., Orleanskaya O.B. Physiological characteristics of Chlorella sp. K under conditions of high extremal temperatures I. Uncoupling effect of extreme temperatures on the cellular functions of Chlorella. Russian J. Plant Physiol. 1967;14:612–625.

Šetlík I., Zachleder V., Doucha J., Berková E., Bartoš J. The nature of temperature block in the sequence of reproductive processes in Chlorella vulgaris BEIJERINCK. Arch. Hydrobiol. Algol. Stud. 1975;14:70–104.

Torres-Romero I., Kong F., Legeret B., Beisson F., Peltier G., Li-Beisson Y. Chlamydomonas cell cycle mutant crcdc5 over-accumulates starch and oil. Biochimie. 2019 doi: 10.1016/j.biochi.2019.09.017. PubMed DOI

Lacour T., Sciandra A., Talec A., Mayzaud P., Bernard O. Neutral lipid and carbohydrate productivities as a response to nitrogen status in Isochrysis sp. (T-iso; Haptophyceae): Starvation vs. limitation. J. Phycol. 2012;48:647–656. doi: 10.1111/j.1529-8817.2012.01154.x. PubMed DOI

Ball S.G., Dirick L., Decq A., Martiat J.C., Matagne R.F. Physiology of starch storage in the monocellular alga Chlamydomonas reinhardtii. Science. 1990;66:1–9. doi: 10.1016/0168-9452(90)90162-H. DOI

Burlacot A., Peltier G., Li-Beisson Y. Subcellular energetics and carbon storage in Chlamydomonas. Cells. 2019;8:1154. doi: 10.3390/cells8101154. PubMed DOI PMC

Chen H., Hu J., Qiao Y., Chen W., Rong J., Zhang Y., He C., Wang Q. Ca2+-regulated cyclic electron flow supplies ATP for nitrogen starvation-induced lipid biosynthesis in green alga. Sci. Rep. 2015;5:15117. doi: 10.1038/srep15117. PubMed DOI PMC

Peltier G., Schmidt G.W. Chlororespiration: An adaptation to nitrogen deficiency in Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. USA. 1991;88:4791–4795. doi: 10.1073/pnas.88.11.4791. PubMed DOI PMC

Salome P.A., Merchant S.S. A series of fortunate events: Introducing Chlamydomonas as a reference organism. Plant Cell. 2019 doi: 10.1105/tpc.18.00952. PubMed DOI PMC

Sasso S., Stibor H., Mittag M., Grossman A.R. From molecular manipulation of domesticated Chlamydomonas reinhardtii to survival in nature. eLife. 2018;7:e39223. doi: 10.7554/eLife.39233. PubMed DOI PMC

Zhang M.-P., Wang M., Wang C. Nuclear transformation of Chlamydomonas reinhardtii: A review. Biochimie. 2021;181:1–11. doi: 10.1016/j.biochi.2020.11.016. PubMed DOI

Koo K.M., Jung S., Lee B.S., Kim J.B., Jo Y.D., Choi H.I., Kang S.Y., Chung G.H., Jeong W.J., Ahn J.W. The mechanism of starch over-accumulation in Chlamydomonas reinhardtii high-starch mutants identified by comparative transcriptome analysis. Front. Microbiol. 2017;8:858. doi: 10.3389/fmicb.2017.00858. PubMed DOI PMC

Gifuni I., Olivieri G., Pollio A., Franco T.T., Marzocchella A. Autotrophic starch production by Chlamydomonas species. J. Appl. Phycol. 2016;29:105–114. doi: 10.1007/s10811-016-0932-2. DOI

Schulz-Raffelt M., Chochois V., Auroy P., Cuiné S., Billon E., Dauvillée D., Li-Beisson Y., Peltier G. Hyper-accumulation of starch and oil in a Chlamydomonas mutant affected in a plant-specific DYRK kinase. Biotechnol. Biofuels. 2016;9:55. doi: 10.1186/s13068-016-0469-2. PubMed DOI PMC

Mathiot C., Ponge P., Gallard B., Sassi J.F., Delrue F., Le Moigne N. Microalgae starch-based bioplastics: Screening of ten strains and plasticization of unfractionated microalgae by extrusion. Carbohydr. Polym. 2019;208:142–151. doi: 10.1016/j.carbpol.2018.12.057. PubMed DOI

Sueoka N. Mitotic replication of deoxyribonucleic acid in Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. USA. 1960;46:83–91. doi: 10.1073/pnas.46.1.83. PubMed DOI PMC

Miller G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959;31:426–428. doi: 10.1021/ac60147a030. DOI

Fernandes B., Teixeira J., Dragone G., Vicente A.A., Kawano S., Bišová K., Přibyl P., Zachleder V., Vítová M. Relationship between starch and lipid accumulation induced by nutrient depletion and replenishment in the microalga Parachlorella kessleri. Bioresour. Technol. 2013;144:268–274. doi: 10.1016/j.biortech.2013.06.096. PubMed DOI

Siaut M., Cuine S., Cagnon C., Fessler B., Nguyen M., Carrier P., Beyly A., Beisson F., Triantaphylides C., Li-Beisson Y., et al. Oil accumulation in the model green alga Chlamydomonas reinhardtii: Characterization, variability between common laboratory strains and relationship with starch reserves. BMC Biotechnol. 2011;11:7. doi: 10.1186/1472-6750-11-7. PubMed DOI PMC

Nitsos C., Filali R., Taidi B., Lemaire J. Current and novel approaches to downstream processing of microalgae: A review. Biotechnol. Adv. 2020;45:107650. doi: 10.1016/j.biotechadv.2020.107650. PubMed DOI

Gifuni I., Pollio A., Marzocchella A., Olivieri G. New ultra-flat photobioreactor for intensive microalgal production: The effect of light irradiance. Algal Res. 2018;34:134–142. doi: 10.1016/j.algal.2018.07.014. DOI

Carvalho A.P., Silva S.O., Baptista J.M., Malcata F.X. Light requirements in microalgal photobioreactors: An overview of biophotonic aspects. Appl. Microbiol. Biotechnol. 2011;89:1275–1288. doi: 10.1007/s00253-010-3047-8. PubMed DOI

Murphy T.E., Berberoğlu H. Effect of algae pigmentation on photobioreactor productivity and scale-up: A light transfer perspective. J. Quant. Spectrosc. Radiat. Transf. 2011;112:2826–2834. doi: 10.1016/j.jqsrt.2011.08.012. DOI

Li T., Wang W., Yuan C., Zhang Y., Xu J., Zheng H., Xiang W., Li A. Linking lipid accumulation and photosynthetic efficiency in Nannochloropsis sp. under nutrient limitation and replenishment. J. Appl. Phycol. 2020;32:1619–1630. doi: 10.1007/s10811-020-02056-w. DOI

Huang Q., Jiang F., Wang L., Yang C. Design of photobioreactors for mass cultivation of photosynthetic organisms. Engineering. 2017;3:318–329. doi: 10.1016/J.ENG.2017.03.020. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...