Starch Production in Chlamydomonas reinhardtii through Supraoptimal Temperature in a Pilot-Scale Photobioreactor
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
15-09231S
Czech Science Foundation
EF16_027/0007990
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
34062892
PubMed Central
PMC8147326
DOI
10.3390/cells10051084
PII: cells10051084
Knihovny.cz E-zdroje
- Klíčová slova
- Chlamydomonas reinhardtii, cell cycle, microalgae, pilot-scale production, starch, supraoptimal temperature,
- MeSH
- biomasa * MeSH
- bioreaktory MeSH
- buněčný cyklus MeSH
- Chlamydomonas reinhardtii metabolismus MeSH
- fotobioreaktory * MeSH
- kultivační média MeSH
- mikrořasy MeSH
- průmyslová mikrobiologie metody MeSH
- škrob metabolismus MeSH
- světlo MeSH
- teplota MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kultivační média MeSH
- škrob MeSH
An increase in temperature can have a profound effect on the cell cycle and cell division in green algae, whereas growth and the synthesis of energy storage compounds are less influenced. In Chlamydomonas reinhardtii, laboratory experiments have shown that exposure to a supraoptimal temperature (39 °C) causes a complete block of nuclear and cellular division accompanied by an increased accumulation of starch. In this work we explore the potential of supraoptimal temperature as a method to promote starch production in C. reinhardtii in a pilot-scale photobioreactor. The method was successfully applied and resulted in an almost 3-fold increase in the starch content of C. reinhardtii dry matter. Moreover, a maximum starch content at the supraoptimal temperature was reached within 1-2 days, compared with 5 days for the control culture at the optimal temperature (30 °C). Therefore, supraoptimal temperature treatment promotes rapid starch accumulation and suggests a viable alternative to other starch-inducing methods, such as nutrient depletion. Nevertheless, technical challenges, such as bioreactor design and light availability within the culture, still need to be dealt with.
Zobrazit více v PubMed
Vítová M., Bišová K., Hlavová M., Kawano S., Zachleder V., Čížková M. Chlamydomonas reinhardtii: Duration of its cell cycle and phases at growth rates affected by temperature. Planta. 2011;234:599–608. doi: 10.1007/s00425-011-1427-7. PubMed DOI
Vítová M., Bišová K., Umysová D., Hlavová M., Kawano S., Zachleder V., Čížková M. Chlamydomonas reinhardtii: Duration of its cell cycle and phases at growth rates affected by light intensity. Planta. 2011;233:75–86. doi: 10.1007/s00425-010-1282-y. PubMed DOI
Ras M., Steyer J.-P., Bernard O. Temperature effect on microalgae: A crucial factor for outdoor production. Rev. Environ. Sci. Biotechnol. 2013;12:153–164. doi: 10.1007/s11157-013-9310-6. DOI
Singh S.P., Singh P. Effect of temperature and light on the growth of algae species: A review. Renew. Sustain. Energy Rev. 2015;50:431–444. doi: 10.1016/j.rser.2015.05.024. DOI
Zachleder V., Ivanov I., Vítová M., Bišová K. Effects of cyclin-dependent kinase activity on the coordination of growth and the cell cycle in green algae at different temperatures. J. Exp. Bot. 2019;70:845–858. doi: 10.1093/jxb/ery391. PubMed DOI
Zachleder V., Ivanov I., Vítová M., Bišová K. Cell cycle arrest by supraoptimal temperature in the alga Chlamydomonas reinhardtii. Cells. 2019;8:1237. doi: 10.3390/cells8101237. PubMed DOI PMC
Semenenko V.E., Vladimirova M.G., Opleanskaja O.B., Raikov N.I., Kovanova E.S. Physiological characteristics of Chlorella sp. K under conditions of high extremal temperatures II. Changes in biosynthesis, ultrastructure and activity of photosynthetic apparatus of Chlorella at uncoupling cellular functions at extreme temperature. Russian J. Plant Physiol. 1969;16:210–220.
Semenenko V.E., Vladimirova M.G., Orleanskaya O.B. Physiological characteristics of Chlorella sp. K under conditions of high extremal temperatures I. Uncoupling effect of extreme temperatures on the cellular functions of Chlorella. Russian J. Plant Physiol. 1967;14:612–625.
Šetlík I., Zachleder V., Doucha J., Berková E., Bartoš J. The nature of temperature block in the sequence of reproductive processes in Chlorella vulgaris BEIJERINCK. Arch. Hydrobiol. Algol. Stud. 1975;14:70–104.
Torres-Romero I., Kong F., Legeret B., Beisson F., Peltier G., Li-Beisson Y. Chlamydomonas cell cycle mutant crcdc5 over-accumulates starch and oil. Biochimie. 2019 doi: 10.1016/j.biochi.2019.09.017. PubMed DOI
Lacour T., Sciandra A., Talec A., Mayzaud P., Bernard O. Neutral lipid and carbohydrate productivities as a response to nitrogen status in Isochrysis sp. (T-iso; Haptophyceae): Starvation vs. limitation. J. Phycol. 2012;48:647–656. doi: 10.1111/j.1529-8817.2012.01154.x. PubMed DOI
Ball S.G., Dirick L., Decq A., Martiat J.C., Matagne R.F. Physiology of starch storage in the monocellular alga Chlamydomonas reinhardtii. Science. 1990;66:1–9. doi: 10.1016/0168-9452(90)90162-H. DOI
Burlacot A., Peltier G., Li-Beisson Y. Subcellular energetics and carbon storage in Chlamydomonas. Cells. 2019;8:1154. doi: 10.3390/cells8101154. PubMed DOI PMC
Chen H., Hu J., Qiao Y., Chen W., Rong J., Zhang Y., He C., Wang Q. Ca2+-regulated cyclic electron flow supplies ATP for nitrogen starvation-induced lipid biosynthesis in green alga. Sci. Rep. 2015;5:15117. doi: 10.1038/srep15117. PubMed DOI PMC
Peltier G., Schmidt G.W. Chlororespiration: An adaptation to nitrogen deficiency in Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. USA. 1991;88:4791–4795. doi: 10.1073/pnas.88.11.4791. PubMed DOI PMC
Salome P.A., Merchant S.S. A series of fortunate events: Introducing Chlamydomonas as a reference organism. Plant Cell. 2019 doi: 10.1105/tpc.18.00952. PubMed DOI PMC
Sasso S., Stibor H., Mittag M., Grossman A.R. From molecular manipulation of domesticated Chlamydomonas reinhardtii to survival in nature. eLife. 2018;7:e39223. doi: 10.7554/eLife.39233. PubMed DOI PMC
Zhang M.-P., Wang M., Wang C. Nuclear transformation of Chlamydomonas reinhardtii: A review. Biochimie. 2021;181:1–11. doi: 10.1016/j.biochi.2020.11.016. PubMed DOI
Koo K.M., Jung S., Lee B.S., Kim J.B., Jo Y.D., Choi H.I., Kang S.Y., Chung G.H., Jeong W.J., Ahn J.W. The mechanism of starch over-accumulation in Chlamydomonas reinhardtii high-starch mutants identified by comparative transcriptome analysis. Front. Microbiol. 2017;8:858. doi: 10.3389/fmicb.2017.00858. PubMed DOI PMC
Gifuni I., Olivieri G., Pollio A., Franco T.T., Marzocchella A. Autotrophic starch production by Chlamydomonas species. J. Appl. Phycol. 2016;29:105–114. doi: 10.1007/s10811-016-0932-2. DOI
Schulz-Raffelt M., Chochois V., Auroy P., Cuiné S., Billon E., Dauvillée D., Li-Beisson Y., Peltier G. Hyper-accumulation of starch and oil in a Chlamydomonas mutant affected in a plant-specific DYRK kinase. Biotechnol. Biofuels. 2016;9:55. doi: 10.1186/s13068-016-0469-2. PubMed DOI PMC
Mathiot C., Ponge P., Gallard B., Sassi J.F., Delrue F., Le Moigne N. Microalgae starch-based bioplastics: Screening of ten strains and plasticization of unfractionated microalgae by extrusion. Carbohydr. Polym. 2019;208:142–151. doi: 10.1016/j.carbpol.2018.12.057. PubMed DOI
Sueoka N. Mitotic replication of deoxyribonucleic acid in Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. USA. 1960;46:83–91. doi: 10.1073/pnas.46.1.83. PubMed DOI PMC
Miller G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959;31:426–428. doi: 10.1021/ac60147a030. DOI
Fernandes B., Teixeira J., Dragone G., Vicente A.A., Kawano S., Bišová K., Přibyl P., Zachleder V., Vítová M. Relationship between starch and lipid accumulation induced by nutrient depletion and replenishment in the microalga Parachlorella kessleri. Bioresour. Technol. 2013;144:268–274. doi: 10.1016/j.biortech.2013.06.096. PubMed DOI
Siaut M., Cuine S., Cagnon C., Fessler B., Nguyen M., Carrier P., Beyly A., Beisson F., Triantaphylides C., Li-Beisson Y., et al. Oil accumulation in the model green alga Chlamydomonas reinhardtii: Characterization, variability between common laboratory strains and relationship with starch reserves. BMC Biotechnol. 2011;11:7. doi: 10.1186/1472-6750-11-7. PubMed DOI PMC
Nitsos C., Filali R., Taidi B., Lemaire J. Current and novel approaches to downstream processing of microalgae: A review. Biotechnol. Adv. 2020;45:107650. doi: 10.1016/j.biotechadv.2020.107650. PubMed DOI
Gifuni I., Pollio A., Marzocchella A., Olivieri G. New ultra-flat photobioreactor for intensive microalgal production: The effect of light irradiance. Algal Res. 2018;34:134–142. doi: 10.1016/j.algal.2018.07.014. DOI
Carvalho A.P., Silva S.O., Baptista J.M., Malcata F.X. Light requirements in microalgal photobioreactors: An overview of biophotonic aspects. Appl. Microbiol. Biotechnol. 2011;89:1275–1288. doi: 10.1007/s00253-010-3047-8. PubMed DOI
Murphy T.E., Berberoğlu H. Effect of algae pigmentation on photobioreactor productivity and scale-up: A light transfer perspective. J. Quant. Spectrosc. Radiat. Transf. 2011;112:2826–2834. doi: 10.1016/j.jqsrt.2011.08.012. DOI
Li T., Wang W., Yuan C., Zhang Y., Xu J., Zheng H., Xiang W., Li A. Linking lipid accumulation and photosynthetic efficiency in Nannochloropsis sp. under nutrient limitation and replenishment. J. Appl. Phycol. 2020;32:1619–1630. doi: 10.1007/s10811-020-02056-w. DOI
Huang Q., Jiang F., Wang L., Yang C. Design of photobioreactors for mass cultivation of photosynthetic organisms. Engineering. 2017;3:318–329. doi: 10.1016/J.ENG.2017.03.020. DOI
Systemic analysis of lipid metabolism from individuals to multi-organism systems