Cell Cycle Arrest by Supraoptimal Temperature in the Alga Chlamydomonas reinhardtii
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31614608
PubMed Central
PMC6829867
DOI
10.3390/cells8101237
PII: cells8101237
Knihovny.cz E-zdroje
- Klíčová slova
- Chlamydomonas reinhardtii, DNA replication, cell cycle arrest, cell size, cyclin-dependent kinase, starch accumulation, supraoptimal temperature, synchronized cultures,
- MeSH
- bílkoviny řas metabolismus MeSH
- buněčné kultury metody MeSH
- Chlamydomonas reinhardtii cytologie fyziologie MeSH
- cyklin-dependentní kinasy metabolismus MeSH
- down regulace MeSH
- fyziologický stres MeSH
- kontrolní body buněčného cyklu * MeSH
- regulace genové exprese u rostlin MeSH
- vysoká teplota MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bílkoviny řas MeSH
- cyklin-dependentní kinasy MeSH
Temperature is one of the key factors affecting growth and division of algal cells. High temperature inhibits the cell cycle in Chlamydomonas reinhardtii. At 39 °C, nuclear and cellular divisions in synchronized cultures were blocked completely, while DNA replication was partly affected. In contrast, growth (cell volume, dry matter, total protein, and RNA) remained unaffected, and starch accumulated at very high levels. The cell cycle arrest could be removed by transfer to 30 °C, but a full recovery occurred only in cultures cultivated up to 14 h at 39 °C. Thereafter, individual cell cycle processes began to be affected in sequence; daughter cell release, cell division, and DNA replication. Cell cycle arrest was accompanied by high mitotic cyclindependent kinase activity that decreased after completion of nuclear and cellular division following transfer to 30 °C. Cell cycle arrest was, therefore, not caused by a lack of cyclin-dependent kinase activity but rather a blockage in downstream processes.
Zobrazit více v PubMed
Morimura Y. Synchronous culture of Chlorella. I. Kinetic analysis of the life cycle of Chlorella ellipsoidea as affected by changes of temperature and light intensity. Plant Cell Physiol. 1959;1:49–62.
Vítová M., Bišová K., Hlavová M., Kawano S., Zachleder V., Čížková M. Chlamydomonas reinhardtii: Duration of its cell cycle and phases at growth rates affected by temperature. Planta. 2011;234:599–608. doi: 10.1007/s00425-011-1427-7. PubMed DOI
Zachleder V., van den Ende H. Cell cycle events in the green alga Chlamydomonas eugametos and their control by environmental factors. J. Cell Sci. 1992;102:469–474.
Zachleder V., Ivanov I., Vítová M., Bišová K. Effects of cyclin-dependent kinase activity on the coordination of growth and the cell cycle in green algae at different temperatures. J. Exp. Bot. 2019;70:845–858. doi: 10.1093/jxb/ery391. PubMed DOI
Lien T., Knutsen G. Synchronous growth of Chlamydomonas reinhardtii (Chlorophyceae): A review of optimal conditions. J. Phycol. 1979;15:191–200. doi: 10.1111/j.0022-3646.1979.00191.x. DOI
Šetlík I., Zachleder V., Doucha J., Berková E., Bartoš J. The nature of temperature block in the sequence of reproductive processes in Chlorella vulgaris BEIJERINCK. Arch. Hydrobiol. Suppl. 49 Algol. Stud. 1975;14:70–104.
Coleman A.W. The nuclear-cell cycle in Chlamydomonas (Chlorophyceae) J. Phycol. 1982;18:192–195. doi: 10.1111/j.1529-8817.1982.tb03172.x. DOI
Craigie R.A., Cavalier-Smith T. Cell volume and the control of the Chlamydomonas cell cycle. J. Cell Sci. 1982;54:173–191.
Lien T., Knutsen G. Synchronized cultures of a cell wall-less mutant of Chlamydomonas reinhardii. Arch. Microbiol. 1976;108:189–194. doi: 10.1007/BF00428950. PubMed DOI
Donnan L., John P.C.L. CeII cycle control by timer and sizer in Chlamydomonas. Nature. 1983;304:630–633. doi: 10.1038/304630a0. PubMed DOI
John P.C.L. Control of the cell division cycle in Chlamydomonas. Microbiol. Sci. 1984;1:96–101. PubMed
John P.C.L. Control points in the Chlamydomonas cell cycle. In: Wiesnar W., Robinson D.G., Starr R.C., editors. Algal Development. Springer; Berlin, Germany: 1987. pp. 9–16.
Zachleder V., Schläfli O., Boschetti A. Growth-controlled oscillation in activity of histone H1 kinase during the cell cycle of Chlamydomonas reinhardtii (Chlorophyta) J. Phycol. 1997;33:673–681. doi: 10.1111/j.0022-3646.1997.00673.x. DOI
Bišová K., Zachleder V. Cell-cycle regulation in green algae dividing by multiple fission. J. Exp. Bot. 2014;65:2585–2602. doi: 10.1093/jxb/ert466. PubMed DOI
Zachleder V., Bišová K., Vítová M. The cell cycle of microalgae. In: Borowitzka M.A., Beardall J., Raven J.A., editors. The Physiology of Microalgae. Volume 6. Springer; Dordrecht, The Netherlands: 2016. pp. 3–46.
Donnan L., John P.C.L. Timer and sizer controls in the cell cycles of Chlamydomonas and Chlorella. In: Nurse P., Streiblová E., editors. The Microbial Cell Cycle. CRC Press; Boca Raton, FL, USA: 1984. pp. 231–251.
Vítová M., Bišová K., Umysová D., Hlavová M., Kawano S., Zachleder V., Čížková M. Chlamydomonas reinhardtii: Duration of its cell cycle and phases at growth rates affected by light intensity. Planta. 2011;233:75–86. doi: 10.1007/s00425-010-1282-y. PubMed DOI
John P.C., Sek F.J., Lee M.G. A homolog of the cell cycle control protein p34cdc2 participates in the division cycle of Chlamydomonas, and a similar protein is detectable in higher plants and remote taxa. Plant Cell. 1989;1:1185–1193. PubMed PMC
Bisova K., Krylov D.M., Umen J.G. Genome-wide annotation and expression profiling of cell cycle regulatory genes in Chlamydomonas reinhardtii. Plant Physiol. 2005;137:1–17. doi: 10.1104/pp.104.054155. PubMed DOI PMC
Tulin F., Cross F.R. A microbial avenue to cell cycle control in the plant superkingdom. Plant Cell. 2014;26:4019–4038. doi: 10.1105/tpc.114.129312. PubMed DOI PMC
Atkins K.C., Cross F. Inter-regulation of CDKA/CDK1 and the plant-specific cyclin-dependent kinase CDKB in control of the Chlamydomonas cell cycle. Plant Cell. 2018;30:429–446. doi: 10.1105/tpc.17.00759. PubMed DOI PMC
Sueoka N. Mitotic replication of deoxyribonucleic acid in Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. USA. 1960;46:83–91. doi: 10.1073/pnas.46.1.83. PubMed DOI PMC
Zachleder V., Šetlík I. Effect of irradiance on the course of RNA synthesis in the cell cycle of Scenedesmus quadricauda. Biol. Plant. 1982;24:341–353. doi: 10.1007/BF02909100. DOI
Hlavová M., Vítová M., Bišová K. Synchronization of green algae by light and dark regimes for cell cycle and cell division studies. In: Caillaud M.-C., editor. Plant Cell Division. Springer Science; New York, NY, USA: 2016. pp. 3–16. PubMed
Brányiková I., Maršálková B., Doucha J., Brányik T., Bišová K., Zachleder V., Vítová M. Microalgae-novel highly efficient starch producers. Biotechnol. Bioeng. 2011;108:766–776. doi: 10.1002/bit.23016. PubMed DOI
Wanka F. Über den Einfluss des Lichts auf die Nucleinsäuresynthese bei Synchronkulturen von Chlorella pyrenoidosa. Ber. Dtsch. Bot. Ges. 1962;75:457–464.
Lukavský J., Tetík K., Vendlová J. Extraction of nucleic acid from the alga Scenedesmus quadricauda. Arch. Hydrobiol. Suppl. 41 Algol. Stud. 1973;9:416–426.
Decallonne J.R., Weyns C.J. A shortened procedure of the diphenylamine reaction for measurement of deoxyribonucleic acid by using light activation. Anal. Biochem. 1976;74:448–456. doi: 10.1016/0003-2697(76)90225-6. PubMed DOI
Zachleder V. Optimization of nucleic acids assay in green and blue-green algae: Extraction procedures and the light-activated reaction for DNA. Arch. Hydrobiol. Suppl. 67 Algol. Stud. 1984;36:313–328. doi: 10.1127/algol_stud/67/1984/313. DOI
Lowry O.H., Rosenbrough N.S., Farr A.L., Randall R.J. Protein measurement with the folin-phenol reagent. J. Biol. Chem. 1951;193:265–275. PubMed
McCready R.M., Guggolz J., Silviera V., Owens H.S. Determination of starch and amylose in vegetables. Anal. Chem. 1950;22:1156–1158. doi: 10.1021/ac60045a016. DOI
Hlavová M., Čížková M., Vítová M., Bišová K., Zachleder V. DNA damage during G2 phase does not affect cell cycle progression of the green alga Scenedesmus quadricauda. PLoS ONE. 2011;6:e19626. doi: 10.1371/journal.pone.0019626. PubMed DOI PMC
Langan T.A., Gautier J., Lohka M., Hollingsworth R., Moreno S., Nurse P., Maller J., Sclafani R.A. Mammalian growth-associated H1 histone kinase: A homologue of cdc2+/CDC28 protein kinases controlling mitotic entry in yeast and frog cells. Mol. Cell. Biol. 1989;9:3860–3868. doi: 10.1128/MCB.9.9.3860. PubMed DOI PMC
Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–685. doi: 10.1038/227680a0. PubMed DOI
Hemme D., Veyel D., Muhlhaus T., Sommer F., Juppner J., Unger A.K., Sandmann M., Fehrle I., Schonfelder S., Steup M., et al. Systems-wide analysis of acclimation responses to long-term heat stress and recovery in the photosynthetic model organism Chlamydomonas reinhardtii. Plant Cell. 2014;26:4270–4297. doi: 10.1105/tpc.114.130997. PubMed DOI PMC
Tulin F., Cross F.R. Cyclin-dependent kinase regulation of diurnal transcription in Chlamydomonas. Plant Cell. 2015;27:2727–2742. doi: 10.1105/tpc.15.00400. PubMed DOI PMC
Zachleder V. The course of reproductive events in the chloroplast cycle of the chlorococcal alga Scenedesmus quadricauda as revealed by using inhibitors of DNA replication. Plant Cell Physiol. 1997;38:56.
Sorokin C. Tabular comparative data for the low-and high-temperature strains of Chlorella. Nature. 1959;184:613–614. doi: 10.1038/184613a0. PubMed DOI
Wanka F. Ultrastructural changes during normal and colchicine-inhibited cell division of Chlorella. Protoplasma. 1968;66:105–130. doi: 10.1007/BF01252527. PubMed DOI
Ballin G., Doucha J., Zachleder V., Šetlík I. Macromolecular syntheses and the course of cell cycle events in the chlorococcal alga Scenedesmus quadricauda under nutrient starvation: Effect of nitrogen starvation. Biol. Plant. 1988;30:81–91. doi: 10.1007/BF02878472. DOI
Zachleder V., Ballin G., Doucha J., Šetlík I. Macromolecular syntheses and the course of cell cycle events in the chlorococcal alga Scenedesmus quadricauda under nutrient starvation: Effect of phosphorus starvation. Biol. Plant. 1988;30:92–99. doi: 10.1007/BF02878474. DOI
Siaut M., Cuine S., Cagnon C., Fessler B., Nguyen M., Carrier P., Beyly A., Beisson F., Triantaphylides C., Li-Beisson Y., et al. Oil accumulation in the model green alga Chlamydomonas reinhardtii: Characterization, variability between common laboratory strains and relationship with starch reserves. BMC Biotechnol. 2011;11:7. doi: 10.1186/1472-6750-11-7. PubMed DOI PMC
Philipps G., Happe T., Hemschemeier A. Nitrogen deprivation results in photosynthetic hydrogen production in Chlamydomonas reinhardtii. Planta. 2012;235:729–745. doi: 10.1007/s00425-011-1537-2. PubMed DOI
Zachleder V. The effect of hydroxyurea and fluorodeoxyuridine on cell cycle events in the chlorococcal alga Scenedesmus quadricauda (Chlorophyta) J. Phycol. 1994;30:274–279. doi: 10.1111/j.0022-3646.1994.00274.x. DOI
Semenenko V.E., Vladimirova M.G., Orleanskaya O.B. Physiological characteristics of Chlorella sp. K under conditions of high extremal temperatures I. Uncoupling effect of extreme temperatures on the cellular functions of Chlorella. Plant Physiol. 1967;14:612–625.
Fernandes B., Teixeira J., Dragone G., Vicente A.A., Kawano S., Bišová K., Přibyl P., Zachleder V., Vítová M. Relationship between starch and lipid accumulation induced by nutrient depletion and replenishment in the microalga Parachlorella kessleri. Bioresour. Technol. 2013;144:268–274. doi: 10.1016/j.biortech.2013.06.096. PubMed DOI
Mizuno Y., Sato A., Watanabe K., Hirata A., Takeshita T., Ota S., Sato N., Zachleder V., Tsuzuki M., Kawano S. Sequential accumulation of starch and lipid induced by sulfur deficiency in Chlorella and Parachlorella species. Bioresour. Technol. 2013;129:150–155. doi: 10.1016/j.biortech.2012.11.030. PubMed DOI
Roessler P.G. Environmental control of glycerolipid metabolism in microalgae: Commercial implications and future research directions. J. Phycol. 1990;26:393–399. doi: 10.1111/j.0022-3646.1990.00393.x. DOI
Bišová K., Hendrychová J., Cepák V., Zachleder V. Cell growth and division processes are differentially sensitive to cadmium in Scenedesmus quadricauda. Folia Microbiol. 2003;48:805–816. doi: 10.1007/BF02931518. PubMed DOI
Khona D.K., Shirolikar S., Gawde K.K., Hom E., Deodhar M.A., D’Souza J.S. Characterization of salt stress-induced palmelloids in the green alga, Chlamydomonas reinhardtii. Algal Res. 2016;16:434–448. doi: 10.1016/j.algal.2016.03.035. DOI
Mühlhaus T., Weiss J., Hemme D., Sommer F., Schroda M. Quantitative shotgun proteomics using a uniform 15N-labelled standard to monitor proteome dynamics in time course experiments reveals new insights into the heat stress response of Chlamydomonas reinhardtii. Mol. Cell. Biol. 2011;10 PubMed PMC
Coudreuse D., Nurse P. Driving the cell cycle with a minimal CDK control network. Nature. 2010;468:1074–1079. doi: 10.1038/nature09543. PubMed DOI
Marrocco K., Bergdoll M., Achard P., Criqui M.C., Genschik P. Selective proteolysis sets the tempo of the cell cycle. Curr. Opin. Plant Biol. 2010;13:631–639. doi: 10.1016/j.pbi.2010.07.004. PubMed DOI
Castro A., Bernis C., Vigneron S., Labbé J.-C., Lorca T. The anaphase-promoting complex: A key factor in the regulation of cell cycle. Oncogene. 2005;24:314–325. doi: 10.1038/sj.onc.1207973. PubMed DOI
Lodish H., Berk A., Zipursky S.L., Matsudaira P., Baltimore D., Darnell J. Mol. Cell. Biol. W. H. Freeman & Co.; New York, NY, USA: 2000.