To Divide or Not to Divide? How Deuterium Affects Growth and Division of Chlamydomonas reinhardtii
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
17-06264S
Grantová Agentura České Republiky
PubMed
34207920
PubMed Central
PMC8226696
DOI
10.3390/biom11060861
PII: biom11060861
Knihovny.cz E-zdroje
- Klíčová slova
- Chlamydomonas reinhardtii, cell cycle, cell division, commitment point, deuterium, heavy water, multiple fission, stress,
- MeSH
- buněčné dělení účinky léků MeSH
- buněčný cyklus účinky léků MeSH
- Chlamydomonas reinhardtii růst a vývoj metabolismus MeSH
- deuterium škodlivé účinky chemie metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- deuterium MeSH
Extensive in vivo replacement of hydrogen by deuterium, a stable isotope of hydrogen, induces a distinct stress response, reduces cell growth and impairs cell division in various organisms. Microalgae, including Chlamydomonas reinhardtii, a well-established model organism in cell cycle studies, are no exception. Chlamydomonas reinhardtii, a green unicellular alga of the Chlorophyceae class, divides by multiple fission, grows autotrophically and can be synchronized by alternating light/dark regimes; this makes it a model of first choice to discriminate the effect of deuterium on growth and/or division. Here, we investigate the effects of high doses of deuterium on cell cycle progression in C. reinhardtii. Synchronous cultures of C. reinhardtii were cultivated in growth medium containing 70 or 90% D2O. We characterize specific deuterium-induced shifts in attainment of commitment points during growth and/or division of C. reinhardtii, contradicting the role of the "sizer" in regulating the cell cycle. Consequently, impaired cell cycle progression in deuterated cultures causes (over)accumulation of starch and lipids, suggesting a promising potential for microalgae to produce deuterated organic compounds.
Zobrazit více v PubMed
West J.B., Bowen G.J., Cerling T.E., Ehleringer J.R. Stable isotopes as one of nature’s ecological recorders. Trends Ecol. Evol. 2006;21:408–414. doi: 10.1016/j.tree.2006.04.002. PubMed DOI
Berg T., Strand D.H. 13C labelled internal standards—A solution to minimize ion suppression effects in liquid chromatography-tandem mass spectrometry analyses of drugs in biological samples? J. Chromatogr. A. 2011;1218:9366–9374. doi: 10.1016/j.chroma.2011.10.081. PubMed DOI
Lehmann W.D. A timeline of stable isotopes and mass spectrometry in the life sciences. Mass Spectrom. Rev. 2017;36:58–85. doi: 10.1002/mas.21497. PubMed DOI
Hirakura Y., Sugiyama T., Takeda M., Ikeda M., Yoshioka T. Deuteration as a tool in investigating the role of protons in cell signaling. Biochim. Biophys. Acta. 2011;1810:218–225. doi: 10.1016/j.bbagen.2010.10.005. PubMed DOI
Salomonsson L., Branden G., Brzezinski P. Deuterium isotope effect of proton pumping in cytochrome c oxidase. Biochim. Biophys. Acta. 2008;1777:343–350. doi: 10.1016/j.bbabio.2007.09.009. PubMed DOI
Olgun A. Biological effects of deuteronation: ATP synthase as an example. Theor. Biol. Med. Model. 2007;4 doi: 10.1186/1742-4682-4-9. PubMed DOI PMC
de Kouchkovsky Y., Haraux F., Sigalat C. Effect of hydrogen-deuterium exchange on energy-coupled processes in thylakoids. FEBS Lett. 1982;139:245–249. doi: 10.1016/0014-5793(82)80862-4. DOI
Fuks B., Homblé F. Mechanism of proton permeation through chloroplast lipid membranes. Plant Physiol. 1996;112:759–766. doi: 10.1104/pp.112.2.759. PubMed DOI PMC
Gross P.R., Spindel W. Mitotic arrest by deuterium oxide. Science. 1960;131:37–39. doi: 10.1126/science.131.3392.37. PubMed DOI
Takeda H., Nio Y., Omori H., Uegaki K., Hirahara N., Sasaki S., Tamura K., Ohtani H. Mechanisms of cytotoxic effects of heavy water (deuterium oxide: D2O) on cancer cells. Anti-Cancer Drugs. 1998;9:715–725. doi: 10.1097/00001813-199809000-00007. PubMed DOI
Evans B.R., Bali G., Reeves D.T., O’Neill H.M., Sun Q., Shah R., Ragauskas A.J. Effect of D2O on growth properties and chemical structure of annual ryegrass (Lolium multiflorum) J. Agric. Food Chem. 2014;62:2595–2604. doi: 10.1021/jf4055566. PubMed DOI
Sacchi G.A., Cocucci M. Effects of deuterium oxide on growth, proton extrusion, potassium influx, and in vitro plasma membrane activities in maize root segments. Plant Physiol. 1992;100:1962–1967. doi: 10.1104/pp.100.4.1962. PubMed DOI PMC
Mosin O., Ignatov I., Skladnev D., Shvets V. Studying of phenomenon of biological adaptation to heavy water. Eur. J. Mol. Biotechnol. 2014;6:180–209.
Hirai K., Tomida M., Kikuchi Y., Ueda O., Ando H., Asanuma N. Effects of deuterium oxide on Streptococcus mutans and Pseudomonas aeruginosa. Bull. Tokyo Dent. Coll. 2010;51:175–183. doi: 10.2209/tdcpublication.51.175. PubMed DOI
Haon S., Auge S., Tropis M., Milon A.J. Low cost production of perdeuterated biomass using methylotrophic yeasts. J. Labelled Compd. Rad. 1993;22:1053–1063. doi: 10.1002/jlcr.2580331108. DOI
Bhosale P., Serban B., Bernstein P.S. Production of deuterated lutein by Chlorella protothecoides and its detection by mass spectrometric methods. Biotechnol. Lett. 2006;28:1371–1375. doi: 10.1007/s10529-006-9105-8. PubMed DOI
Zachleder V., Vítová M., Hlavová M., Moudříková Š., Mojzeš P., Heumann H., Becher J.R., Bišová K. Stable isotope compounds—production, detection, and application. Biotechnol. Adv. 2018;36:784–797. doi: 10.1016/j.biotechadv.2018.01.010. PubMed DOI
Lewis G.N. The biochemistry of water containing hydrogen isotope. J. Am. Chem. Soc. 1933;55:3503–3504. doi: 10.1021/ja01335a509. DOI
Lewis G.N. The biology of heavy water. Science. 1934;79:151–153. doi: 10.1126/science.79.2042.151. PubMed DOI
Hlavová M., Vítová M., Bišová K. Synchronization of green algae by light and dark regimes for cell cycle and cell division studies. In: Caillaud M.-C., editor. Plant Cell Division. Springer Science; Berlin/Heidelberg, Germany: 2016. pp. 3–16. PubMed
Howard A., Pelc S.R. Synthesis of deoxyribonucleic acid in normal and irradiated cells and its relation to chromosome breakage. Heredity. 1953;6:261–273.
Lien T., Knutsen G. Synchronous growth of Chlamydomonas reinhardtii (Chlorophyceae): A review of optimal conditions. J. Phycol. 1979;15:191–200. doi: 10.1111/j.1529-8817.1979.tb02984.x. DOI
Donnan L., John P.C.L. Cell cycle control by timer and sizer in Chlamydomonas. Nature. 1983;304:630–633. doi: 10.1038/304630a0. PubMed DOI
Zachleder V., Bišová K., Vítová M. The cell cycle of microalgae. In: Borowitzka M.A., Beardall J., Raven J.A., editors. The physiology of Microalgae. Volume 6. Springer; Berlin/Heidelberg, Germany: 2016. pp. 3–46.
Bisova K., Zachleder V. Cell-cycle regulation in green algae dividing by multiple fission. J. Exp. Bot. 2014;65:2585–2602. doi: 10.1093/jxb/ert466. PubMed DOI
Kselíková V., Zachleder V., Bišová K. Analysis of commitment point attainment in algae dividing by multiple fission. In: Caillaud M.-C., editor. Plant Cell Division. Springer US; New York, NY, USA: 2021. PubMed DOI
Bisova K., Krylov D.M., Umen J.G. Genome-wide annotation and expression profiling of cell cycle regulatory genes in Chlamydomonas reinhardtii. Plant Physiol. 2005;137:475–491. doi: 10.1104/pp.104.054155. PubMed DOI PMC
Bišová K. Assaying cyclin-dependent kinase activity in synchronized algal cultures. In: Caillaud M.-C., editor. Plant Cell Division. Springer US; New York, NY, USA: 2021. PubMed DOI
Langan T.A., Gautier J., Lohka M., Hollingsworth R., Moreno S., Nurse P., Maller J., Sclafani R.A. Mammalian growth-associated H1 histone kinase: A homologue of cdc2+/CDC28 protein kinases controlling mitotic entry in yeast and frog cells. Mol. Cell. Biol. 1989;9:3860–3868. doi: 10.1128/MCB.9.9.3860. PubMed DOI PMC
Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–685. doi: 10.1038/227680a0. PubMed DOI
Zachleder V., Ivanov I., Vítová M., Bišová K. Cell cycle arrest by supraoptimal temperature in the alga Chlamydomonas reinhardtii. Cells. 2019;8:1237. doi: 10.3390/cells8101237. PubMed DOI PMC
McCready R.M., Guggolz J., Silviera V., Owens H.S. Determination of starch and amylose in vegetables. Anal. Chem. 1950;22:1156–1158. doi: 10.1021/ac60045a016. DOI
Brányiková I., Maršálková B., Doucha J., Brányik T., Bišová K., Zachleder V., Vítová M. Microalgae-novel highly efficient starch producers. Biotechnol. Bioeng. 2011;108:766–776. doi: 10.1002/bit.23016. PubMed DOI
Takeshita T., Takeda K., Ota S., Yamazaki T., Kawano S. A simple method for measuring the starch and ĺipid contents in the cell of microalgae. Cytologia. 2015;80:475–481. doi: 10.1508/cytologia.80.475. DOI
Unno K., Hagima N., Kishido T., Okada S., Oku N. Deuterium-resistant algal cell line for D labeling of heterotrophs expresses enhanced level of Hsp60 in D2O medium. Appl. Environ. Microbiol. 2005;71:2256–2259. doi: 10.1128/AEM.71.5.2256-2259.2005. PubMed DOI PMC
Chorney W., Scully N.J., Crespi H.L., Katz J.J. The growth of algae in deuterium oxide. Biochim. Biophys. Acta. 1960;37:280–287. doi: 10.1016/0006-3002(60)90235-3. PubMed DOI
Kushner D.J., Baker A., Dunstall T.G. Biotechnological potential of heavy water and deuterated compounds; Proceedings of the Biotechnology Risk Assessment Symposium; Ottawa, ON, Canada. 23–25 June 1996; pp. 75–89.
Gireesh T., Jayadeep A., Rajasekharan K.N., Menon V.P., Vairamany M., Tang G., Nair P.P., Sudhakaran P.R. Production of deuterated β-carotene by metabolic labelling of Spirulina platensis. Biotechnol. Lett. 2001;23:447–449. doi: 10.1023/A:1010378401621. DOI
Kollars B., Geraets R. Effects of deuterium on Chlamydomonas reinhardtii. J. Undergrad. Res. 2008;6:113–117.
de Carpentier F., Lemaire S.D., Danon A. When Unity Is Strength: The Strategies Used by Chlamydomonas to Survive Environmental Stresses. Cells. 2019;8:1307. doi: 10.3390/cells8111307. PubMed DOI PMC
Moses V., Holm-Hansen O., Calvin M. Response of Chlorella to a deuterium environment. Biochim. Biophys. Acta. 1958;28:62–70. doi: 10.1016/0006-3002(58)90428-1. PubMed DOI
Crespi H.L., Conrad S.M., Uphaus R.A., Katz J.J. Cultivation of microorganisms in heavy water. Annal. N. Y. Acad. Sci. 1960;84:648–666. doi: 10.1111/j.1749-6632.1960.tb39098.x. PubMed DOI
Fan J., Yan C., Andre C., Shanklin J., Schwender J., Xu C. Oil accumulation is controlled by carbon precursor supply for fatty acid synthesis in Chlamydomonas reinhardtii. Plant Cell Physiol. 2012;53:1380–1390. doi: 10.1093/pcp/pcs082. PubMed DOI
Cakmak T., Angun P., Demiray Y.E., Ozkan A.D., Elibol Z., Tekinay T. Differential effects of nitrogen and sulfur deprivation on growth and biodiesel feedstock production of Chlamydomonas reinhardtii. Biotechnol. Bioeng. 2012;109:1947–1957. doi: 10.1002/bit.24474. PubMed DOI
Li Y., Han D., Hu G., Sommerfeld M., Hu Q. Inhibition of starch synthesis results in overproduction of lipids in Chlamydomonas reinhardtii. Biotechnol. Bioeng. 2010;107:258–268. doi: 10.1002/bit.22807. PubMed DOI
Atikij T., Syaputri Y., Iwahashi H., Praneenararat T., Sirisattha S., Kageyama H., Waditee-Sirisattha R. Enhanced lipid production and molecular dynamics under salinity stress in green microalga Chlamydomonas reinhardtii (137C) Mar. Drugs. 2019;17:484. doi: 10.3390/md17080484. PubMed DOI PMC
Legeret B., Schulz-Raffelt M., Nguyen H.M., Auroy P., Beisson F., Peltier G., Blanc G., Li-Beisson Y. Lipidomic and transcriptomic analyses of Chlamydomonas reinhardtii under heat stress unveil a direct route for the conversion of membrane lipids into storage lipids. Plant Cell Environ. 2016;39:834–847. doi: 10.1111/pce.12656. PubMed DOI
Goold H.D., Cuine S., Legeret B., Liang Y., Brugiere S., Auroy P., Javot H., Tardif M., Jones B.J., Beisson F., et al. Saturating light induces sustained accumulation of oil in plastidal lipid droplets in Chlamydomonas reinhardtii. Plant Physiol. 2016;171:2406–2417. doi: 10.1104/pp.16.00718. PubMed DOI PMC
Fernandes B., Teixeira J., Dragone G., Vicente A.A., Kawano S., Bišová K., Přibyl P., Zachleder V., Vítová M. Relationship between starch and lipid accumulation induced by nutrient depletion and replenishment in the microalga Parachlorella kessleri. Bioresour. Technol. 2013;144:268–274. doi: 10.1016/j.biortech.2013.06.096. PubMed DOI
Takeshita T., Ota S., Yamazaki T., Hirata A., Zachleder V., Kawano S. Starch and lipid accumulation in eight strains of six Chlorella species under comparatively high light intensity and aeration culture conditions. Bioresour. Technol. 2014;158:127–134. doi: 10.1016/j.biortech.2014.01.135. PubMed DOI
Pick U., Avidan O. Triacylglycerol is produced from starch and polar lipids in the green alga Dunaliella tertiolecta. J. Exp. Bot. 2017;68:4939–4950. doi: 10.1093/jxb/erx280. PubMed DOI PMC
Yang J. Deuterium: Discovery and Applications in Organic Chemistry. Elsevier; Amsterdam, The Netherlands: 2016.
Katz J.J., Crespi H.L. Deuterated organisms: Cultivation and uses. Science. 1966;151:1187–1194. doi: 10.1126/science.151.3715.1187. PubMed DOI
Vítová M., Bišová K., Umysová D., Hlavová M., Kawano S., Zachleder V., Čížková M. Chlamydomonas reinhardtii: Duration of its cell cycle and phases at growth rates affected by light intensity. Planta. 2011;233:75–86. doi: 10.1007/s00425-010-1282-y. PubMed DOI
Vítová M., Bišová K., Hlavová M., Kawano S., Zachleder V., Čížková M. Chlamydomonas reinhardtii: Duration of its cell cycle and phases at growth rates affected by temperature. Planta. 2011;234:599–608. doi: 10.1007/s00425-011-1427-7. PubMed DOI
Mihara S., Hase E. Studies on the vegetative life cycle of Chlamydomonas reinhardi Dangeard in synchronous culture II. Effects of chloramphenicol and cycloheximide on the length of cell cycle. Plant Cell Physiol. 1971;12:237–241.
Zachleder V., Bišová K., Vítová M.Š.K.J.H. Variety of cell cycle patterns in the alga Scenedesmus quadricauda (Chlorophyta) as revealed by application of illumination regimes and inhibitors. Eur. J. Phycol. 2002;37:361–371. doi: 10.1017/S0967026202003815. DOI
Zachleder V., Schläfli O., Boschetti A. Growth-controlled oscillation in activity of histone H1 kinase during the cell cycle of Chlamydomonas reinhardtii (Chlorophyta) J. Phycol. 1997;33:673–681. doi: 10.1111/j.0022-3646.1997.00673.x. DOI
Čížková M., Pichová A., Vítová M., Hlavová M., Hendrychová J., Umysová D., Gálová E., Ševčovičová A., Zachleder V., Umen J.G., et al. CDKA and CDKB kinases from Chlamydomonas reinhardtii are able to complement cdc28 temperature-sensitive mutants of Saccharomyces cerevisiae. Protoplasma. 2008;232:183–191. doi: 10.1007/s00709-008-0285-z. PubMed DOI
Zachleder V., Ivanov I., Vítová M., Bišová K. Effects of cyclin-dependent kinase activity on the coordination of growth and the cell cycle in green algae at different temperatures. J. Exp. Bot. 2019;70:845–858. doi: 10.1093/jxb/ery391. PubMed DOI
Cross F.R., Umen J.G. The Chlamydomonas cell cycle. Plant J. 2015;82:370–392. doi: 10.1111/tpj.12795. PubMed DOI PMC
John P.C.L., Donnan L., Harper J.D.I., Rollins M.J., Keenan C.A. Control of cell division in Chlorella and Chlamydomonas; Proceedings of the 6th European Cell Cycle Workshop Progress in Cell Cycle Controls; Prague. Czech Republic; 1983; pp. 81–95.
Howell S.H., Blaschko W.J., Drew C.M. Inhibitor effects during cell-cycle in Chlamydomonas reinhardtii—determination of transition points in asynchronous cultures. J. Cell Biol. 1975;67:126–135. doi: 10.1083/jcb.67.1.126. PubMed DOI PMC
Panda D., Chakrabarti G., Hudson J., Pigg K., Miller H.P., Wilson L., Himes R.H. Suppression of microtubule dynamic instability and treadmilling by deuterium oxide. Biochemistry. 2000;39:5075–5081. doi: 10.1021/bi992217f. PubMed DOI