CDKA and CDKB kinases from Chlamydomonas reinhardtii are able to complement cdc28 temperature-sensitive mutants of Saccharomyces cerevisiae

. 2008 ; 232 (3-4) : 183-91.

Jazyk angličtina Země Rakousko Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid18421551

Cyclin-dependent kinases (CDK) play a key role in coordinating cell division in all eukaryotes. We investigated the capability of cyclin-dependent kinases CDKA and CDKB from the green alga Chlamydomonas reinhardtii to complement a Saccharomyces cerevisiae cdc28 temperature-sensitive mutant. The full-length coding regions of algal CDKA and CDKB cDNA were amplified by RT-PCR and cloned into the yeast expression vector pYES-DEST52, yielding pYD52-CDKA and pYD52-CDKB. The S. cerevisiae cdc28-1N strain transformed with these constructs exhibited growth at 36 degrees C in inducing (galactose) medium, but not in repressing (glucose) medium. Microscopic observation showed that the complemented cells had the irregular cylindrical shape typical for G2 phase-arrested cells when grown on glucose at 36 degrees C, but appeared as normal budded cells when grown on galactose at 36 degrees C. Sequence analysis and complementation tests proved that both CDKA and CDKB are functional CDC28/cdc2 homologs in C. reinhardtii. The complementation of the mitotic phenotype of the S. cerevisiae cdc28-1N mutant suggests a mitotic role for both of the kinases.

Erratum v

Protoplasma. 2008;233(1-2):173 PubMed   Umen, J G [added]

Zobrazit více v PubMed

Mol Biochem Parasitol. 1998 Oct 30;96(1-2):139-50 PubMed

Annu Rev Genet. 1995;29:209-30 PubMed

BMC Genomics. 2004 Sep 20;5:69 PubMed

Mol Gen Genet. 1994 Dec 15;245(6):781-6 PubMed

Nature. 2003 Oct 23;425(6960):859-64 PubMed

PLoS Genet. 2006 Oct 13;2(10):e167 PubMed

Mol Cell Biol. 1992 May;12(5):2295-301 PubMed

Annu Rev Plant Biol. 2003;54:235-64 PubMed

Nature. 1984 Jan 12-18;307(5947):183-5 PubMed

Nature. 1983 Aug 18-24;304(5927):630-3 PubMed

Plant Physiol. 2004 Jun;135(2):607-10 PubMed

Cell. 1992 Aug 21;70(4):533-8 PubMed

Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):3377-81 PubMed

Cell. 2004 Jan 23;116(2):221-34 PubMed

Cell. 1991 Apr 5;65(1):145-61 PubMed

Plant Cell. 1991 May;3(5):531-40 PubMed

Mol Cell. 2004 Jun 18;14(6):699-711 PubMed

Plant Cell. 1999 Apr;11(4):509-22 PubMed

Plant Physiol. 2005 Feb;137(2):475-91 PubMed

J Bacteriol. 1983 Jan;153(1):163-8 PubMed

Trends Genet. 1998 Feb;14(2):66-72 PubMed

J Cell Biol. 1994 Apr;125(1):143-58 PubMed

Plant Mol Biol. 2000 Aug;43(5-6):607-20 PubMed

Curr Top Microbiol Immunol. 1998;227:1-24 PubMed

J Gen Microbiol. 1987 Dec;133(12):3355-63 PubMed

Nature. 1989 Jun 29;339(6227):679-84 PubMed

Nature. 1987 May 7-13;327(6117):31-5 PubMed

Proc Natl Acad Sci U S A. 1960 Jan;46(1):83-91 PubMed

Nature. 1993 Jun 17;363(6430):595-602 PubMed

EMBO J. 2005 Feb 23;24(4):657-62 PubMed

Genetics. 1973 Jun;74(2):267-86 PubMed

EMBO J. 1990 Nov;9(11):3565-71 PubMed

Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):1636-40 PubMed

EMBO J. 1989 Oct;8(10):3071-8 PubMed

Biochim Biophys Acta. 1992 Aug 17;1132(1):35-42 PubMed

Nature. 1981 Aug 6;292(5823):558-60 PubMed

Trends Biochem Sci. 1997 Jan;22(1):18-22 PubMed

Annu Rev Cell Dev Biol. 1997;13:261-91 PubMed

FEMS Yeast Res. 2004 May;4(7):737-44 PubMed

J Cell Biol. 1980 Apr;85(1):136-45 PubMed

Plant Physiol. 2005 Jul;138(3):1627-36 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...