CDKA and CDKB kinases from Chlamydomonas reinhardtii are able to complement cdc28 temperature-sensitive mutants of Saccharomyces cerevisiae
Jazyk angličtina Země Rakousko Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- Chlamydomonas reinhardtii enzymologie MeSH
- cyklin-dependentní kinasy chemie metabolismus MeSH
- molekulární sekvence - údaje MeSH
- mutace genetika MeSH
- proteinkinasa CDC28, S cerevisiae metabolismus MeSH
- Saccharomyces cerevisiae cytologie enzymologie MeSH
- sekvence aminokyselin MeSH
- sekvenční seřazení MeSH
- teplota * MeSH
- testy genetické komplementace * MeSH
- transformace genetická MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cyklin-dependentní kinasy MeSH
- proteinkinasa CDC28, S cerevisiae MeSH
Cyclin-dependent kinases (CDK) play a key role in coordinating cell division in all eukaryotes. We investigated the capability of cyclin-dependent kinases CDKA and CDKB from the green alga Chlamydomonas reinhardtii to complement a Saccharomyces cerevisiae cdc28 temperature-sensitive mutant. The full-length coding regions of algal CDKA and CDKB cDNA were amplified by RT-PCR and cloned into the yeast expression vector pYES-DEST52, yielding pYD52-CDKA and pYD52-CDKB. The S. cerevisiae cdc28-1N strain transformed with these constructs exhibited growth at 36 degrees C in inducing (galactose) medium, but not in repressing (glucose) medium. Microscopic observation showed that the complemented cells had the irregular cylindrical shape typical for G2 phase-arrested cells when grown on glucose at 36 degrees C, but appeared as normal budded cells when grown on galactose at 36 degrees C. Sequence analysis and complementation tests proved that both CDKA and CDKB are functional CDC28/cdc2 homologs in C. reinhardtii. The complementation of the mitotic phenotype of the S. cerevisiae cdc28-1N mutant suggests a mitotic role for both of the kinases.
Protoplasma. 2008;233(1-2):173 PubMed Umen, J G [added]
Zobrazit více v PubMed
Mol Biochem Parasitol. 1998 Oct 30;96(1-2):139-50 PubMed
Annu Rev Genet. 1995;29:209-30 PubMed
BMC Genomics. 2004 Sep 20;5:69 PubMed
Mol Gen Genet. 1994 Dec 15;245(6):781-6 PubMed
Nature. 2003 Oct 23;425(6960):859-64 PubMed
PLoS Genet. 2006 Oct 13;2(10):e167 PubMed
Mol Cell Biol. 1992 May;12(5):2295-301 PubMed
Annu Rev Plant Biol. 2003;54:235-64 PubMed
Nature. 1984 Jan 12-18;307(5947):183-5 PubMed
Nature. 1983 Aug 18-24;304(5927):630-3 PubMed
Plant Physiol. 2004 Jun;135(2):607-10 PubMed
Cell. 1992 Aug 21;70(4):533-8 PubMed
Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):3377-81 PubMed
Cell. 2004 Jan 23;116(2):221-34 PubMed
Cell. 1991 Apr 5;65(1):145-61 PubMed
Plant Cell. 1991 May;3(5):531-40 PubMed
Mol Cell. 2004 Jun 18;14(6):699-711 PubMed
Plant Cell. 1999 Apr;11(4):509-22 PubMed
Plant Physiol. 2005 Feb;137(2):475-91 PubMed
J Bacteriol. 1983 Jan;153(1):163-8 PubMed
Trends Genet. 1998 Feb;14(2):66-72 PubMed
J Cell Biol. 1994 Apr;125(1):143-58 PubMed
Plant Mol Biol. 2000 Aug;43(5-6):607-20 PubMed
Curr Top Microbiol Immunol. 1998;227:1-24 PubMed
J Gen Microbiol. 1987 Dec;133(12):3355-63 PubMed
Nature. 1989 Jun 29;339(6227):679-84 PubMed
Nature. 1987 May 7-13;327(6117):31-5 PubMed
Proc Natl Acad Sci U S A. 1960 Jan;46(1):83-91 PubMed
Nature. 1993 Jun 17;363(6430):595-602 PubMed
EMBO J. 2005 Feb 23;24(4):657-62 PubMed
Genetics. 1973 Jun;74(2):267-86 PubMed
EMBO J. 1990 Nov;9(11):3565-71 PubMed
Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):1636-40 PubMed
EMBO J. 1989 Oct;8(10):3071-8 PubMed
Biochim Biophys Acta. 1992 Aug 17;1132(1):35-42 PubMed
Nature. 1981 Aug 6;292(5823):558-60 PubMed
Trends Biochem Sci. 1997 Jan;22(1):18-22 PubMed
Annu Rev Cell Dev Biol. 1997;13:261-91 PubMed
FEMS Yeast Res. 2004 May;4(7):737-44 PubMed
J Cell Biol. 1980 Apr;85(1):136-45 PubMed
Plant Physiol. 2005 Jul;138(3):1627-36 PubMed