The Effect of Variable Light Source and Light Intensity on the Growth of Three Algal Species
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35455972
PubMed Central
PMC9028354
DOI
10.3390/cells11081293
PII: cells11081293
Knihovny.cz E-zdroje
- Klíčová slova
- Chlamydomonas reinhardtii, Desmodesmus quadricauda, LED, Parachlorella kessleri, cell growth, fluorescent tube, light intensity,
- MeSH
- biomasa MeSH
- Chlamydomonas reinhardtii * MeSH
- Chlorophyta * MeSH
- fotosyntéza MeSH
- mikrořasy * MeSH
- světlo MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Light is the essential energy source for autotrophically growing organisms, including microalgae. Both light intensity and light quality affect cell growth and biomass composition. Here we used three green algae-Chlamydomonas reinhardtii, Desmodesmus quadricauda, and Parachlorella kessleri-to study the effects of different light intensities and light spectra on their growth. Cultures were grown at three different light intensities (100, 250, and 500 µmol m-2 s-1) and three different light sources: fluorescent lamps, RGB LEDs, and white LEDs. Cultures of Desmodesmus quadricauda and Parachlorella kessleri were saturated at 250 µmol m-2 s-1, and further increasing the light intensity did not improve their growth. Chlamydomonas reinhardtii cultures did not reach saturation under the conditions used. All species usually divide into more than two daughter cells by a mechanism called multiple fission. Increasing light intensity resulted in an increase in maximum cell size and division into more daughter cells. In Parachlorella kessleri cells, the concentration of photosynthetic pigments decreased with light intensity. Different light sources had no effect on algal growth or photosynthetic pigments. The results show a species-specific response of algae to light intensity and support the use of any white light source for their cultivation without negative effects on growth.
Zobrazit více v PubMed
Mata T.M., Martins A.A., Caetano N.S. Microalgae for biodiesel production and other applications: A review. Renew. Sustain. Energy Rev. 2010;14:217–232. doi: 10.1016/j.rser.2009.07.020. DOI
Spolaore P., Joannis-Cassan C., Duran E., Isambert A. Commercial applications of microalgae. J. Biosci. Bioeng. 2006;101:87–96. doi: 10.1263/jbb.101.87. PubMed DOI
Borowitzka M.A. High-value products from microalgae—their development and commercialisation. J. Appl. Phycol. 2013;25:743–756. doi: 10.1007/s10811-013-9983-9. DOI
Caporgno M.P., Mathys A. Trends in microalgae incorporation into innovative food products with potential health benefits. Front. Nutr. 2018;5:58. doi: 10.3389/fnut.2018.00058. PubMed DOI PMC
Chisti Y. Biodiesel from microalgae beats bioethanol. Trends Biotechnol. 2008;26:126–131. doi: 10.1016/j.tibtech.2007.12.002. PubMed DOI
Hachicha R., Elleuch F., Ben Hlima H., Dubessay P., de Baynast H., Delattre C., Pierre G., Hachicha R., Abdelkafi S., Michaud P. Biomolecules from microalgae and cyanobacteria: Applications and market survey. Appl. Sci. 2022;12:1924. doi: 10.3390/app12041924. DOI
Metsoviti M.N., Papapolymerou G., Karapanagiotidis I.T., Katsoulas N. Effect of light intensity and quality on growth rate and composition of Chlorella vulgaris. Plants. 2019;9:31. doi: 10.3390/plants9010031. PubMed DOI PMC
Patel A.K., Choi Y.Y., Sim S.J. Emerging prospects of mixotrophic microalgae: Way forward to sustainable bioprocess for environmental remediation and cost-effective biofuels. Bioresour. Technol. 2020;300:122741. doi: 10.1016/j.biortech.2020.122741. PubMed DOI
Zachleder V., Kselíková V., Ivanov I.N., Bialevich V., Vítová M., Ota S., Takeshita T., Kawano S., Bišová K. Supra-optimal temperature: An efficient approach for overaccumulation of starch in the green alga Parachlorella kessleri. Cells. 2021;10:1806. doi: 10.3390/cells10071806. PubMed DOI PMC
Narala R.R., Garg S., Sharma K.K., Thomas-Hall S.R., Deme M., Li Y., Schenk P.M. Comparison of microalgae cultivation in photobioreactor, open raceway pond, and a two-stage hybrid system. Front. Energy Res. 2016;4:29. doi: 10.3389/fenrg.2016.00029. DOI
Valdovinos-García E.M., Petriz-Prieto M.A., Olán-Acosta M.d.l.Á., Barajas-Fernández J., Guzmán-López A., Bravo-Sánchez M.G. Production of microalgal biomass in photobioreactors as feedstock for bioenergy and other uses: A techno-economic study of harvesting stage. Appl. Sci. 2021;11:4386. doi: 10.3390/app11104386. DOI
Paul S., Bera S., Dasgupta R., Mondal S., Roy S. Review on the recent structural advances in open and closed systems for carbon capture through algae. Energy Nexus. 2021;4:100032. doi: 10.1016/j.nexus.2021.100032. DOI
Singh S.P., Singh P. Effect of temperature and light on the growth of algae species: A review. Renew. Sustain. Energy Rev. 2015;50:431–444. doi: 10.1016/j.rser.2015.05.024. DOI
Difusa A., Talukdar J., Kalita M.C., Mohanty K., Goud V.V. Effect of light intensity and pH condition on the growth, biomass and lipid content of microalgae Scenedesmus species. Biofuels. 2015;6:37–44. doi: 10.1080/17597269.2015.1045274. DOI
Lee E., Jalalizadeh M., Zhang Q. Growth kinetic models for microalgae cultivation: A review. Algal Res. 2015;12:497–512. doi: 10.1016/j.algal.2015.10.004. DOI
Xu Y., Ibrahim I.M., Harvey P.J. The influence of photoperiod and light intensity on the growth and photosynthesis of Dunaliella salina (Chlorophyta) CCAP 19/30. Plant Physiol. Biochem. 2016;106:305–315. doi: 10.1016/j.plaphy.2016.05.021. PubMed DOI PMC
Atta M., Idris A., Bukhari A., Wahidin S. Intensity of blue LED light: A potential stimulus for biomass and lipid content in fresh water microalgae Chlorella vulgaris. Bioresour. Technol. 2013;148:373–378. doi: 10.1016/j.biortech.2013.08.162. PubMed DOI
Vélez-Landa L., Hernández-De León H.R., Pérez-Luna Y.D.C., Velázquez-Trujillo S., Moreira-Acosta J., Berrones-Hernández R., Sánchez-Roque Y. Influence of light intensity and photoperiod on the photoautotrophic growth and lipid content of the microalgae Verrucodesmus verrucosus in a photobioreactor. Sustainability. 2021;13:6606. doi: 10.3390/su13126606. DOI
Zhou P., Guo H., Fang Z., He Y., Weerasinghe R. Effect of light quality on the cultivation of Chlorella pyrenoidosa. E3S Web Conf. 2020;143:02033. doi: 10.1051/e3sconf/202014302033. DOI
Darko E., Heydarizadeh P., Schoefs B., Sabzalian M.R. Photosynthesis under artificial light: The shift in primary and secondary metabolism. Philos. Trans. R. Soc. B. 2014;369:20130243. doi: 10.1098/rstb.2013.0243. PubMed DOI PMC
Bula R.J., Morrow R.C., Tibbitts T., Barta D., Ignatius R., Martin T. Light-emitting diodes as a radiation source for plants. HortScience. 1991;26:203–205. doi: 10.21273/HORTSCI.26.2.203. PubMed DOI
Schulze P.S., Barreira L.A., Pereira H.G., Perales J.A., Varela J.C. Light emitting diodes (LEDs) applied to microalgal production. Trends Biotechnol. 2014;32:422–430. doi: 10.1016/j.tibtech.2014.06.001. PubMed DOI
Glemser M., Heining M., Schmidt J., Becker A., Garbe D., Buchholz R., Bruck T. Application of light-emitting diodes (LEDs) in cultivation of phototrophic microalgae: Current state and perspectives. Appl. Microbiol. Biotechnol. 2016;100:1077–1088. doi: 10.1007/s00253-015-7144-6. PubMed DOI
Zhong Y., Jin P., Cheng J.J. A comprehensive comparable study of the physiological properties of four microalgal species under different light wavelength conditions. Planta. 2018;248:489–498. doi: 10.1007/s00425-018-2899-5. PubMed DOI
Shu C.H., Tsai C.C., Liao W.H., Chen K.Y., Huang H.C. Effects of light quality on the accumulation of oil in a mixed culture of Chlorella sp. and Saccharomyces cerevisiae. J. Chem. Technol. Biotechnol. 2012;87:601–607. doi: 10.1002/jctb.2750. DOI
Oldenhof H., Zachleder V., van den Ende H. Blue- and red-light regulation of the cell cycle in Chlamydomonas reinhardtii (Chlorophyta) Eur. J. Phycol. 2006;41:313–320. doi: 10.1080/09670260600699920. DOI
Koc C., Anderson G.A., Kommareddy A. Use of red and blue light-emitting diodes (LED) and fluorescent lamps to grow microalgae in a photobioreactor. Isr. J. Aquac.-Bamidgeh. 2013;65:797–804. doi: 10.46989/001c.20661. DOI
Sueoka N. Mitotic replication of deoxyribonucleic acid in Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. USA. 1960;46:83–91. doi: 10.1073/pnas.46.1.83. PubMed DOI PMC
Zachleder V., Ivanov I., Vítová M., Bišová K. Cell cycle arrest by supraoptimal temperature in the alga Chlamydomonas reinhardtii. Cells. 2019;8:1237–1257. doi: 10.3390/cells8101237. PubMed DOI PMC
Zachleder V., Šetlík I. Effect of irradiance on the course of RNA synthesis in the cell cycle of Scenedesmus quadricauda. Biol. Plant. 1982;24:341–353. doi: 10.1007/BF02909100. DOI
Korzyńska A., Zychowicz M. A method of estimation of the cell doubling time on basis of the cell culture monitoring data. Biocybern. Biomed. Eng. 2008;28:75–82.
Řezanka T., Kaineder K., Mezricky D., Řezanka M., Bišová K., Zachleder V., Vítová M. The effect of lanthanides on photosynthesis, growth, and chlorophyll profile of the green alga Desmodesmus quadricauda. Photosynth. Res. 2016;130:335–346. doi: 10.1007/s11120-016-0263-9. PubMed DOI
MacKinney G. Absorption of light by chlorophyll solutions. J. Biol. Chem. 1941;140:315–322. doi: 10.1016/S0021-9258(18)51320-X. DOI
Lichtenthaler D.K., Wellburn A.R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soc. Trans. 1983;603:591–592. doi: 10.1042/bst0110591. DOI
Lukavský J., Simmer J., Kubín Š. Methods for algal growth evaluation. In: Marvan P., Přibil S., Lhotský O., editors. Algal Essays and Monitoring Eutrophication. E. Schweitzerbartsche Verlags-buchhandlung; Stuttgart, Germany: 1979. pp. 77–85.
McCree K.J. The action spectrum, absorptance and quantum yield of photosynthesis in crop plants. J. Agric. Meteorol. 1971;9:191–216. doi: 10.1016/0002-1571(71)90022-7. DOI
Zachleder V., Bišová K., Vítová M. The cell cycle of microalgae. In: Borowitzka M.A., Beardall J., Raven J.A., editors. The Physiology of Microalgae. Volume 6. Springer; Dordrecht, The Netherlands: 2016. pp. 3–46.
Li S.F., Fanesi A., Martin T., Lopes F. Biomass production and physiology of Chlorella vulgaris during the early stages of immobilized state are affected by light intensity and inoculum cell density. Algal Res. 2021;59:452–461. doi: 10.1016/j.algal.2021.102453. DOI
He Q., Yang H., Wu L., Hu C. Effect of light intensity on physiological changes, carbon allocation and neutral lipid accumulation in oleaginous microalgae. Bioresour. Technol. 2015;191:219–228. doi: 10.1016/j.biortech.2015.05.021. PubMed DOI
Beale S.I., Appleman D. Chlorophyll synthesis in Chlorella. J. Plant Physiol. 1971;47:230–235. doi: 10.1104/pp.47.2.230. PubMed DOI PMC
Da Silva Ferreira V., Sant’Anna C. Impact of culture conditions on the chlorophyll content of microalgae for biotechnological applications. World J. Microbiol. Biotechnol. 2017;33:20. doi: 10.1007/s11274-016-2181-6. PubMed DOI
Bonente G., Pippa S., Castellano S., Bassi R., Ballottari M. Acclimation of Chlamydomonas reinhardtii to different growth irradiances. J. Biol. Chem. 2012;287:5833–5847. doi: 10.1074/jbc.M111.304279. PubMed DOI PMC
Ferreira V.S., Pinto R.F., Sant’Anna C. Low light intensity and nitrogen starvation modulate the chlorophyll content of Scenedesmus dimorphus. J. Appl. Microbiol. 2016;120:661–670. doi: 10.1111/jam.13007. PubMed DOI
Guidi L., Tattini M., Landi M. How does chloroplast protect chlorophyll against excessive light. In: Jacob-Lopes L.Q.Z.E., Queiroz M.I., editors. Chlorophyll. Volume 21 IntechOpen; London, UK: 2017.