The Effect of Variable Light Source and Light Intensity on the Growth of Three Algal Species

. 2022 Apr 11 ; 11 (8) : . [epub] 20220411

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35455972

Light is the essential energy source for autotrophically growing organisms, including microalgae. Both light intensity and light quality affect cell growth and biomass composition. Here we used three green algae-Chlamydomonas reinhardtii, Desmodesmus quadricauda, and Parachlorella kessleri-to study the effects of different light intensities and light spectra on their growth. Cultures were grown at three different light intensities (100, 250, and 500 µmol m-2 s-1) and three different light sources: fluorescent lamps, RGB LEDs, and white LEDs. Cultures of Desmodesmus quadricauda and Parachlorella kessleri were saturated at 250 µmol m-2 s-1, and further increasing the light intensity did not improve their growth. Chlamydomonas reinhardtii cultures did not reach saturation under the conditions used. All species usually divide into more than two daughter cells by a mechanism called multiple fission. Increasing light intensity resulted in an increase in maximum cell size and division into more daughter cells. In Parachlorella kessleri cells, the concentration of photosynthetic pigments decreased with light intensity. Different light sources had no effect on algal growth or photosynthetic pigments. The results show a species-specific response of algae to light intensity and support the use of any white light source for their cultivation without negative effects on growth.

Zobrazit více v PubMed

Mata T.M., Martins A.A., Caetano N.S. Microalgae for biodiesel production and other applications: A review. Renew. Sustain. Energy Rev. 2010;14:217–232. doi: 10.1016/j.rser.2009.07.020. DOI

Spolaore P., Joannis-Cassan C., Duran E., Isambert A. Commercial applications of microalgae. J. Biosci. Bioeng. 2006;101:87–96. doi: 10.1263/jbb.101.87. PubMed DOI

Borowitzka M.A. High-value products from microalgae—their development and commercialisation. J. Appl. Phycol. 2013;25:743–756. doi: 10.1007/s10811-013-9983-9. DOI

Caporgno M.P., Mathys A. Trends in microalgae incorporation into innovative food products with potential health benefits. Front. Nutr. 2018;5:58. doi: 10.3389/fnut.2018.00058. PubMed DOI PMC

Chisti Y. Biodiesel from microalgae beats bioethanol. Trends Biotechnol. 2008;26:126–131. doi: 10.1016/j.tibtech.2007.12.002. PubMed DOI

Hachicha R., Elleuch F., Ben Hlima H., Dubessay P., de Baynast H., Delattre C., Pierre G., Hachicha R., Abdelkafi S., Michaud P. Biomolecules from microalgae and cyanobacteria: Applications and market survey. Appl. Sci. 2022;12:1924. doi: 10.3390/app12041924. DOI

Metsoviti M.N., Papapolymerou G., Karapanagiotidis I.T., Katsoulas N. Effect of light intensity and quality on growth rate and composition of Chlorella vulgaris. Plants. 2019;9:31. doi: 10.3390/plants9010031. PubMed DOI PMC

Patel A.K., Choi Y.Y., Sim S.J. Emerging prospects of mixotrophic microalgae: Way forward to sustainable bioprocess for environmental remediation and cost-effective biofuels. Bioresour. Technol. 2020;300:122741. doi: 10.1016/j.biortech.2020.122741. PubMed DOI

Zachleder V., Kselíková V., Ivanov I.N., Bialevich V., Vítová M., Ota S., Takeshita T., Kawano S., Bišová K. Supra-optimal temperature: An efficient approach for overaccumulation of starch in the green alga Parachlorella kessleri. Cells. 2021;10:1806. doi: 10.3390/cells10071806. PubMed DOI PMC

Narala R.R., Garg S., Sharma K.K., Thomas-Hall S.R., Deme M., Li Y., Schenk P.M. Comparison of microalgae cultivation in photobioreactor, open raceway pond, and a two-stage hybrid system. Front. Energy Res. 2016;4:29. doi: 10.3389/fenrg.2016.00029. DOI

Valdovinos-García E.M., Petriz-Prieto M.A., Olán-Acosta M.d.l.Á., Barajas-Fernández J., Guzmán-López A., Bravo-Sánchez M.G. Production of microalgal biomass in photobioreactors as feedstock for bioenergy and other uses: A techno-economic study of harvesting stage. Appl. Sci. 2021;11:4386. doi: 10.3390/app11104386. DOI

Paul S., Bera S., Dasgupta R., Mondal S., Roy S. Review on the recent structural advances in open and closed systems for carbon capture through algae. Energy Nexus. 2021;4:100032. doi: 10.1016/j.nexus.2021.100032. DOI

Singh S.P., Singh P. Effect of temperature and light on the growth of algae species: A review. Renew. Sustain. Energy Rev. 2015;50:431–444. doi: 10.1016/j.rser.2015.05.024. DOI

Difusa A., Talukdar J., Kalita M.C., Mohanty K., Goud V.V. Effect of light intensity and pH condition on the growth, biomass and lipid content of microalgae Scenedesmus species. Biofuels. 2015;6:37–44. doi: 10.1080/17597269.2015.1045274. DOI

Lee E., Jalalizadeh M., Zhang Q. Growth kinetic models for microalgae cultivation: A review. Algal Res. 2015;12:497–512. doi: 10.1016/j.algal.2015.10.004. DOI

Xu Y., Ibrahim I.M., Harvey P.J. The influence of photoperiod and light intensity on the growth and photosynthesis of Dunaliella salina (Chlorophyta) CCAP 19/30. Plant Physiol. Biochem. 2016;106:305–315. doi: 10.1016/j.plaphy.2016.05.021. PubMed DOI PMC

Atta M., Idris A., Bukhari A., Wahidin S. Intensity of blue LED light: A potential stimulus for biomass and lipid content in fresh water microalgae Chlorella vulgaris. Bioresour. Technol. 2013;148:373–378. doi: 10.1016/j.biortech.2013.08.162. PubMed DOI

Vélez-Landa L., Hernández-De León H.R., Pérez-Luna Y.D.C., Velázquez-Trujillo S., Moreira-Acosta J., Berrones-Hernández R., Sánchez-Roque Y. Influence of light intensity and photoperiod on the photoautotrophic growth and lipid content of the microalgae Verrucodesmus verrucosus in a photobioreactor. Sustainability. 2021;13:6606. doi: 10.3390/su13126606. DOI

Zhou P., Guo H., Fang Z., He Y., Weerasinghe R. Effect of light quality on the cultivation of Chlorella pyrenoidosa. E3S Web Conf. 2020;143:02033. doi: 10.1051/e3sconf/202014302033. DOI

Darko E., Heydarizadeh P., Schoefs B., Sabzalian M.R. Photosynthesis under artificial light: The shift in primary and secondary metabolism. Philos. Trans. R. Soc. B. 2014;369:20130243. doi: 10.1098/rstb.2013.0243. PubMed DOI PMC

Bula R.J., Morrow R.C., Tibbitts T., Barta D., Ignatius R., Martin T. Light-emitting diodes as a radiation source for plants. HortScience. 1991;26:203–205. doi: 10.21273/HORTSCI.26.2.203. PubMed DOI

Schulze P.S., Barreira L.A., Pereira H.G., Perales J.A., Varela J.C. Light emitting diodes (LEDs) applied to microalgal production. Trends Biotechnol. 2014;32:422–430. doi: 10.1016/j.tibtech.2014.06.001. PubMed DOI

Glemser M., Heining M., Schmidt J., Becker A., Garbe D., Buchholz R., Bruck T. Application of light-emitting diodes (LEDs) in cultivation of phototrophic microalgae: Current state and perspectives. Appl. Microbiol. Biotechnol. 2016;100:1077–1088. doi: 10.1007/s00253-015-7144-6. PubMed DOI

Zhong Y., Jin P., Cheng J.J. A comprehensive comparable study of the physiological properties of four microalgal species under different light wavelength conditions. Planta. 2018;248:489–498. doi: 10.1007/s00425-018-2899-5. PubMed DOI

Shu C.H., Tsai C.C., Liao W.H., Chen K.Y., Huang H.C. Effects of light quality on the accumulation of oil in a mixed culture of Chlorella sp. and Saccharomyces cerevisiae. J. Chem. Technol. Biotechnol. 2012;87:601–607. doi: 10.1002/jctb.2750. DOI

Oldenhof H., Zachleder V., van den Ende H. Blue- and red-light regulation of the cell cycle in Chlamydomonas reinhardtii (Chlorophyta) Eur. J. Phycol. 2006;41:313–320. doi: 10.1080/09670260600699920. DOI

Koc C., Anderson G.A., Kommareddy A. Use of red and blue light-emitting diodes (LED) and fluorescent lamps to grow microalgae in a photobioreactor. Isr. J. Aquac.-Bamidgeh. 2013;65:797–804. doi: 10.46989/001c.20661. DOI

Sueoka N. Mitotic replication of deoxyribonucleic acid in Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. USA. 1960;46:83–91. doi: 10.1073/pnas.46.1.83. PubMed DOI PMC

Zachleder V., Ivanov I., Vítová M., Bišová K. Cell cycle arrest by supraoptimal temperature in the alga Chlamydomonas reinhardtii. Cells. 2019;8:1237–1257. doi: 10.3390/cells8101237. PubMed DOI PMC

Zachleder V., Šetlík I. Effect of irradiance on the course of RNA synthesis in the cell cycle of Scenedesmus quadricauda. Biol. Plant. 1982;24:341–353. doi: 10.1007/BF02909100. DOI

Korzyńska A., Zychowicz M. A method of estimation of the cell doubling time on basis of the cell culture monitoring data. Biocybern. Biomed. Eng. 2008;28:75–82.

Řezanka T., Kaineder K., Mezricky D., Řezanka M., Bišová K., Zachleder V., Vítová M. The effect of lanthanides on photosynthesis, growth, and chlorophyll profile of the green alga Desmodesmus quadricauda. Photosynth. Res. 2016;130:335–346. doi: 10.1007/s11120-016-0263-9. PubMed DOI

MacKinney G. Absorption of light by chlorophyll solutions. J. Biol. Chem. 1941;140:315–322. doi: 10.1016/S0021-9258(18)51320-X. DOI

Lichtenthaler D.K., Wellburn A.R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soc. Trans. 1983;603:591–592. doi: 10.1042/bst0110591. DOI

Lukavský J., Simmer J., Kubín Š. Methods for algal growth evaluation. In: Marvan P., Přibil S., Lhotský O., editors. Algal Essays and Monitoring Eutrophication. E. Schweitzerbartsche Verlags-buchhandlung; Stuttgart, Germany: 1979. pp. 77–85.

McCree K.J. The action spectrum, absorptance and quantum yield of photosynthesis in crop plants. J. Agric. Meteorol. 1971;9:191–216. doi: 10.1016/0002-1571(71)90022-7. DOI

Zachleder V., Bišová K., Vítová M. The cell cycle of microalgae. In: Borowitzka M.A., Beardall J., Raven J.A., editors. The Physiology of Microalgae. Volume 6. Springer; Dordrecht, The Netherlands: 2016. pp. 3–46.

Li S.F., Fanesi A., Martin T., Lopes F. Biomass production and physiology of Chlorella vulgaris during the early stages of immobilized state are affected by light intensity and inoculum cell density. Algal Res. 2021;59:452–461. doi: 10.1016/j.algal.2021.102453. DOI

He Q., Yang H., Wu L., Hu C. Effect of light intensity on physiological changes, carbon allocation and neutral lipid accumulation in oleaginous microalgae. Bioresour. Technol. 2015;191:219–228. doi: 10.1016/j.biortech.2015.05.021. PubMed DOI

Beale S.I., Appleman D. Chlorophyll synthesis in Chlorella. J. Plant Physiol. 1971;47:230–235. doi: 10.1104/pp.47.2.230. PubMed DOI PMC

Da Silva Ferreira V., Sant’Anna C. Impact of culture conditions on the chlorophyll content of microalgae for biotechnological applications. World J. Microbiol. Biotechnol. 2017;33:20. doi: 10.1007/s11274-016-2181-6. PubMed DOI

Bonente G., Pippa S., Castellano S., Bassi R., Ballottari M. Acclimation of Chlamydomonas reinhardtii to different growth irradiances. J. Biol. Chem. 2012;287:5833–5847. doi: 10.1074/jbc.M111.304279. PubMed DOI PMC

Ferreira V.S., Pinto R.F., Sant’Anna C. Low light intensity and nitrogen starvation modulate the chlorophyll content of Scenedesmus dimorphus. J. Appl. Microbiol. 2016;120:661–670. doi: 10.1111/jam.13007. PubMed DOI

Guidi L., Tattini M., Landi M. How does chloroplast protect chlorophyll against excessive light. In: Jacob-Lopes L.Q.Z.E., Queiroz M.I., editors. Chlorophyll. Volume 21 IntechOpen; London, UK: 2017.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...