Growth and the cell cycle in green algae dividing by multiple fission
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
19-12607S
Grantová Agentura České Republiky
LO1416
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
31347103
DOI
10.1007/s12223-019-00741-z
PII: 10.1007/s12223-019-00741-z
Knihovny.cz E-zdroje
- MeSH
- buněčné dělení * MeSH
- buněčný cyklus * MeSH
- Chlorophyta cytologie růst a vývoj metabolismus MeSH
- velikost buňky MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Most cells divide into two daughter cells; however, some green algae can have different division patterns in which a single mother cell can sometimes give rise to up to thousands of daughter cells. Although such cell cycle patterns can be very complex, they are governed by the same general concepts as the most common binary fission. Moreover, cell cycle progression appears to be connected with size, since cells need to ensure that their size after division will not drop below the limit required for survival. Although the exact mechanism that lets cells measure cell size remains largely unknown, there have been several prominent hypotheses that try to explain it.
Zobrazit více v PubMed
J Biotechnol. 2007 Feb 1;128(2):393-402 PubMed
Front Microbiol. 2015 May 29;6:515 PubMed
J Cell Sci. 1996 Dec;109 ( Pt 12):2947-57 PubMed
Protoplasma. 1968;66(1):105-30 PubMed
Biotechnol Bioeng. 2011 Apr;108(4):766-76 PubMed
Biotechnol Bioeng. 2013 Jan;110(1):97-107 PubMed
Annu Rev Cell Biol. 1991;7:227-56 PubMed
J Exp Bot. 2019 Feb 5;70(3):845-858 PubMed
Biochim Biophys Acta. 1953 Sep-Oct;12(1-2):23-40 PubMed
J Biol Chem. 2007 Nov 2;282(44):32370-83 PubMed
PLoS Comput Biol. 2010 Dec 16;6(12):e1001036 PubMed
Planta. 2011 Jan;233(1):75-86 PubMed
Annu Rev Cell Dev Biol. 1997;13:395-424 PubMed
Biochim Biophys Acta. 1964 Dec 9;93:625-34 PubMed
Appl Microbiol Biotechnol. 2012 Oct;96(2):555-64 PubMed
Nature. 1975 Aug 14;256(5518):547-51 PubMed
J Theor Biol. 2014 Jan 21;341:78-87 PubMed
Curr Opin Cell Biol. 2005 Aug;17(4):435-41 PubMed
Elife. 2014 Mar 18;3:e02040 PubMed
Curr Opin Microbiol. 2010 Dec;13(6):727-9 PubMed
Nature. 2009 Jun 11;459(7248):852-6 PubMed
Nature. 1979 Jul 5;280(5717):17-9 PubMed
Exp Cell Res. 1977 Jul;107(2):377-86 PubMed
Exp Cell Res. 1978 Sep;115(2):317-29 PubMed
Proc Natl Acad Sci U S A. 2009 Jun 23;106(25):10348-53 PubMed
Plant Physiol. 2006 Sep;142(1):305-17 PubMed
Mol Cell. 2009 Jan 30;33(2):143-4 PubMed
Mol Cell. 2016 May 19;62(4):532-45 PubMed
Nature. 2010 Dec 23;468(7327):1074-9 PubMed
Biochim Biophys Acta. 1991 Mar 19;1092(1):21-8 PubMed
J Cell Sci. 2018 Mar 26;131(6): PubMed
Nature. 1981 Aug 6;292(5823):558-60 PubMed
Curr Opin Microbiol. 2011 Jun;14(3):350-6 PubMed
Genes Dev. 2001 Jul 1;15(13):1652-61 PubMed
Nat Rev Microbiol. 2017 Oct;15(10):606-620 PubMed
Biochim Biophys Acta. 1972 Nov 16;287(1):154-63 PubMed
Elife. 2016 Mar 25;5:e10767 PubMed
Biol Cell. 1998 Nov;90(8):537-48 PubMed
Plant J. 2009 Dec;60(5):882-93 PubMed
Mol Cell. 2016 May 19;62(4):546-57 PubMed
Nature. 2007 Aug 23;448(7156):947-51 PubMed
J Cell Biol. 1980 Apr;85(1):136-45 PubMed
Curr Biol. 2014 Feb 17;24(4):428-33 PubMed
Nature. 1983 Aug 18-24;304(5927):630-3 PubMed
Mol Cell. 2009 Jan 16;33(1):53-63 PubMed
J Exp Zool. 2000 Jul 1;287(2):128-44 PubMed
Plant Physiol. 2013 Apr;161(4):1682-93 PubMed
Microbiol Sci. 1984 Jul;1(4):96-101 PubMed
Planta. 2011 Sep;234(3):599-608 PubMed
Curr Biol. 2012 May 8;22(9):R350-9 PubMed
J Exp Bot. 2014 Jun;65(10):2585-602 PubMed
Nature. 2009 Jun 11;459(7248):857-60 PubMed
Special issue dedicated to the memory of Ivan Šetlík