Microbial recovery of rare earth elements from various waste sources: a mini review with emphasis on microalgae

. 2024 May 04 ; 40 (6) : 189. [epub] 20240504

Jazyk angličtina Země Německo Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid38702568

Grantová podpora
RVO 67985939 Akademie Věd České Republiky
CA19116 COST
TNO 1000044 Technology Agency of the Czech Republic

Odkazy

PubMed 38702568
PubMed Central PMC11068686
DOI 10.1007/s11274-024-03974-4
PII: 10.1007/s11274-024-03974-4
Knihovny.cz E-zdroje

Rare Earth Elements (REEs) are indispensable in contemporary technologies, influencing various aspects of our daily lives and environmental solutions. The escalating demand for REEs has led to increased exploitation, resulting in the generation of diverse REE-bearing solid and liquid wastes. Recognizing the potential of these wastes as secondary sources of REEs, researchers are exploring microbial solutions for their recovery. This mini review provides insights into the utilization of microorganisms, with a particular focus on microalgae, for recovering REEs from sources such as ores, electronic waste, and industrial effluents. The review outlines the principles and distinctions of bioleaching, biosorption, and bioaccumulation, offering a comparative analysis of their potential and limitations. Specific examples of microorganisms demonstrating efficacy in REE recovery are highlighted, accompanied by successful methods, including advanced techniques for enhancing microbial strains to achieve higher REE recovery. Moreover, the review explores the environmental implications of bio-recovery, discussing the potential of these methods to mitigate REE pollution. By emphasizing microalgae as promising biotechnological candidates for REE recovery, this mini review not only presents current advances but also illuminates prospects in sustainable REE resource management and environmental remediation.

Zobrazit více v PubMed

Anyaoha KE, Krujatz F, Hodgkinson I, Maletz R, Dornack C. Microalgae contribution in enhancing the circular economy drive of biochemical conversion systems—a review. Carbon Resour Convers. 2024;7:100203. doi: 10.1016/j.crcon.2023.10.003. DOI

Bahaloo-Horeh N, Mousavi SM. A novel green strategy for biorecovery of valuable elements along with enrichment of rare earth elements from activated spent automotive catalysts using fungal metabolites. J Hazard Mater. 2022;15(430):128509. doi: 10.1016/j.jhazmat.2022.128509. PubMed DOI

Balaram V. Rare earth elements: a review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geosci Front. 2019;10:1285–1303. doi: 10.1016/j.gsf.2018.12.005. DOI

Balzano S, Sardo A, Blasio M, Chahine TB, Dell’Anno F, Sansone C, Brunet C. Microalgal metallothioneins and phytochelatins and their potential use in bioremediation. Front Microbiol Sec Microbiotechnol. 2020 doi: 10.3389/fmicb.2020.00517. PubMed DOI PMC

Barnett MJ, Palumbo-Roe B, Deady EA, Gregory SP. Comparison of three approaches for bioleaching of rare earth elements from bauxite. Minerals. 2020 doi: 10.3390/min10080649. DOI

Birungi ZS, Chirwa EMN. Phytoremediation of lanthanum using algae from eutrophic freshwater sources. Proc Water Environ. 2013 doi: 10.2175/193864713813667728. DOI

Birungi ZS, Chirwa EMN. The kinetics of uptake and recovery of lanthanum using freshwater algae as biosorbents: comparative analysis. Bioresour Technol. 2014;160:43–51. doi: 10.1016/j.biortech.2014.01.033. PubMed DOI

Brar A, Kumar M, Vivekanand V, Pareek N. Photoautotrophic microorganisms and bioremediation of industrial effluents: current status and future prospects. Biotechnol. 2017;7:1–8. doi: 10.1007/s13205-017-0600-5. PubMed DOI PMC

Breuker A, Ritter SF, Schippers A. Biosorption of rare earth elements by different microorganisms in acidic solutions. Metals. 2020;10:954. doi: 10.3390/met10070954. DOI

Brown RM, Mirkouei A, Reed D, Thompson V. Current nature-based biological practices for rare earth elements extraction and recovery: bioleaching and biosorption. Renew Sustain Energy Rev. 2023;173:113099. doi: 10.1016/j.rser.2022.113099. DOI

Castro L, Gomez-Alvarez H, Carmona M, Gonzalez F, Munoz JA. Influence of biosurfactants in the recovery of REE from monazite using Burkholderia thailandensis. Hydrometallurgy. 2023 doi: 10.1016/j.hydromet.2023.106178. DOI

Castro L, Gomez-Alvarez H, Gonzalez F, Munoz JA. Biorecovery of rare earth elements from fluorescent lamp powder using the fungus Aspergillus niger in batch and semicontinuous systems. Miner Eng. 2023 doi: 10.1016/j.mineng.2023.108215. DOI

Cheng SY, Show P-L, Lau BF, Chang J-S, Ling TC. New prospects for modified algae in heavy metal adsorption. Trends Biotechnol. 2019;37(11):1255–1268. doi: 10.1016/j.tibtech.2019.04.007. PubMed DOI

Cheng Y, Zhang T, Zhang L, Ke Z, Kovarik L, Dong H. Resource recovery: adsorption and biomineralization of cerium by Bacillus licheniformis. J Hazard Mater. 2022 doi: 10.1016/j.jhazmat.2021.127844. PubMed DOI

Čížková M, Mezricky D, Rucki M, Tóth TM, Náhlík V, Lanta V, Bišová K, Zachleder V, Vítová M. Bio-mining of lanthanides from red mud by green microalgae. Molecules. 2019;24:1356. doi: 10.3390/molecules24071356. PubMed DOI PMC

Čížková M, Mezricky P, Mezricky D, Rucki M, Zachleder V, Vítová M. Bioaccumulation of rare earth elements from waste luminophores in the red algae, Galdieria phlegrea. Waste Biomass Valor. 2021;12:3137–3146. doi: 10.1007/s12649-020-01182-3. DOI

Čížková M, Vítová M, Zachleder V. The red microalga Galdieria as a promising organism for applications in biotechnology. Microalgae Physiol Appl. 2019;1:17. doi: 10.5772/intechopen.89810. DOI

Coimbra NV, Gonçalves FS, Nascimento M, Giese EC. Study of adsorption isotherm models on rare earth elements biosorption for separation purposes. Int Schol Sci Res Innov. 2019;13:200–203.

Congressional Research Service (2020) An overview of rare earth elements and related issues for congress. https://crsreports.congress.gov/product/pdf /R/R46618

Corbett M, Eksteen J, Niu X-Z, Watkin E. Syntrophic effect of indigenous and inoculated microorganisms in the leaching of rare earth elements from Western Australian monazite. Res Microbiol. 2018;169(10):558–568. doi: 10.1016/j.resmic.2018.05.007. PubMed DOI

Correa FDN, Luna AS, da Costa ACA. Kinetics and equilibrium of lanthanum biosorption by free and immobilized microalgal cells. Adsorpt Sci Technol. 2016;35:137–152. doi: 10.1177/0263617416672667. DOI

Cuaresma M, Casal C, Forján E, Vílchez C. Productivity and selective accumulation of carotenoids of the novel extremophile microalga Chlamydomonas acidophila grown with different carbon sources in batch systems. J Ind Microbiol Biotechnol. 2011;38:167–177. doi: 10.1007/s10295-010-0841-3. PubMed DOI

Danouche M, Bounaga A, Oulkhir A, Boulif R, Zeroual Y, Benhida R, Lyamlouli K. Advances in bio/chemical approaches for sustainable recycling and recovery of rare earth elements from secondary resources. Sci Total Environ. 2024;914:168811. doi: 10.1016/j.scitotenv.2023.168811. PubMed DOI

Dev S, Sachan A, Dehghani F, Ghosh T, Briggs BR, Aggarwal S. Mechanisms of biological recovery of rare-earth elements from industrial and electronic wastes: a review. Chem Eng J. 2020;397:124596. doi: 10.1016/j.cej.2020.124596. DOI

Devi AS, Ganesh S. Recent bioleaching approaches employed for the extraction of metals in mining fields for the purpose of utilization and creating the sustainable future. Environ Qual Manage. 2023 doi: 10.1002/tqem.22085. DOI

Di Caprio F, Altimari P, Zanni E, Uccelletti D, Toro L, Pagnanelli F. Lanthanum biosorption by different Saccharomyces cerevisiae strains. Chem Eng Trans. 2016;49:37–42. doi: 10.3303/CET1649007. DOI

Diniz V, Volesky B. Biosorption of La, Eu and Yb using Sargassum biomass. Water Res. 2005;39(1):239–247. doi: 10.1016/j.watres.2004.09.009. PubMed DOI

Diniz V, Volesky B. Desorption of lanthanum, europium and ytterbium from Sargassum. Separ Purif Technol. 2006;50:71–76. doi: 10.1016/j.seppur.2005.11.010. DOI

Dubey K, Dubey KP. A study of the effect of red mud amendments on the growth of cyanobacterial species. Bioremed J. 2011;15:133–139. doi: 10.1080/10889868.2011.598483. DOI

European Commission. Critical raw materials 2023https://single-market-economy.ec.europa.eu/sectors/raw-materials/areas-specific-interest/critical-rawmaterials_en Accessed 18 Jan 2024

Fathollahzadeh H, Becker T, Eksteen JJ, Kaksonen AH, Watkin ELJ. Microbial contact enhances bioleaching of rare earth elements. Bioresour Technol Rep. 2018;3:102–108. doi: 10.1016/j.biteb.2018.07.004. DOI

Fathollahzadeh H, Hackett MJ, Khaleque HN, Eksteen JJ, Kaksonen AH, Watkin ELJ. Better together: potential of co-culture microorganisms to enhance bioleaching of rare earth elements from monazite. Bioresour Technol Rep. 2018;3:109–118. doi: 10.1016/j.biteb.2018.07.003. DOI

Fathollahzadeh H, Eksteen JJ, Kaksonen AH, Watkin ELJ. Role of microorganisms in bioleaching of rare earth element from primary and secondary resources. Appl Microbiol Biotechnol. 2019;103:1043–1057. doi: 10.1007/s00253-018-9526-z. PubMed DOI

Ferreira DM, Silva JAS, Sérvulo EFC, Frescura VLA, Dognini J, Silva AAMJ, Oliveira FJS. Valorization of solid waste from oil refining and biodiesel industries for the biorecovery of rare earth elements. Biomass Conver Bioref. 2022;12:2891–2900. doi: 10.1007/s13399-020-00819-6. DOI

Fischer CB, Korsten S, Rosken LM, Cappel F, Beresko C, Ankerhold G, Schonleber A, Geimer S, Ecker D, Wehner S. Cyanobacterial promoted enrichment of rare earth elements europium, samarium and neodymium and intracellular europium particle formation. RSC Adv. 2019;9(56):32581–32593. doi: 10.1039/c9ra06570a. PubMed DOI PMC

Furuhashi Y, Honda R, Noguchi M, Hara-Yamamura H, Kobayashi S, Higashimine K, Hasegawa H. Optimum conditions of pH, temperature and preculture for biosorption of europium by microalgae Acutodesmus acuminatus. Biochem Eng J. 2019;143:58–64. doi: 10.1016/j.bej.2018.12.007. DOI

Gao B, Gan M, Sun C, Chen H, Liu X, Liu Q, Wang Y, Cheng H, Zhou H, Chen Z. Bioleaching of ion-adsorption rare earth ores by biogenic lixiviants derived from agriculture waste via a cell-free cascade enzymatic process. Hydrometallurgy. 2023 doi: 10.1016/j.hydromet.2023.106189. DOI

Garbayo I, Cuaresma M, Vílchez C, Vega JM. Effect of abiotic stress on the production of lutein and β-carotene by Chlamydomonas acidophila. Process Biochem. 2008;43:1158–1161. doi: 10.1016/j.procbio.2008.06.012. DOI

García-Balboa C, Martínez-Alesón García P, López-Rodas V, Costas E, Baselga-Cervera B. Microbial biominers: sequential bioleaching and biouptake of metals from electronic scraps. MicrobiologyOpen. 2022 doi: 10.1002/mbo3.1265. PubMed DOI PMC

Gaur J, Rai LC. Algal adaptation to environmental stresses. Springer; 2001. Heavy metal tolerance in algae.

Giese EC. Biosorption as green technology for the recovery and separation of rare earth elements. World J Microbiol Biotechnol. 2020;36:52. doi: 10.1007/s11274-020-02821-6. PubMed DOI

Giese EC, Jordao CS. Biosorption of lanthanum and samarium by chemically modified free Bacillus subtilis cells. Appl Water Sci. 2019;9(8):182. doi: 10.1007/s13201-019-1052-3. DOI

Goswami RK, Agrawal K, Mehariya S, Rajagopal R, Karthikeyan OP, Verma P. Development of economical and sustainable cultivation system for biomass production and simultaneous treatment of municipal wastewater using Tetraselmis indica BDUG001. Environ Technol. 2023;17:1–21. doi: 10.1080/09593330.2023.2166429. PubMed DOI

Goswami RK, Agrawal K, Shah MP, Verma P. Bioremediation of heavy metals from wastewater: a current perspective on microalgae-based future. Letters Appl Microbiol. 2022;75(4):701–717. doi: 10.1111/lam.13564. PubMed DOI

Goswami RK, Agrawal K, Verma P. Microalgal-based remediation of wastewater: a step towards environment protection and management. Environ Quality Manage. 2022;32(1):105–123. doi: 10.1002/tqem.21850. DOI

Gross W, Schnarrenberger C. Heterotrophic growth of two strains of the acido-thermophilic red alga Galdieria sulphuraria. Plant Cell Physiol. 1995;36:633–638. doi: 10.1093/OXFORDJOURNALS.PCP.A078803. DOI

Guleri S, Saxena A, Singh KJ, Rinku DR, Kapoor N, Tiwari A. Phycoremediation: a novel and synergistic approach in wastewater remediation. J Microbiol Biotechnol Food Sci. 2020;10(1):98–106. doi: 10.15414/jmbfs.2020.10.1.98-106. DOI

Guo P, Wang J, Li X, Zhu J, Reinert T, Heitmann J, Butz T. Study of metal bioaccumulation by nuclear microprobe analysis of algae fossils and living algae cells. Nucl Instrum Methods Phys Res. 2000;161:801–807. doi: 10.1016/S0168-583X(99)00933-7. DOI

Heidelmann GP, Roldão TM, Egler SG, Nascimento M, Giese EC. Microalgae biomass use for lanthanides biosorption. Holos. 2017;6(33):170–179. doi: 10.15628/holos.2017.6436. DOI

Heilmann M, Breiter R, Becker AM. Towards rare earth element recovery from wastewaters: biosorption using phototrophic organisms. Appl Microbiol Biotechnol. 2021;105:5229–5239. doi: 10.1007/s00253-021-11386-9. PubMed DOI PMC

Heilmann M, Jurkowski W, Buchholz R, Brueck T, Becker AM. Biosorption of neodymium by selected photoautotrophic and heterotrophic species. J Chem Eng Process Technol. 2015;6:241. doi: 10.4172/2157-7048.1000241. DOI

Hong C, Tang Q, Liu S, Kim H, Liu D. A two-step bioleaching process enhanced the recovery of rare earth elements from phosphogypsum. Hydrometallurgy. 2023;221:106140. doi: 10.1016/j.hydromet.2023.106140. DOI

Hosseini SM, Vakilchap F, Baniasadi M, Mousavi SM, Khodadadi Darban A, Farnaud S. Green recovery of cerium and strontium from gold mine tailings using an adapted acidophilic bacterium in one-step bioleaching approach. J Taiwan Inst Chem Eng. 2022;138:104482. doi: 10.1016/j.jtice.2022.104482. DOI

Iovinella M, Lombardo F, Ciniglia C, Palmieri M, di Cicco MR, Trifuoggi M, Race M, Manfredi C, Lubritto C, Fabbricino M, De Stefano M, Davis SJ. Bioremoval of yttrium (III), cerium (III), europium (III), and terbium (iii) from single and quaternary aqueous solutions using the extremophile Galdieria sulphuraria (Galdieriaceae, Rhodophyta) Plants. 2022;11:1376. doi: 10.3390/plants11101376. PubMed DOI PMC

Isildar A, van Hullebusch ED, Lenz M, Du Laing G, Marra A, Cesaro A, Panda S, Akcil A, Kucuker MA, Kuchta K. Biotechnological strategies for the recovery of valuable and critical raw materials from waste electrical and electronic equipment (WEEE)—a review. J Hazard Mater. 2019;362:467–481. doi: 10.1016/j.jhazmat.2018.08.050. PubMed DOI

Jacinto J, Henriques B, Duarte AC, Vale C, Pereira E. Removal and recovery of critical rare elements from contaminated waters by living Gracilaria gracilis. J Hazard Mater. 2018;344:531–538. doi: 10.1016/j.jhazmat.2017.10.054. PubMed DOI

Jais NM, Mohamed RMSR, Al-Gheethi AA, Hashim MKA. The dual roles of phycoremediation of wet market wastewater for nutrients and heavy metals removal and microalgae biomass production. Clean Technol Environ Policy. 2017;19:37–52. doi: 10.1007/s10098-016-1235-7. DOI

Jalali J, Lebeau T. The role of microorganisms in mobilization and phytoextraction of rare earth elements: a review. Front Environ Sci. 2021;9:688430. doi: 10.3389/fenvs.2021.688430. DOI

Joshi R, Pareek A, Singla-Pareek SL (2016) Plant metallothioneins: classification, distribution, function, and regulation. In: Plant Metal Interaction: Emerging Remediation Techniques 1, Elsevier, Ed. Parvaiz Ahmad. 10.1016/B978-0-12-803158-2.00009-6

Jung H, West ZSZIAC, Banta S. Genetic modification of Acidithiobacillus ferrooxidans for rare-earth element recovery under acidic conditions. Environ Sci Technol. 2023;57(48):19902–19911. doi: 10.1021/acs.est.3c05772. PubMed DOI

Kano N. Engineering “biomass now—sustainable growth and use”. Rijeka: Intech Open; 2013. Biosorption of lanthanides using select marine biomass; pp. 101–124.

Keshtkar AR, Moosavian MA, Sohbatzadeh H, Mofras M. La(III) and Ce(III) biosorption on sulfur functionalized marine brown algae Cystoseira indica by xanthation method: response surface methodology isotherm and kinetic study. Groundwater Sustain Dev. 2018;8:144–155. doi: 10.1016/j.gsd.2018.10.005. DOI

Kim JA, Dodbiba G, Tanimura Y, Mitsuhashi K, Fukuda N, Okaya K, Matsuo S, Fujita T. Leaching of rare-earth elements and their adsorption by using blue-green algae. Mater Trans. 2011;52:1799–1806. doi: 10.2320/matertrans. DOI

Korenevsky AA, Sorokin VV, Karavaiko GI. Biosorption of rare earth elements. Process Metal. 1999;9:299–306. doi: 10.1016/S1572-4409(99)80119-9. DOI

Kücüker MA, Wieczorek N, Kuchta K, Copty NK. Biosorption of neodymium on Chlorella vulgaris in aqueous solution obtained from hard disk drive magnets. PLoS ONE. 2017 doi: 10.1371/journal.pone.0175255. PubMed DOI PMC

Kumar JIN, Oommen C, Kumar RN. Biosorption of heavy metals from aqueous solution by green marine macroalgae from Okha Port, Gulf of Kutch, India. Am-Euras J Agric Environ Sci. 2009;6(3):317–323.

Leong YK, Chang J-S. Bioremediation of heavy metals using microalgae: recent advances and mechanisms. Bioresource Technol. 2020 doi: 10.1016/j.biortech.2020.122886. PubMed DOI

Lhamo P, Mahanty B. Bioleaching of rare earth elements from industrial and electronic wastes: mechanism and process efficiency. In: Sinharoy A, Lens PNL, editors. Environmental technologies to treat rare earth elements pollution: principles and engineering. IWA Publishing; 2022.

Ma J, Li S, Wang J, Jiang S, Panchal B, Sun Y. Bioleaching rare earth elements from coal fly ash by Aspergillus niger. Fuel. 2023;354:129387. doi: 10.1016/j.fuel.2023.129387. DOI

Malavasi V, Soru S, Cao G. Extremophile microalgae: the potential for biotechnological application. J Phycol. 2020;56:559–573. doi: 10.1111/jpy.12965. PubMed DOI

Manikandan NA, Lens PL. Biorefining of green macroalgal biomass and its application in the adsorptive recovery of rare earth elements. Sep Purif Technol. 2022 doi: 10.1016/j.seppur.2022.122200. DOI

Mantzorou A, Navakoudis E, Paschalidis K, Ververidis F. Microalgae: a potential tool for remediating aquatic environments from toxic metals. Int J Env Sci Technol. 2018;15:1815–1830. doi: 10.1007/s13762-018-1783-y. DOI

Merola A, Castaldo R, Luca PD, Gambardella R, Musacchio A, Taddei R. Revision of Cyanidium caldarium. Three species of acidophilic algae. G Bot Ital. 1981;115:189–195. doi: 10.1080/11263508109428026. DOI

Minoda A, Sawada H, Suzuki S, Miyashita S, Inagaki K, Yamamoto T, Tsuzuki M. Recovery of rare earth elements from the sulfothermophilic red alga Galdieria sulphuraria using aqueous acid. Appl Microbiol Biotechnol. 2015;99:1513–1519. doi: 10.1007/s00253-014-6070-3. PubMed DOI

Mohammadi M, Reinicke B, Wawrousek K. Biosorption and biomagnetic recovery of La3+ by Magnetospirillum magneticum AMB-1 biomass. Sep Purif Technol. 2022;303:122140. doi: 10.1016/j.seppur.2022.122140. DOI

Náhlík V, Čížková M, Singh A, Mezricky D, Rucki M, Andresen E, Vítová M. Growth of the red alga Galdieria sulphuraria in red mud-containing medium and accumulation of rare earth elements. Waste Biomass Valor. 2023;14(7):1–11. doi: 10.1007/s12649-022-02021-3. DOI

Náhlík V, Zachleder V, Čížková M, Bišová K, Singh A, Mezricky D, Řezanka T, Vítová M. Growth under different trophic regimes and synchronization of the red microalga Galdieria sulphuraria. Biomolecules. 2021;11:939. doi: 10.3390/biom11070939. PubMed DOI PMC

Nowicka B. Heavy metal–induced stress in eukaryotic algae—mechanisms of heavy metal toxicity and tolerance with particular emphasis on oxidative stress in exposed cells and the role of antioxidant response. Environ Sci Poll Res. 2022;29:16860–16911. doi: 10.1007/s11356-021-18419-w. PubMed DOI PMC

Oliveira RC, Garcia O., Jr Study of biosorption of rare earth metals (La, Nd, Eu, Gd) by Sargassum sp. biomass in batch systems: physicochemical evaluation of kinetics and adsorption models. Adv Mater Res. 2009;71:605–608. doi: 10.4028/www.scientifc.net/AMR.71-73.605. DOI

Oliveira RC, Guibal E, Garcia O. Biosorption and desorption of lanthanum (III) and neodymium (III) in fixed-bed columns with Sargassum sp.: perspectives for separation of rare earth metals. Biotechnol Prog. 2012;28:715–722. doi: 10.1002/btpr.1525. PubMed DOI

Oliveira RC, Jouannin C, Guibal E, Garcia O. Samarium (III) and praseodymium (III) biosorption on Sargassum sp.: batch study. Process Biochem. 2011;46:736–744. doi: 10.1016/j.procbio.2010.11.021. DOI

Omodara L, Satu Pitkaaho S, Turpeinen E-M, Saavalainen P, Oravisjarvi K, Keiski RL. Recycling and substitution of light rare earth elements, cerium, lanthanum, neodymium, and praseodymium from end-of-life applications—a review. J Clean Prod. 2019;236:117573. doi: 10.1016/j.jclepro.2019.07.048. DOI

Owusu-Fordjour EY, Yang X. Bioleaching of rare earth elements challenges and opportunities: a critical review. J Environ Chem Eng. 2023;11:110413. doi: 10.1016/j.jece.2023.110413. DOI

Ozaki T, Kimura T, Ohnuki T, Yoshida Z, Francis AJ. Association mechanisms of europium (III) and cerium (III) with Chlorella vulgaris. Environ Toxicol Chem. 2003;22:2800–2805. doi: 10.1897/02-481. PubMed DOI

Palmieri MC, Garcia O, Jr, Melnikov P. Neodymium biosorption from acidic solutions in batch system. Process Biochem. 2000;36:441–444. doi: 10.1016/S0032-9592(00)00236-3. DOI

Palmieri MC, Volesky B, Garcia O. Biosorption of lanthanum using Sargassum fluitans in batch system. Hydrometallurgy. 2001;67:31–36. doi: 10.1016/S0304-386X(02)00133-0. DOI

Pan X, Wu W, Chen Z, Rao W, Guan X. Biosorption and extraction of europium by Bacillus thuringiensis strain. Inorg Chem Commun. 2017;75:21–24. doi: 10.1016/j.inoche.2016.11.012. DOI

Paper M, Koch M, Jung P, Lakatos M, Nilges T, Brück TB. Rare earths stick to rare cyanobacteria: future potential for bioremediation and recovery of rare earth elements. Front Bioeng Biotechnol. 2023 doi: 10.3389/fbioe.2023.1130939. PubMed DOI PMC

Park D, Middleton A, Smith R, Deblonde G, Laudal D, Theaker N, Hsu-Kim H, Jiao Y. A biosorption-based approach for selective extraction of rare earth elements from coal byproducts. Sep Purif Technol. 2020 doi: 10.1016/j.seppur.2020.116726. DOI

Park DM, Reed DW, Yung MC, Eslamimanesh A, Lencka MM, Anderko A, Fujita Y, Riman RE, Navrotsky A, Jiao Y. Bioadsorption of rare earth elements through cell surface display of lanthanide binding tags. Environ Sci Technol. 2016;50:2735–2742. doi: 10.1021/acs.est.5b06129. PubMed DOI PMC

Park S, Liang Y. Bioleaching of trace elements and rare earth elements from coal fly ash. Int J Coal Sci Technol. 2019;6(1):74–83. doi: 10.1007/s40789-019-0238-5. DOI

Pinto J, Costa M, Henriques B, Soares J, Dias M, Viana T, Ferreira N, Vale C, Pinheiro-Torres J, Pereira E. Competition among rare earth elements on sorption onto six seaweeds. J Rare Earths. 2020;39(6):734–741. doi: 10.1016/j.jre.2020.09.025. DOI

Pollmann K, Kutschke S, Matys S, Raf J, Hlawacek G, Lederer FL. Bio-recycling of metals: recycling of technical products using biological applications. Biotechnol Adv. 2018;36(4):1048–1062. doi: 10.1016/j.biotechadv.2018.03.006. PubMed DOI

Ponou J, Wang LP, Dodbiba G, Okaya K, Fujita T, Mitsuhashi K, Atarashi T, Satoh G, Noda M. Recovery of rare earth elements from aqueous solution obtained from Vietnamese clay minerals using dried and carbonized Parachlorella. J Environ Chem Eng. 2014;2:1070–1081. doi: 10.1016/j.jece.2014.04.002. DOI

Priyadarshani I, Sahu D, Rath B. Microalgal bioremediation: current practices and perspectives. J Biochem Technol. 2012;3:299–304.

Ramasamy DL, Porada S, Sillanpaa M. Marine algae: a promising resource for the selective recovery of scandium and rare earth elements from aqueous systems. Chem Eng J. 2019;371:759–768. doi: 10.1016/j.cej.2019.04.106. DOI

Ramírez-Calderón OA, Abdeldayem OM, Pugazhendhi A, Rene ER. Current updates and perspectives of biosorption technology: an alternative for the removal of heavy metals from wastewater. Curr Poll Rep. 2020;6:8–27. doi: 10.1007/s40726-020-00135-7. DOI

Rampelotto PH. Extremophiles and extreme environments. Life. 2013;3(3):482–485. doi: 10.3390/life3030482. PubMed DOI PMC

Rangabhashiyam S, Vijayaraghavan K. Biosorption of Tm(III) by free and polysulfone-immobilized Turbinaria conoides biomass. J Ind Eng Chem. 2019;80:318–324. doi: 10.1016/j.jiec.2019.08.010. DOI

Řezanka T, Kaineder K, Mezricky D, Řezanka M, Bišová K, Zachleder V, Vítová M. The effect of lanthanides on photosynthesis, growth, and chlorophyll profile of the green alga Desmodesmus quadricauda. Photosynth Res. 2016;130:335–340. doi: 10.1007/s11120-016-0263-9. PubMed DOI

Richards RG, Mullins BJ. Using microalgae for combined lipid production and heavy metal removal from leachate. Ecol Model. 2013;249(1):59–67. doi: 10.1016/j.ecolmodel.2012.07.004. DOI

Sadovsky D, Brenner A, Astrachan B, Asaf B, Gonen R. Biosorption potential of cerium ions using Spirulina biomass. J Rare Earth. 2016;34(6):644–652. doi: 10.1016/S1002-0721(16)60074-1. DOI

Sakamoto N, Kano N, Imaizumi H. Biosorption of uranium and rare earth elements using biomass of algae. Bioinorg Chem Appl. 2008 doi: 10.1155/2008/706240. PubMed DOI PMC

Sallam AM, El-Sayed EM, Amin MM, El-Aassy IE, El-Feky MH, Nada AA, Harpy NM. Biosorption of rare earth elements by two fungal genera from lower carboniferous carbonaceous shales, in southwestern Sinai. Egypt J Appl Environ Biol Sci. 2014;4:146–154.

Schmitt D, Müller A, Csögör Z, Frimmel FH, Posten C. The adsorption kinetics of metal ions onto different microalgae and siliceous earth. Water Res. 2001;35:779–785. doi: 10.1016/S0043-1354(00)00317-1. PubMed DOI

Schnurr PJ, Allen DG. Factors affecting algae biofilm growth and lipid production: a review. Renew Sustain Energy Rev. 2015;52:418–429. doi: 10.1016/j.rser.2015.07.090. DOI

Selvaratnam T, Pegallapati AK, Montelya F, Rodriguez G, Nirmalakhandan N, Van Voorhies W, Lammers PJ. Evaluation of a thermo-tolerant acidophilic alga, Galdieria sulphuraria, for nutrient removal from urban wastewaters. Biores Technol. 2014;156:395–399. doi: 10.1016/j.biortech.2014.01.075. PubMed DOI

Shanab S, Essa A, Shalaby E. Bioremoval capacity of three heavy metals by some microalgae species (Egyptian Isolates) Plant Signal Behav. 2012;7:392–399. doi: 10.4161/psb.19173. PubMed DOI PMC

Shen CD, Xu JR, Yu JF. Effect of the rare earth element of Eu on the growth and chlorophyll content of Chlorella vulgaris. Freshwater Fish. 2003;33:23–26.

Shen H, Ren QG, Mi Y, Shi XF, Yao HY, Jin CZ, Huang YY, He W, Zhang J, Liu B. Investigation of metal ion accumulation in Euglena gracilis by fluorescence methods. Nucl Instrum Methods Phys Res Sect B. 2002;189:506–510. doi: 10.1016/S0168-583X(01)01132-6. DOI

Shen L, Zhou H, Shi Q, Meng X, Zhao Y, Qiu G, Zhang X, Yu H, He X, He H, Zhao H. Comparative chemical and non-contact bioleaching of ion-adsorption type rare earth ore using ammonium sulfate and metabolites of Aspergillus niger and Yarrowia lipolytica to rationalise the role of organic acids for sustainable processing. Hydrometallurgy. 2023;216:106019. doi: 10.1016/j.hydromet.2023.106019. DOI

Shi S, Pan J, Dong B, Zhou W, Zhou C. Bioleaching of rare earth elements: perspectives from mineral characteristics and microbial species. Minerals. 2023;13:1186. doi: 10.3390/min13091186. DOI

Shukla D, Trivedi PK, Nath P, Tuteja N. Abiotic stress response in plants. Wiley-VCH; 2016. Metallothioneins and phytochelatins: role and perspectives in heavy metal(loid)s stress tolerance in crop plants; pp. 237–264.

Singh A, Čížková M, Náhlík V, Mezricky D, Schild D, Rucki M, Vítová M. Bio-removal of rare earth elements from hazardous industrial waste of CFL bulbs by the extremophile red alga Galdieria sulphuraria. Front Microbiol. 2023;14:1130848. doi: 10.3389/fmicb.2023.1130848. PubMed DOI PMC

Sriprang R, Murooka Y. Accumulation and detoxification of metals by plants and microbes. In: Singh SN, Tripathi RD, editors. Environmental bioremediation technologies. Berlin, Heidelberg: Springer; 2007. pp. 77–100.

Sun Y, Lu T, Pan Y, Shi M, Ding D, Ma Z, Liu J, Yuan Y, Fei L, Sun Y. Recovering rare earth elements via immobilized red algae from ammonium-rich wastewater. Environ Sci Ecotechnol. 2022;12:100204. doi: 10.1016/j.ese.2022.100204. PubMed DOI PMC

Takahashi Y, Chatellier TX, Hattori KH, Kato K, Fortin D. Adsorption of rare earth elements onto bacterial cell walls and its implication for REE sorption onto natural microbial mats. Chem Geol. 2005;219:53–67. doi: 10.1016/j.chemgeo.2005.02.009. DOI

Tayar SP, Palmieri MC, Bevilaqua D. Sulfuric acid bioproduction and its application in rare earth extraction from phosphogypsum. Miner Eng. 2022 doi: 10.1016/j.mineng.2022.107662. DOI

Texier AC, Andrès Y, Faur-Brasquet C, Le Cloireç P. Selective biosorption of lanthanide (La, Eu, Yb) ions by Pseudomonas aeruginosa. Environ Sci Technol. 1999;33(1):489–495. doi: 10.1021/es9807744. DOI

Tian Y, Hu X, Song X, Yang A. Bioleaching of rare-earth elements from phosphate rock using Acidithiobacillus ferrooxidans. Lett Appl Microbiol. 2022;75(5):1111–1121. doi: 10.1111/lam.13745. PubMed DOI

Torres MA, Barros MP, Campos SCG, Pinto E, Rajamani S, Sayre RT, Colepicolo P. Biochemical biomarkers in algae and marine pollution: a review. Ecotoxicol Environ Saf. 2008;71:1–15. doi: 10.1016/j.ecoenv.2008.05.009. PubMed DOI

Tunali M, Yenigun O. Biosorption of Ag+ and Nd3+ from single and multi-metal solutions (Ag+, Nd3+, and Au3+) by using living and dried microalgae. J Mater Cycles Waste Manag. 2021;23(2):764–777. doi: 10.1007/s10163-020-01168-2. DOI

U.S. Geological Survey (2023) Mineral commodity summaries 2023. U.S. Geological Survey Accessed 18 Jan 2024

Varshney P, Mikulic P, Vonshak A, Beardall J, Wangikar PP. Extremophilic micro-algae and their potential contribution in biotechnology. Bioresour Technol. 2015;184:363–372. doi: 10.1016/j.biortech.2014.11.040. PubMed DOI

Viana T, Henriques B, Ferreira N, Pinto RJB, Monteiro FLS, Pereira E. Insight into the mechanisms involved in the removal of toxic, rare earth, and platinum elements from complex mixtures by Ulva sp. Chem Eng J. 2023;453:139630. doi: 10.1016/j.cej.2022.139630. DOI

Vijayaraghavan K, Jegan J. Entrapment of brown seaweeds (Turbinaria conoides and Sargassum wightii) in polysulfone matrices for the removal of praseodymium ions from aqueous solutions. J Rare Earths. 2015;33(11):1196–1203. doi: 10.1016/S1002-0721(14)60546-9. DOI

Vijayaraghavan K, Sathishkumar M, Balasubramanian R. Biosorption of lanthanum, cerium, europium, and ytterbium by a brown marine alga. Turbinaria Conoides Ind Eng Chem Res. 2010;49(9):4405–4411. doi: 10.1021/ie1000373. DOI

Vijayaraghavan K, Sathishkumar M, Balasubramanian R. Interaction of rare earth elements with a brown marine alga in multi-component solutions. Desalination. 2011;265:54–56. doi: 10.1016/j.desal.2010.07.030. DOI

Vlachou A, Symeopoulos BD, Koutinas AA. A comparative study of neodymium sorption by yeast cells. Radiochim Acta. 2009;97:437–441. doi: 10.1524/ract.2009.1632. DOI

Vo PHN, Danaee S, Hai HTN, Huy LN, Nguyen TAH, Nguyen HTM, Kuzhiumparambil U, Kim M, Nghiem LD, Ralph PJ. Biomining for sustainable recovery of rare earth elements from mining waste: a comprehensive review. Sci Total Environ. 2024;908:168210. doi: 10.1016/j.scitotenv.2023.168210. PubMed DOI

Wan M, Wang Z, Zhang Z, Wang J, Li S, Yu A, Li Y. A novel paradigm for the high-efficient production of phycocyanin from Galdieria sulphuraria. Bioresour Technol. 2016;218:272–278. doi: 10.1016/j.biortech.2016.06.045. PubMed DOI

Wang Y, Zhang C, Zheng Y, Ge Y (2017) Phytochelatin synthesis in Dunaliella salina induced by arsenite and arsenate under various phosphate regimes. Ecotoxicol Environ Safety 136:150–160. 10.1016/j.ecoenv.2016.11.002 PubMed

Wollmann F, Dietze S, Ackermann J-U, Bley T, Walther T, Steingroewer J, Krujatz F. Microalgae wastewater treatment: biological and technological approaches. Eng Life Sci. 2019;19:860–871. doi: 10.1002/elsc.201900071. PubMed DOI PMC

Wu D, Hou Y, Cheng J, Han T, Hao N, Zhang B, Fan X, Ji X, Chen F, Gong D, Wang L, McGinn P, Zhao L, Chen S. Transcriptome analysis of lipid metabolism in response to cerium stress in the oleaginous microalga Nannochloropsis oculata. Sci Total Environ. 2022;838:156420. doi: 10.1016/j.scitotenv.2022.156420. PubMed DOI

Xu S, Zhang S, Chen K, Han J, Liu H, Wu K. Biosorption of La3+ and Ce3+ by Agrobacterium sp. HN1. J Rare Earths. 2011;29(3):265–270. doi: 10.1016/S1002-0721(10)60443-7. DOI

Yu Z, Han H, Feng P, Zhao S, Zhou T, Kakade A, Kulshrestha S, Majeed S, Li X. Recent advances in the recovery of metals from waste through biological processes. Bioresour Technol. 2020;297:122416. doi: 10.1016/j.biortech.2019.122416. PubMed DOI

Zabochnicka-Światek M, Krzywonos M. Potentials of biosorption and bioaccumulation processes for heavy metal removal. Pol J Environ Stud. 2014;23(2):551–561.

Zhou H, Wang J, Yu X, Kang J, Qiu G, Zhao H, Shen L. Effective extraction of rare earth elements from ion-adsorption type rare earth ore by three bioleaching methods. Separ Purif Technol. 2024;330:125305. doi: 10.1016/j.seppur.2023.125305. DOI

Zhou PJ, Shen H, Song LR, Shen YW, Liu YD. Kinetic studies on the combined effects of lanthanum and cerium on the growth of Microcystis aeruginosa and their accumulation by M. aeruginosa. Bull Environ Contamination Toxicol. 2004;72:711–716. doi: 10.1007/s00128-004-0303-. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...