Lipids from microorganisms, and especially lipids from Archaea, are used as taxonomic markers. Unfortunately, knowledge is very limited due to the uncultivability of most Archaea, which greatly reduces the importance of the diversity of lipids and their ecological role. One possible solution is to use lipidomic analysis. Six radioactive sources were investigated, two of which are surface (Wettinquelle and Radonka) and four deep from the Svornost mine (Agricola, Behounek, C1, and Curie). A total of 15 core lipids and 82 intact polar lipids were identified from the membranes of microorganisms in six radioactive springs. Using shotgun lipidomics, typical Archaea lipids were identified in spring water, namely dialkyl glycerol tetraethers, archaeol, hydroxyarchaeol and dihydroxyarchaeol. Diverse groups of polar heads were formed in archaeal IPLs, whose polar heads are formed mainly by hexose, deoxyhexose, and phosphoglycerol. The analysis was performed using shotgun lipidomics and the structure of all molecular species was confirmed by tandem mass spectrometry. After acid hydrolysis, a mixture of polar compounds was obtained from the polar head. Further analysis by GC-MS confirmed that the carbohydrates were glucose and rhamnose. Analysis by HPLC-MS of diastereoisomers of 2-(polyhydroxyalkyl)-3-(O-tolylthiocarbamoyl)thiazolidine-4(R)-carboxylates revealed that both L-rhamnose and D-glucose are present in spring samples only in varying amounts. The glycoside composition depends on the type of spring, that is, Wettinquelle and Radonka springs are basically shallow groundwater, while the samples from the Svornost mine are deep groundwater and do not contain glycosides with rhamnose. This method enables quick screening for characteristic Archaea lipids, allowing decisions on whether to pursue further analyses, such as metagenomic analysis, to directly confirm the presence of Archaea.
Fructobacillus, a Gram-positive, non-spore-forming, facultative anaerobic bacterium, belongs to the fructophilic lactic acid bacteria (FLAB) group. The group's name originates from fructose, the favored carbon source for its members. Fructobacillus spp. are noteworthy for their distinctive traits, captivating the interest of scientists. However, there have been relatively few publications regarding the isolation and potential utilization of these microorganisms in the industry. In recent years, F. tropaeoli has garnered interest for its promising role in the food and pharmaceutical sectors, although the availability of isolates is rather limited. A more comprehensive understanding of Fructobacillus is imperative to evaluate their functionality in the industry, given their unique and exceptional properties. Our in vitro study on Fructobacillus tropaeoli KKP 3032 confirmed its fructophilic nature and high osmotolerance. This strain thrives in a 30% sugar concentration, shows resistance to low pH and bile salts, and exhibits robust autoaggregation. Additionally, it displays significant antimicrobial activity against foodborne pathogens. Evaluating its probiotic potential, it aligns with EFSA recommendations in antibiotic resistance, except for kanamycin, to which it is resistant. Further research is necessary, but preliminary analyses confirm the high probiotic potential of F. tropaeoli KKP 3032 and its ability to thrive in the presence of high concentrations of fructose. The results indicate that the isolate F. tropaeoli KKP 3032 could potentially be used in the future as a fructophilic probiotic, protective culture, and/or active ingredient in fructose-rich food.
- MeSH
- Anti-Bacterial Agents pharmacology MeSH
- Fructose metabolism MeSH
- Hydrogen-Ion Concentration MeSH
- Fruit and Vegetable Juices * microbiology MeSH
- Citrus sinensis microbiology chemistry MeSH
- Food Microbiology MeSH
- Probiotics * isolation & purification MeSH
- RNA, Ribosomal, 16S genetics MeSH
- Bile Acids and Salts metabolism MeSH
- Publication type
- Journal Article MeSH
Cyanobacteria are prokaryotic organisms characterised by their complex structures and a wide range of pigments. With their ability to fix CO2, cyanobacteria are interesting for white biotechnology as cell factories to produce various high-value metabolites such as polyhydroxyalkanoates, pigments, or proteins. White biotechnology is the industrial production and processing of chemicals, materials, and energy using microorganisms. It is known that exposing cyanobacteria to low levels of stressors can induce the production of secondary metabolites. Understanding of this phenomenon, known as hormesis, can involve the strategic application of controlled stressors to enhance the production of specific metabolites. Consequently, precise measurement of cyanobacterial viability becomes crucial for process control. However, there is no established reliable and quick viability assay protocol for cyanobacteria since the task is challenging due to strong interferences of autofluorescence signals of intercellular pigments and fluorescent viability probes when flow cytometry is used. We performed the screening of selected fluorescent viability probes used frequently in bacteria viability assays. The results of our investigation demonstrated the efficacy and reliability of three widely utilised types of viability probes for the assessment of the viability of Synechocystis strains. The developed technique can be possibly utilised for the evaluation of the importance of polyhydroxyalkanoates for cyanobacterial cultures with respect to selected stressor-repeated freezing and thawing. The results indicated that the presence of polyhydroxyalkanoate granules in cyanobacterial cells could hypothetically contribute to the survival of repeated freezing and thawing.
The marine environment is considered one of the most important ecosystems with high biodiversity. Microorganisms in this environment are variable and coexist with other marine organisms. The microbes associated with other marine organisms produce compounds with biological activity that may help the host's defense against invading organisms. The symbiotic association of bacteria with marine invertebrates is of ecological and biotechnological importance. Biologically active metabolites isolated from bacteria associated with marine invertebrates are considered potential sources of natural antimicrobial molecules for treating infectious diseases. Many studies have been conducted to screen the antimicrobial activity of metabolites produced by bacteria associated with marine invertebrates. This work provides an overview of the advancements in antimicrobial compound research on bacteria associated with marine invertebrates.
- MeSH
- Anti-Bacterial Agents * pharmacology MeSH
- Anti-Infective Agents * pharmacology metabolism chemistry MeSH
- Bacteria * metabolism isolation & purification chemistry MeSH
- Invertebrates * microbiology MeSH
- Symbiosis MeSH
- Aquatic Organisms * microbiology MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Yeasts are unicellular fungi that occur in a wide range of ecological niches, where they perform numerous functions. Furthermore, these microorganisms are used in industrial processes, food production, and bioremediation. Understanding the physiological and adaptive characteristics of yeasts is of great importance from ecological, biotechnological, and industrial perspectives. In this context, we evaluated the abilities to assimilate and ferment different carbon sources, to produce extracellular hydrolytic enzymes, and to tolerate salt stress, heavy metal stress, and UV-C radiation of two isolates of Eremothecium coryli, isolated from Momordica indica fruits. The two isolates were molecularly identified based on sequencing of the 18S-ITS1-5.8S-ITS2 region. Our isolates were able to assimilate nine carbon sources (dextrose, galactose, mannose, cellobiose, lactose, maltose, sucrose, melezitose, and pectin) and ferment three (glucose, maltose, and sucrose). The highest values of cellular dry weight were observed in the sugars maltose, sucrose, and melezitose. We observed the presence of hyphae and pseudohyphae in all assimilated carbon sources. The two isolates were also capable of producing amylase, catalase, pectinase, and proteases, with the highest values of enzymatic activity found in amylase. Furthermore, the two isolates were able to grow in media supplemented with copper, iron, manganese, nickel, and zinc and to tolerate saline stress in media supplemented with 5% NaCl. However, we observed a decrease in CFU at higher concentrations of these metals and NaCl. We also observed morphological changes in the presence of metals, which include changes in cell shape and cellular dimorphisms. The isolates were sensitive to UV-C radiation in the shortest exposure time (1 min). Our findings reinforce the importance of endophytic yeasts for biotechnological and industrial applications and also help to understand how these microorganisms respond to environmental variations caused by human activities.
- MeSH
- Endophytes * isolation & purification genetics metabolism physiology classification radiation effects MeSH
- Fermentation MeSH
- Phylogeny MeSH
- Stress, Physiological * MeSH
- Carbohydrate Metabolism * MeSH
- Fruit * microbiology MeSH
- Saccharomycetales * isolation & purification genetics physiology metabolism radiation effects classification MeSH
- Metals, Heavy toxicity MeSH
- Ultraviolet Rays MeSH
- Publication type
- Journal Article MeSH
The rapid evolution and spread of multidrug resistance among bacterial pathogens has significantly outpaced the development of new antibiotics, underscoring the urgent need for alternative therapies. Antimicrobial photodynamic therapy and antimicrobial sonodynamic therapy have emerged as promising treatments. Antimicrobial photodynamic therapy relies on the interaction between light and a photosensitizer to produce reactive oxygen species, which are highly cytotoxic to microorganisms, leading to their destruction without fostering resistance. Antimicrobial sonodynamic therapy, a novel variation, substitutes ultrasound for light to activate the sonosensitizers, expanding the therapeutic reach. To increase the efficiency of antimicrobial photodynamic therapy and antimicrobial sonodynamic therapy, the combination of these two methods, known as antimicrobial photo-sonodynamic therapy, is currently being explored and considered a promising approach. Recent advances, particularly in the application of nanomaterials, have further enhanced the efficacy of these therapies. Nanosensitizers, due to their improved reactive oxygen species generation and targeted delivery, offer significant advantages in overcoming the limitations of conventional sensitizers. These breakthroughs provide new avenues for treating bacterial infections, especially multidrug-resistant strains and biofilm-associated infections. Continued research, including comprehensive clinical studies, is crucial to optimizing nanomaterial-based antimicrobial photo-sonodynamic therapy for clinical use, ensuring their effectiveness in real-world applications.
- MeSH
- Anti-Bacterial Agents * pharmacology MeSH
- Bacteria drug effects MeSH
- Bacterial Infections * drug therapy microbiology therapy MeSH
- Biofilms drug effects MeSH
- Photochemotherapy * methods MeSH
- Photosensitizing Agents * pharmacology MeSH
- Humans MeSH
- Nanoparticles chemistry MeSH
- Nanostructures chemistry MeSH
- Reactive Oxygen Species metabolism MeSH
- Ultrasonic Therapy MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
In 2019, Pantoea piersonii was initially isolated from the interior surfaces of the International Space Station. This microorganism is a species within the genus Pantoea in the family Erwiniaceae, belonging to the order Enterobacterales. Recent literature has documented four cases of its isolation. Despite initial predictions suggesting the non-pathogenicity of P. piersonii strains, evidence from observed cases indicates potential pathogenicity. According to documented evidence in the literature, this microorganism is capable of causing severe and life-threatening conditions, including sepsis. Traditional tests, as well as automated systems, may fail to provide complete differentiation due to these similarities. While MALDI-TOF MS is a valuable tool for identification in clinical diagnostic microbiology, sequencing may be necessary for precise identification. To determine the antibiotic susceptibility profile, various methods can be utilized, including minimum inhibitory concentration determination, disk diffusion testing (Kirby-Bauer test), genotypic resistance assays (PCR and sequencing), and automated systems. The literature reports a limited number of cases associating P. piersonii with human infection. This study contributes to this body of knowledge by reporting a novel case in which P. piersonii was isolated from a tissue sample for the first time. In this case report, the patient achieved recovery following the administration of appropriate antibiotic treatment based on the diagnosis. It underscores the need for precise identification and understanding of its pathogenicity.
- MeSH
- Anti-Bacterial Agents * pharmacology therapeutic use MeSH
- Enterobacteriaceae Infections * microbiology diagnosis drug therapy MeSH
- Humans MeSH
- Microbial Sensitivity Tests * MeSH
- Pantoea * isolation & purification genetics pathogenicity MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Publication type
- Journal Article MeSH
- Case Reports MeSH
Among carotenoids, ꞵ-carotene has the highest biological activity and is found as an all-trans isomer in many biological systems. Blakeslea trispora is a microorganism that is of interest to industries for the commercial production of ꞵ-carotene. This study investigated the effect of different bacteria on carotenogenesis in B. trispora. The B. trispora bisexual mold was cultured in a production medium, and different bacterial cells were added to it after 24 h. Then, the culture conditions and the culture medium were optimized in the presence of the selected bacteria using the experimental design. The percentage of carotenoids obtained from the mixed culture was determined using high-performance liquid chromatography (HPLC). Results showed that Kocuria rhizophila had the greatest effect on increasing the production of carotenoids in B. trispora. The highest content of carotenoids obtained during optimization was 770 ± 7.5 mg/L, a 6.8-fold increase compared to the control. HPLC analysis of carotenoids indicated the presence of two main peaks, ꞵ-carotene and γ-carotene, in which the primary carotenoid was ꞵ-carotene followed by γ-carotene with a lower content. Therefore, due to the importance of ꞵ-carotene in industry, the use of biostimulants is one of the appropriate strategies to increase the production of this pigment in industry.
A novel Gram-stain-negative, strictly aerobic, rod-shaped, light-yellow-pigmented, and chemo-organoheterotrophic bacterium, designated DF-77T, was isolated from dense mats of filamentous algae collected in March 2004 at Okinawa in Japan. The microorganism grew at 0-2.0% NaCl concentrations (w/v), pH 6.0-9.0, and 20-30 °C. The 16S rRNA gene sequence-based phylogenetic tree demonstrated that the strain DF-77T is a novel member of the family Flavobacteriaceae and was greatly related to Flagellimonas nanhaiensis SM1704T with sequence similarity of 95.5%. The main fatty acids were iso-C15:1 G, iso-C15:0, and iso-C17:0 3-OH, and the only isoprenoid quinone was menaquinone-6. The dominant polar lipids were phosphatidylethanolamine, two unidentified aminolipids, an unidentified phosphoaminolipid, and four unidentified lipids. The genome size of strain DF-77T was 3.60 Mbp with a DNA G + C content of 47.5%. The average nucleotide identity (ANI) value between the genomes of strain DF-77T and its closely related species was 69.8-70.7%. The digital DNA - DNA hybridization (dDDH) value of strain DF-77T with the strain of F. nanhaiensis SM1704T was 16.8%. The genome of the strain DF-77T revealed that it encoded several genes involved in bio-macromolecule degradation, indicating a high potential for producing industrially useful enzymes. Consequently, the strain is described as a new species in the genus Flagellimonas, for which the name Flagellimonas algarum sp. nov., is proposed with the type strain DF-77T (= KCTC 72791T = NBRC 114251T).
- MeSH
- DNA, Bacterial genetics chemistry MeSH
- Flavobacteriaceae * classification isolation & purification genetics MeSH
- Phospholipids analysis MeSH
- Phylogeny MeSH
- Genome, Bacterial MeSH
- Nucleic Acid Hybridization MeSH
- Fatty Acids analysis MeSH
- RNA, Ribosomal, 16S genetics MeSH
- Sequence Analysis, DNA MeSH
- Bacterial Typing Techniques MeSH
- Vitamin K 2 analysis analogs & derivatives MeSH
- Base Composition MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Japan MeSH
Blastocystis je jednobuněčný anaerobní mikroorganismus, osídlující lidský i zvířecí gastrointestinální trakt (GIT). Je nejhojnějším zástupcem eukaryot nalézaných v lidské stolici a osídluje asi miliardu lidí po celém světě. I přes četný výskyt není jasná jeho přímá patogenita a jeho postavení mezi jinými významnějšími parazity GIT. Nález Blastocystis bývá spojován s různými nespecifickými soubory příznaků, jako jsou průjem, bolesti břicha, plynatost, nevolnost, tento mikroorganismus bývá často diagnostikován u pacientů se syndromem dráždivého tračníku, ulcerózní kolitidou či kopřivkou. Kontroverze přetrvávají zejména z důvodu přítomnosti Blastocystis i u asymptomatických pacientů a pro nejasný mechanismus potenciální patogenity. Rovněž léčba nemá jasně dané doporučené postupy z výše uvedených důvodů.
Blastocystis is a unicellular anaerobic microorganism inhabiting the human and animal gastrointestinal tract (GIT). It is the most abundant representative of eukaryotes reported in human feces and found in approx. a billion people worldwide. Despite the common occurrence, its direct pathogenicity and status among other, more significant, GIT parasites remain unclear. Blastocystis colonization is associated with various non-specific clusters of symptoms, such as diarrhea, abdominal pain, flatulence, or nausea and is often diagnosed in patients with irritable bowel syndrome, ulcerative colitis, or urticaria. Controversy persists mainly because of the detection of Blastocystis even in asymptomatic patients and the unclear mechanism of its potential pathogenicity. Also, for the reasons mentioned above, no treatment guidelines are available.
- MeSH
- Asymptomatic Infections MeSH
- Blastocystis * pathogenicity MeSH
- Blastocystis Infections diagnosis therapy MeSH
- Abdominal Pain etiology MeSH
- Flatulence etiology MeSH
- Gastrointestinal Tract microbiology MeSH
- Humans MeSH
- Nausea etiology MeSH
- Diarrhea etiology MeSH
- Irritable Bowel Syndrome microbiology MeSH
- Colitis, Ulcerative microbiology MeSH
- Urticaria microbiology MeSH
- Treatment Outcome MeSH
- Check Tag
- Humans MeSH