Next-Generation Sequencing Based HLA Typing: Deciphering Immunogenetic Aspects of Sarcoidosis
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
30410504
PubMed Central
PMC6210504
DOI
10.3389/fgene.2018.00503
Knihovny.cz E-zdroje
- Klíčová slova
- HLA, disease association, genotyping, immune diseases, molecular pathophysiology, next-generation sequencing, sarcoidosis,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Unraveling of the HLA-related immunogenetic basis of several immune disorders is complex due to the extensive HLA polymorphism and strong linkage-disequilibrium between HLA loci. A lack of in phase sequence information, a relative deficiency of high resolution genotyping including non-coding regions and ambiguous haplotype assignment make it difficult to compare findings across association studies and to attribute a causal role to specific HLA alleles/haplotypes in disease susceptibility and modification of disease phenotypes. Earlier, historical antibody and DNA-based methods of HLA typing, primarily of low resolution at antigen/alellic group levels, yielded "indicative" findings which were partially improved by high-resolution DNA-based typing. Only recently, next-generation sequencing (NGS) approaches based on deep-sequencing of the complete HLA genes combined with bioinformatics tools began to provide the access to complete information at an allelic level. Analyzing HLA with NGS approaches, therefore, promises to provide further insight in the etiopathogenesis of several immune disorders in which HLA associations have been implicated. These range from coeliac disease and rheumatological conditions to even more complex disorders, such as type-1 diabetes, systemic lupus erythematosus and sarcoidosis. A systemic disease of unknown etiology, sarcoidosis has previously been associated with numerous HLA variants and also other gene polymorphisms, often in linkage with the HLA region. To date, the biological significance of these associations has only partially been defined. Therefore, more precise assignments of HLA alleles/haplotypes using NGS approaches could help to elucidate the exact role of HLA variation in the multifaceted etiopathogenesis of sarcoidosis, including epigenetic mechanisms. NGS-based HLA analyses may be also relevant for defining variable clinical phenotypes and for predicting the disease course or the response to current/plausible novel therapies.
Zobrazit více v PubMed
Cao H., Wu J., Wang Y., Jiang H., Zhang T., Liu X., et al. (2013). An integrated tool to study MHC region: accurate SNV detection and HLA genes typing in human MHC region using targeted high-throughput sequencing. PLoS One 8:e69388. 10.1371/journal.pone.0069388 PubMed DOI PMC
Carapito R., Radosavljevic M., Bahram S. (2016). Next-generation sequencing of the HLA locus: methods and impacts on HLA typing, population genetics and disease association studies. Hum. Immunol. 77 1016–1023. 10.1016/j.humimm.2016.04.002 PubMed DOI
Carosella E. D., Rouas-Freiss N., Tronik-Le Roux D., Moreau P., LeMaoult J. (2015). HLA-G: an immune checkpoint molecule. Adv. Immunol. 127 33–144. 10.1016/bs.ai.2015.04.001 PubMed DOI
Casanova N., Zhou T., Knox K. S., Garcia J. G. N. (2015). Identifying novel biomarkers in sarcoidosis using genome-based approaches. Clin. Chest. Med. 36 621–630. 10.1016/j.ccm.2015.08.005 PubMed DOI PMC
Castelli E. C., Mendes-Junior C. T., Sabbagh A., Porto I. O. P., Garcia A., Ramalho J., et al. (2015). HLA-E coding and 3’ untranslated region variability determined by next-generation sequencing in two West-African population samples. Hum. Immunol. 76 945–953. 10.1016/j.humimm.2015.06.016 PubMed DOI
Chang C. J., Osoegawa K., Milius R. P., Maiers M., Xiao W., Fernandez-Viňa M., et al. (2017). Collection and storage of HLA NGS genotyping data for the 17th International HLA and immunogenetics workshop. Hum. Immunol. 79 77–86. 10.1016/j.humimm.2017.12.004 PubMed DOI PMC
Chitnis N., Clark P. M., Kamoun M., Stolle C., Brad Johnson F., Monos D. S. (2017). An expanded role for HLA genes: HLA-B encodes a microRNA that regulates IgA and other immune response transcripts. Front. Immunol. 8:583. 10.3389/fimmu.2017.00583 PubMed DOI PMC
Choi N. M., Boss J. M. (2012). Multiple histone methyl and acetyltransferase complex components bind the HLA-DRA gene. PLoS One 7:e37554. 10.1371/journal.pone.0037554 PubMed DOI PMC
Choo S. Y. (2007). The HLA system: genetics, immunology, clinical testing, and clinical implications. Yonsei Med. J. 48 11–23. 10.3349/ymj.2007.48.1.11 PubMed DOI PMC
Clark P. M., Chitnis N., Shieh M., Kamoun M., Johnson F. B., Monos D. (2018). Novel and haplotype specific microRNAs encoded by the major histocompatibility complex. Sci. Rep. 8:3832. 10.1038/s41598-018-19427-6 PubMed DOI PMC
Davey S., Ord J., Navarrete C., Brown C. (2017). HLA-A, -B and -C allele and haplotype frequencies defined by next generation sequencing in a population of 519 English blood donors. Hum. Immunol. 78 397–398. 10.1016/j.humimm.2017.04.001 PubMed DOI
Duke J. L., Lind C., Mackiewicz K., Ferriola D., Papazoglou A., Gasiewski A., et al. (2016). Determining performance characteristics of an NGS-based HLA typing method for clinical applications. HLA 87 141–152. 10.1111/tan.12736 PubMed DOI
Esterhuyse M. M., Weiner J., Caron E., Loxton A. G., Iannaccone M., Wagman C., et al. (2015). Epigenetics and proteomics join transcriptomics in the quest for tuberculosis biomarkers. mBio 6 1187–1115. 10.1128/mBio.01187-15 PubMed DOI PMC
Fingerlin T. E., Hamzeh N., Maier L. A. (2015). Genetics of Sarcoidosis. Clin. Chest Med. 36 569–584. 10.1016/j.ccm.2015.08.002 PubMed DOI
Foley P. J., McGrath D. S., Puscinska E., Petrek M., Kolek V., Drabek J., et al. (2001). Human leukocyte antigen-DRB1 position 11 residues are a common protective marker for sarcoidosis. Am. J. Respir. Cell Mol. Biol. 25 272–277. 10.1165/ajrcmb.25.3.4261 PubMed DOI
Gandhi M. J., Ferriola D., Huang Y., Duke J. L., Monos D. (2017). Targeted next-generation sequencing for human leukocyte antigen typing in a clinical laboratory metrics of relevance and considerations for its successful implementation. Arch. Pathol. Lab. Med. 141 806–812. 10.5858/arpa.2016-0537-RA PubMed DOI
González-Galarza F. F., Takeshita L. Y. C., Santos E. J. M., Kempson F., Maia M. H. T., Da Silva A. L. S., et al. (2015). Allele frequency net 2015 update: new features for HLA epitopes, KIR and disease and HLA adverse drug reaction associations. Nucleic Acids Res. 43 D784–D788. 10.1093/nar/gku1166 PubMed DOI PMC
Grunewald J., Kaiser Y., Ostadkarampour M., Rivera N. V., Vezzi F., Lötstedt B., et al. (2016). T-cell receptor-HLA-DRB1 associations suggest specific antigens in pulmonary sarcoidosis. Eur. Respir. J. 47 898–909. 10.1183/13993003.01209-2015 PubMed DOI
Grunewald J., Spagnolo P., Wahlström J., Eklund A. (2015). Immunogenetics of disease-causing inflammation in Sarcoidosis. Clin. Rev. Allergy Immunol. 49 19–35. 10.1007/s12016-015-8477-8 PubMed DOI
Hajeer A. H., Al Balwi M. A., Aytul Uyar F., Alhaidan Y., Alabdulrahman A., Al Abdulkareem I., et al. (2013). HLA-A, -B, -C, -DRB1 and -DQB1 allele and haplotype frequencies in Saudis using next generation sequencing technique. Tissue Antigens 82 252–258. 10.1111/tan.12200 PubMed DOI
Hollenbach J. A., Mack S. J., Gourraud P.-A., Single R. M., Maiers M., Middleton D., et al. (2011). A community standard for immunogenomic data reporting and analysis: proposal for a STrengthening the REporting of immunogenomic studies statement. Tissue Antigens 78 333–344. 10.1111/j.1399-0039.2011.01777.x PubMed DOI PMC
Hosomichi K., Shiina T., Tajima A., Inoue I. (2015). The impact of next-generation sequencing technologies on HLA research. J. Hum. Genet. 60 665–673. 10.1038/jhg.2015.102 PubMed DOI PMC
Hurley C. K., Hou L., Lazaro A., Gerfen J., Enriquez E., Galarza P., et al. (2018). Next generation sequencing characterizes the extent of HLA diversity in an Argentinian registry population. HLA 91 175–186. 10.1111/tan.13210 PubMed DOI
Hutyrová B., Pantelidis P., Drábek J., Zůurková M., Kolek V., Lenhart K., et al. (2002). Interleukin-1 gene cluster polymorphisms in sarcoidosis and idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 165 148–151. 10.1164/ajrccm.165.2.2106004 PubMed DOI
Jeanmougin M., Noirel J., Coulonges C., Zagury J. F. (2017). HLA-check: evaluating HLA data from SNP information. BMC Bioinformatics 18:334. 10.1186/s12859-017-1746-1 PubMed DOI PMC
Ka S., Lee S., Hong J., Cho Y., Sung J., Kim H. N., et al. (2017). HLAscan: genotyping of the HLA region using next-generation sequencing data. BMC Bioinformatics 18:258. 10.1186/s12859-017-1671-3 PubMed DOI PMC
Karell K., Louka A. S., Moodie S. J., Ascher H., Clot F., Greco L., et al. (2003). HLA types in celiac disease patients not carrying the DQA1 ∗05-DQB1 ∗02 (DQ2) heterodimer: results from the European genetics cluster on celiac disease. Hum. Immunol. 64 469–477. 10.1016/S0198-8859(03)00027-2 PubMed DOI
Karnes J. H., Shaffer C. M., Bastarache L., Gaudieri S., Glazer A. M., Steiner H. E., et al. (2017). Comparison of HLA allelic imputation programs. PLoS One 12:e0172444. 10.1371/journal.pone.0172444 PubMed DOI PMC
Kawaguchi S., Higasa K., Shimizu M., Yamada R., Matsuda F. (2017). HLA-HD: an accurate HLA typing algorithm for next-generation sequencing data. Hum. Mutat. 38 788–797. 10.1002/humu.23230 PubMed DOI
Kim D., Paggi J. M., Salzberg S. (2018). HISAT-genotype: next generation genomic analysis platform on a personal computer. bioRxiv [Preprint]. 10.1101/266197 DOI
Kishore A., Borucka J., Petrkova J., Petrek M. (2014). Novel insights into miRNA in lung and heart inflammatory diseases. Mediators Inflamm. 2014:259131. 10.1155/2014/259131 PubMed DOI PMC
Kishore A., Petrek M. (2013). Immunogenetics of saarcoidosis. Int. Trends Immun. 1 43–53.
Kulkarni S., Ramsuran V., Rucevic M., Singh S., Lied A., Kulkarni V., et al. (2017). Posttranscriptional regulation of HLA-A protein expression by alternative polyadenylation signals involving the RNA-binding protein syncrip. J. Immunol. 199 3892–3899. 10.4049/jimmunol.1700697 PubMed DOI PMC
Levin A. M., Iannuzzi M. C., Montgomery C. G., Trudeau S., Datta I., McKeigue P., et al. (2013). Association of ANXA11 genetic variation with sarcoidosis in African Americans and European Americans. Genes Immun. 14 13–18. 10.1038/gene.2012.48 PubMed DOI PMC
Mack S. J., Cano P., Hollenbach J. A., He J., Hurley C. K., Middleton D., et al. (2013). Common and well-documented HLA alleles: 2012 update to the CWD catalogue. Tissue Antigens 81 194–203. 10.1111/tan.12093 PubMed DOI PMC
Marsh SGE, WHO Nomenclature Committee for Factors of the HLA System (2018). Nomenclature for factors of the HLA system, update March 2018. Hum. Immunol. 79 516–525. 10.1016/j.humimm.2018.04.007 PubMed DOI
Martinetti M., Tinelli C., Kolek V., Cuccia M., Salvaneschi L., Pasturenzi L., et al. (1995). “The sarcoidosis map”: a joint survey of clinical and immunogenetic findings in two European countries. Am. J. Respir. Crit. Care Med. 152 557–564. 10.1164/ajrccm.152.2.7633707 PubMed DOI
Martínez-Ojinaga E., Molina M., Polanco I., Urcelay E., Núñez C. (2018). HLA-DQ distribution and risk assessment of celiac disease in a Spanish center. Rev. Esp. Enferm. Dig. 110 421–426. 10.17235/reed.2018.5399/2017 PubMed DOI
McGrath D. S., Foley P. J., Petrek M., Izakovicova-Holla L., Kolek V., Veeraraghavan S., et al. (2001). ACE Gene I/D polymorphism and sarcoidosis pulmonary disease severity. Am. J. Respir. Crit. Care Med. 164 197–201. 10.1164/ajrccm.164.2.2011009 PubMed DOI
Moller D. R., Rybicki B. A., Hamzeh N. Y., Montgomery C. G., Chen E. S., Drake W., et al. (2017). Genetic, immunologic, and environmental basis of sarcoidosis. Ann. Am. Thorac. Soc. 14 S429–S436. 10.1513/AnnalsATS.201707-565OT PubMed DOI PMC
Naidoo D., Wu A. C., Brilliant M. H., Denny J., Ingram C., Kitchner T. E., et al. (2015). A polymorphism in HLA-G modifies statin benefit in asthma. Pharmacogenomics J. 15 272–277. 10.1038/tpj.2014.55 PubMed DOI PMC
Núñez C., Garrote J. A., Arranz E., Bilbao J. R., Fernández Bañares F., Jiménez J., et al. (2018). Recommendations to report and interpret HLA genetic findings in coeliac disease. Rev. Esp. Enferm. Dig. 110 458–461. 10.17235/reed.2018.5269/2017 PubMed DOI
Okada Y., Han B., Tsoi L. C., Stuart P. E., Ellinghaus E., Tejasvi T., et al. (2014). Fine mapping major histocompatibility complex associations in psoriasis and its clinical subtypes. Am. J. Hum. Genet. 95 162–172. 10.1016/j.ajhg.2014.07.002 PubMed DOI PMC
Ortiz-Fernández L., Conde-Jaldón M., García-Lozano J. R., Montes-Cano M. A., Ortego-Centeno N., Castillo-Palma M. J., et al. (2014). GIMAP and Behçet disease: no association in the European population. Ann. Rheum. Dis. 73 1433–1434. 10.1136/annrheumdis-2013-205156 PubMed DOI
Patterson K. C., Chen E. S. (2017). The pathogenesis of pulmonary sarcoidosis and implications for treatment. Chest 153 1432–1442. 10.1016/j.chest.2017.11.030 PubMed DOI
Petrek M., Gibejova A., Drabek J., Mrazek F., Kolek V., Weigl E., et al. (2002). CC chemokine receptor 5 (CCR5) mRNA expression in pulmonary sarcoidosis. Immunol. Lett. 80 189–193. PubMed
Ramsuran V., Kulkarni S., O’huigin C., Yuki Y., Augusto D. G., Gao X., et al. (2015). Epigenetic regulation of differential HLA-A allelic expression levels. Hum. Mol. Genet. 24 4268–4275. 10.1093/hmg/ddv158 PubMed DOI PMC
Rivera N. V., Ronninger M., Shchetynsky K., Franke A., Nöthen M. M., Müller-Quernheim J., et al. (2016). High-density genetic mapping identifies new susceptibility variants in sarcoidosis phenotypes and shows genomic-driven phenotypic differences. Am. J. Respir. Crit. Care Med. 193 1008–1022. 10.1164/rccm.201507-1372OC PubMed DOI PMC
Robinson J., Halliwell J. A., Hayhurst J. D., Flicek P., Parham P., Marsh S. G. E. (2015). The IPD and IMGT/HLA database: allele variant databases. Nucleic Acids Res. 43 D423–D431. 10.1093/nar/gku1161 PubMed DOI PMC
Rostami-Nejad M., Romanos J., Rostami K., Ganji A., Ehsani-Ardakani M. J., Bakhshipour A. R., et al. (2014). Allele and haplotype frequencies for HLA-DQ in Iranian celiac disease patients. World J. Gastroenterol. 20 6302–6308. 10.3748/wjg.v20.i20.6302 PubMed DOI PMC
Sakurai K., Ishigaki K., Shoda H., Nagafuchi Y., Tsuchida Y., Sumitomo S., et al. (2018). HLA-DRB1 shared epitope alleles and disease activity are correlated with reduced T cell receptor repertoire diversity in CD4 + T cells in rheumatoid arthritis. J. Rheumatol. 45 905–914. 10.3899/jrheum.170909 PubMed DOI
Sanchez-Mazas A., Nunes J. M., Middleton D., Sauter J., Buhler S., McCabe A., et al. (2017). Common and well-documented HLA alleles over all of Europe and within European sub-regions: a catalogue from the European federation for immunogenetics. HLA 89 104–113. 10.1111/tan.12956 PubMed DOI
Sato H., Woodhead F. A., Ahmad T., Grutters J. C., Spagnolo P., van den Bosch J. M. M., et al. (2010). Sarcoidosis HLA class II genotyping distinguishes differences of clinical phenotype across ethnic groups. Hum. Mol. Genet. 19 4100–4111. 10.1093/hmg/ddq325 PubMed DOI PMC
Selleski N., Almeida L. M., Almeida F. C., de Pratesi C. B., Nóbrega Y. K., de M., et al. (2018). Prevalence of celiac disease predisposing genotypes, including HLA-DQ2.2 variant, in Brazilian children. Arq. Gastroenterol. 55 82–85. 10.1590/S0004-2803.201800000-16 PubMed DOI
Shiina T., Hosomichi K., Inoko H., Kulski J. K. (2009). The HLA genomic loci map: expression, interaction, diversity and disease. J. Hum. Genet. 54 15–39. 10.1038/jhg.2008.5 PubMed DOI
Thorsby E. (2009). A short history of HLA. Tissue Antigens 74 101–116. 10.1111/j.1399-0039.2009.01291.x PubMed DOI
Tomazou E. M., Rakyan V. K., Lefebvre G., Andrews R., Ellis P., Jackson D. K., et al. (2008). Generation of a genomic tiling array of the human major histocompatibility complex (MHC) and its application for DNA methylation analysis. BMC Med. Genomics 1:19. 10.1186/1755-8794-1-19 PubMed DOI PMC
Trowsdale J., Knight J. C. (2013). Major histocompatibility complex genomics and human disease. Annu. Rev. Genomics Hum. Genet. 14 301–323. 10.1146/annurev-genom-091212-153455 PubMed DOI PMC
Valeyre D., Prasse A., Nunes H., Uzunhan Y., Brillet P.-Y., Müller-Quernheim J. (2014). Sarcoidosis. Lancet 383 1155–1167. 10.1016/S0140-6736(13)60680-7 PubMed DOI
Verloes A., Spits C., Vercammen M., Geens M., LeMaoult J., Sermon K., et al. (2017). The role of methylation, DNA polymorphisms and microRNAs on HLA-G expression in human embryonic stem cells. Stem Cell Res. 19 118–127. 10.1016/j.scr.2017.01.005 PubMed DOI
Wittig M., Anmarkrud J. A., Kässens J. C., Koch S., Forster M., Ellinghaus E., et al. (2015). Development of a high-resolution NGS-based HLA-typing and analysis pipeline. Nucleic Acids Res. 43:e70. 10.1093/nar/gkv184 PubMed DOI PMC
Wolin A., Lahtela E. L., Anttila V., Petrek M., Grunewald J., van Moorsel C. H. M., et al. (2017). SNP variants in major histocompatibility complex are associated with sarcoidosis susceptibility-A joint analysis in four European populations. Front. Immunol. 8:422. 10.3389/fimmu.2017.00422 PubMed DOI PMC
Xie C., Yeo Z. X., Wong M., Piper J., Long T., Kirkness E. F., et al. (2017). Fast and accurate HLA typing from short-read next-generation sequence data with xHLA. Proc. Natl. Acad. Sci. U.S.A. 114 8059–8064. 10.1073/pnas.1707945114 PubMed DOI PMC
Yin Y., Lan J. H., Nguyen D., Valenzuela N., Takemura P., Bolon Y.-T., et al. (2016). Application of high-throughput next-generation sequencing for HLA typing on buccal extracted DNA: results from over 10,000 donor recruitment samples. PLoS One 11:e0165810. 10.1371/journal.pone.0165810 PubMed DOI PMC
Zhou F., Cao H., Zuo X., Zhang T., Zhang X., Liu X., et al. (2016). Deep sequencing of the MHC region in the Chinese population contributes to studies of complex disease. Nat. Genet. 48 740–746. 10.1038/ng.3576 PubMed DOI
Increased Expression of miR-146a in Valvular Tissue From Patients With Aortic Valve Stenosis