SNP Variants in Major Histocompatibility Complex Are Associated with Sarcoidosis Susceptibility-A Joint Analysis in Four European Populations

. 2017 ; 8 () : 422. [epub] 20170419

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28469621

Sarcoidosis is a multiorgan inflammatory disorder with heritability estimates up to 66%. Previous studies have shown the major histocompatibility complex (MHC) region to be associated with sarcoidosis, suggesting a functional role for antigen-presenting molecules and immune mediators in the disease pathogenesis. To detect variants predisposing to sarcoidosis and to identify genetic differences between patient subgroups, we studied four genes in the MHC Class III region (LTA, TNF, AGER, BTNL2) and HLA-DRA with tag-SNPs and their relation to HLA-DRB1 alleles. We present results from a joint analysis of four study populations (Finnish, Swedish, Dutch, and Czech). Patients with sarcoidosis (n = 805) were further subdivided based on the disease activity and the presence of Löfgren's syndrome. In a joint analysis, seven SNPs were associated with non-Löfgren sarcoidosis (NL; the strongest association with rs3177928, P = 1.79E-07, OR = 1.9) and eight with Löfgren's syndrome [Löfgren syndrome (LS); the strongest association with rs3129843, P = 3.44E-12, OR = 3.4] when compared with healthy controls (n = 870). Five SNPs were associated with sarcoidosis disease course (the strongest association with rs3177928, P = 0.003, OR = 1.9). The high linkage disequilibrium (LD) between SNPs and an HLA-DRB1 challenged the result interpretation. When the SNPs and HLA-DRB1 alleles were analyzed together, independent association was observed for four SNPs in the HLA-DRA/BTNL2 region: rs3135365 (NL; P = 0.015), rs3177928 (NL; P < 0.001), rs6937545 (LS; P = 0.012), and rs5007259 (disease activity; P = 0.002). These SNPs act as expression quantitative trait loci (eQTL) for HLA-DRB1 and/or HLA-DRB5. In conclusion, we found novel SNPs in BTNL2 and HLA-DRA regions associating with sarcoidosis. Our finding further establishes that polymorphisms in the HLA-DRA and BTNL2 have a role in sarcoidosis susceptibility. This multi-population study demonstrates that at least a part of these associations are HLA-DRB1 independent (e.g., not due to LD) and shared across ancestral origins. The variants that were independent of HLA-DRB1 associations acted as eQTL for HLA-DRB1 and/or -DRB5, suggesting a role in regulating gene expression.

Analytical and Translational Genetics Unit Department of Medicine Massachusetts General Hospital Harvard Medical School Boston MA USA

Department of Immunology Faculty of Medicine and Dentistry Palacky University Olomouc Olomouc Czech Republic

Department of Pathological Physiology and Institute of Molecular and Translational Medicine Faculty of Medicine and Dentistry Palacky University Olomouc Olomouc Czech Republic

Department of Pathological Physiology Faculty of Medicine and Dentistry Palacky University Olomouc Olomouc Czech Republic

Department of Pulmonology St Antonius Hospital Nieuwegein Heart and Lung Center University Medical Center Utrecht Utrecht Netherlands

Department of Respiratory Medicine Faculty of Medicine and Dentistry Palacky University Olomouc Olomouc Czech Republic

Institute for Molecular Medicine Finland University of Helsinki Helsinki Finland

Program in Medical and Population Genetics Broad Institute of MIT and Harvard Cambridge MA USA

Raasepori Health Care Centre Raasepori Finland

Rare Disease Center Children's Hospital and Adult Immunodeficiency Unit Inflammation Center Helsinki University and Helsinki University Hospital Helsinki Finland

Respiratory Medicine Unit Department of Medicine Solna and CMM Karolinska Institutet Karolinska University Hospital Solna Sweden

Rheumatology Unit Department of Medicine Karolinska Institutet Karolinska University Hospital Stockholm Sweden

Transplantation Laboratory Medicum University of Helsinki Helsinki Finland

University of Helsinki Helsinki Finland

Zobrazit více v PubMed

Iannuzzi MC, Rybicki BA, Teirstein AS. Sarcoidosis. N Engl J Med (2007) 357:2153–65.10.1056/NEJMra071714 PubMed DOI

Sverrild A, Backer V, Kyvik KO, Kaprio J, Milman N, Svendsen CB, et al. Heredity in sarcoidosis: a registry-based twin study. Thorax (2008) 63:894–6.10.1136/thx.2007.094060 PubMed DOI

Newman LS, Rose CS, Bresnitz EA, Rossman MD, Barnard J, Frederick M, et al. A case control etiologic study of sarcoidosis: environmental and occupational risk factors. Am J Respir Crit Care Med (2004) 170:1324–30.10.1164/rccm.200402-249OC PubMed DOI

Spagnolo P, Grunewald J. Recent advances in the genetics of sarcoidosis. J Med Genet (2013) 50:290–7.10.1136/jmedgenet-2013-101532 PubMed DOI

Rybicki BA, Iannuzzi MC, Frederick MM, Thompson BW, Rossman MD, Bresnitz EA, et al. Familial aggregation of sarcoidosis. A case-control etiologic study of sarcoidosis (ACCESS). Am J Respir Crit Care Med (2001) 164:2085–91.10.1164/ajrccm.164.11.2106001 PubMed DOI

Adrianto I, Lin CP, Hale JJ, Levin AM, Datta I, Parker R, et al. Genome-wide association study of African and European Americans implicates multiple shared and ethnic specific loci in sarcoidosis susceptibility. PLoS One (2012) 7:e43907.10.1371/journal.pone.0043907 PubMed DOI PMC

Hofmann S, Franke A, Fischer A, Jacobs G, Nothnagel M, Gaede KI, et al. Genome-wide association study identifies ANXA11 as a new susceptibility locus for sarcoidosis. Nat Genet (2008) 40:1103–6.10.1038/ng.198 PubMed DOI

Levin AM, Iannuzzi MC, Montgomery CG, Trudeau S, Datta I, McKeigue P, et al. Association of ANXA11 genetic variation with sarcoidosis in African Americans and European Americans. Genes Immun (2013) 14:13–8.10.1038/gene.2012.48 PubMed DOI PMC

Rossman MD, Thompson B, Frederick M, Maliarik M, Iannuzzi MC, Rybicki BA, et al. HLA-DRB1*1101: a significant risk factor for sarcoidosis in blacks and whites. Am J Hum Genet (2003) 73:720–35.10.1086/378097 PubMed DOI PMC

Grunewald J, Brynedal B, Darlington P, Nisell M, Cederlund K, Hillert J, et al. Different HLA-DRB1 allele distributions in distinct clinical subgroups of sarcoidosis patients. Respir Res (2010) 11:25.10.1186/1465-9921-11-25 PubMed DOI PMC

Sato H, Woodhead FA, Ahmad T, Grutters JC, Spagnolo P, van den Bosch JM, et al. Sarcoidosis HLA class II genotyping distinguishes differences of clinical phenotype across ethnic groups. Hum Mol Genet (2010) 19:4100–11.10.1093/hmg/ddq325 PubMed DOI PMC

Wennerström A, Pietinalho A, Vauhkonen H, Lahtela L, Palikhe A, Hedman J, et al. HLA-DRB1 allele frequencies and C4 copy number variation in Finnish sarcoidosis patients and associations with disease prognosis. Hum Immunol (2012) 73:93–100.10.1016/j.humimm.2011.10.016 PubMed DOI

Spagnolo P, Richeldi L, du Bois RM. Environmental triggers and susceptibility factors in idiopathic granulomatous diseases. Semin Respir Crit Care Med (2008) 29:610–9.10.1055/s-0028-1101271 PubMed DOI

Campo I, Morbini P, Zorzetto M, Tinelli C, Brunetta E, Villa C, et al. Expression of receptor for advanced glycation end products in sarcoid granulomas. Am J Respir Crit Care Med (2007) 175:498–506.10.1164/rccm.200601-136OC PubMed DOI

Nguyen T, Liu XK, Zhang Y, Dong C. BTNL2, a butyrophilin-like molecule that functions to inhibit T cell activation. J Immunol (2006) 176:7354–60.10.4049/jimmunol.176.12.7354 PubMed DOI PMC

Valentonyte R, Hampe J, Huse K, Rosenstiel P, Albrecht M, Stenzel A, et al. Sarcoidosis is associated with a truncating splice site mutation in BTNL2. Nat Genet (2005) 37:357–64.10.1038/ng1519 PubMed DOI

Heron M, van Moorsel CH, Grutters JC, Huizinga TW, van der Helm-van Mil AH, Nagtegaal MM, et al. Genetic variation in GREM1 is a risk factor for fibrosis in pulmonary sarcoidosis. Tissue Antigens (2011) 77:112–7.10.1111/j.1399-0039.2010.01590.x PubMed DOI

Foley PJ, McGrath DS, Puscinska E, Petrek M, Kolek V, Drabek J, et al. Human leukocyte antigen-DRB1 position 11 residues are a common protective marker for sarcoidosis. Am J Respir Cell Mol Biol (2001) 25:272–7.10.1165/ajrcmb.25.3.4261 PubMed DOI

Veltkamp M, van Moorsel CH, Rijkers GT, Ruven HJ, Grutters JC. Genetic variation in the toll-like receptor gene cluster (TLR10-TLR1-TLR6) influences disease course in sarcoidosis. Tissue Antigens (2012) 79:25–32.10.1111/j.1399-0039.2011.01808.x PubMed DOI

International HapMap 3 Consortium. Altshuler DM, Gibbs RA, Peltonen L, Altshuler DM, Gibbs RA, et al. Integrating common and rare genetic variation in diverse human populations. Nature (2010) 467:52–8.10.1038/nature09298 PubMed DOI PMC

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet (2007) 81:559–75.10.1086/519795 PubMed DOI PMC

Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med (2002) 21:1539–58.10.1002/sim.1186 PubMed DOI

Stephens M, Smith NJ, Donnelly P. A new statistical method for haplotype reconstruction from population data. Am J Hum Genet (2001) 68:978–89.10.1086/319501 PubMed DOI PMC

Machiela MJ, Chanock SJ. LDlink: a web-based application for exploring population-specific haplotype structure and linking correlated alleles of possible functional variants. Bioinformatics (2015) 31(21):3555–7.10.1093/bioinformatics/btv402 PubMed DOI PMC

Johnson AD, Handsaker RE, Pulit SL, Nizzari MM, O’Donnell CJ, de Bakker PI. SNAP: a web-based tool for identification and annotation of proxy SNPs using HapMap. Bioinformatics (2008) 24:2938–9.10.1093/bioinformatics/btn564 PubMed DOI PMC

International HapMap Consortium. The international HapMap project. Nature (2003) 426:789–96.10.1038/nature02168 PubMed DOI

Hollenbach JA, Mack SJ, Gourraud PA, Single RM, Maiers M, Middleton D, et al. A community standard for immunogenomic data reporting and analysis: proposal for a STrengthening the REporting of immunogenomic studies statement. Tissue Antigens (2011) 78:333–44.10.1111/j.1399-0039.2011.01777.x PubMed DOI PMC

Yang TP, Beazley C, Montgomery SB, Dimas AS, Gutierrez-Arcelus M, Stranger BE, et al. Genevar: a database and java application for the analysis and visualization of SNP-gene associations in eQTL studies. Bioinformatics (2010) 26:2474–6.10.1093/bioinformatics/btq452 PubMed DOI PMC

Voorter CE, Drent M, van den Berg-Loonen EM. Severe pulmonary sarcoidosis is strongly associated with the haplotype HLA-DQB1*0602-DRB1*150101. Hum Immunol (2005) 66:826–35.10.1016/j.humimm.2005.04.003 PubMed DOI

Stranger BE, Nica AC, Forrest MS, Dimas A, Bird CP, Beazley C, et al. Population genomics of human gene expression. Nat Genet (2007) 39:1217–24.10.1038/ng2142 PubMed DOI PMC

Rivera NV, Ronninger M, Shchetynsky K, Franke A, Nöthen MM, Müller-Quernheim J, et al. High-density genetic mapping identifies new susceptibility variants in sarcoidosis phenotypes and shows genomic-driven phenotypic differences. Am J Respir Crit Care Med (2016) 193(9):1008–22.10.1164/rccm.201507-1372OC PubMed DOI PMC

Teslovich TM, Musunuru K, Smith AV, Edmondson AC, Stylianou IM, Koseki M, et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature (2010) 466:707–13.10.1038/nature09270 PubMed DOI PMC

Ivanišević J, Kotur-Stevuljević J, Stefanović A, Jelić-Ivanović Z, Spasić S, Videnović-Ivanov J, et al. Dyslipidemia and oxidative stress in sarcoidosis patients. Clin Biochem (2012) 45:677–82.10.1016/j.clinbiochem.2012.03.009 PubMed DOI

Salazar A, Mañá J, Pintó X, Argimón JM, Hurtado I, Pujol R. Corticosteroid therapy increases HDL-cholesterol concentrations in patients with active sarcoidosis and hypoalphalipoproteinemia. Clin Chim Acta (2002) 320:59–64.10.1016/S0009-8981(02)00046-3 PubMed DOI

Salazar A, Pinto X, Mana J. Serum amyloid A and high-density lipoprotein cholesterol: serum markers of inflammation in sarcoidosis and other systemic disorders. Eur J Clin Invest (2001) 31:1070–7.10.1046/j.1365-2362.2001.00913.x PubMed DOI

Stranger BE, Montgomery SB, Dimas AS, Parts L, Stegle O, Ingle CE, et al. Patterns of cis regulatory variation in diverse human populations. PLoS Genet (2012) 8:e1002639.10.1371/journal.pgen.1002639 PubMed DOI PMC

Wijnen PA, Voorter CE, Nelemans PJ, Verschakelen JA, Bekers O, Drent M. Butyrophilin-like 2 in pulmonary sarcoidosis: a factor for susceptibility and progression? Hum Immunol (2011) 72:342–7.10.1016/j.humimm.2011.01.011 PubMed DOI

Arnett HA, Escobar SS, Gonzalez-Suarez E, Budelsky AL, Steffen LA, Boiani N, et al. BTNL2, a butyrophilin/B7-like molecule, is a negative costimulatory molecule modulated in intestinal inflammation. J Immunol (2007) 178:1523–33.10.4049/jimmunol.178.3.1523 PubMed DOI

Spagnolo P, Sato H, Grutters JC, Renzoni EA, Marshall SE, Ruven HJ, et al. Analysis of BTNL2 genetic polymorphisms in British and Dutch patients with sarcoidosis. Tissue Antigens (2007) 70:219–27.10.1111/j.1399-0039.2007.00879.x PubMed DOI

Rybicki BA, Walewski JL, Maliarik MJ, Kian H, Iannuzzi MC, ACCESS Research Group . The BTNL2 gene and sarcoidosis susceptibility in African Americans and Whites. Am J Hum Genet (2005) 77:491–9.10.1086/444435 PubMed DOI PMC

Milman N, Svendsen CB, Nielsen FC, van Overeem Hansen T. The BTNL2 A allele variant is frequent in Danish patients with sarcoidosis. Clin Respir J (2011) 5:105–11.10.1111/j.1752-699X.2010.00206.x PubMed DOI

Sato H, Spagnolo P, Silveira L, Welsh KI, du Bois RM, Newman LS, et al. BTNL2 allele associations with chronic beryllium disease in HLA-DPB1*Glu69-negative individuals. Tissue Antigens (2007) 70:480–6.10.1111/j.1399-0039.2007.00944.x PubMed DOI

Coudurier M, Freymond N, Aissaoui S, Calender A, Pacheco Y, Devouassoux G. Homozygous variant rs2076530 of BTNL2 and familial sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis (2009) 26:162–6. PubMed

Riccio ME, Buhler S, Nunes JM, Vangenot C, Cuénod M, Currat M, et al. 16(th) IHIW: analysis of HLA population data, with updated results for 1996 to 2012 workshop data (AHPD project report). Int J Immunogenet (2013) 40:21–30.10.1111/iji.12033 PubMed DOI

Morais A, Alves H, Lima B, Delgado L, Gonçalves R, Tafulo S. HLA class I and II and TNF-alpha gene polymorphisms in sarcoidosis patients. Rev Port Pneumol (2008) 14:727–46.10.1016/S0873-2159(15)30284-1 PubMed DOI

Bogunia-Kubik K, Tomeczko J, Suchnicki K, Lange A. HLA-DRB1*03, DRB1*11 or DRB1*12 and their respective DRB3 specificities in clinical variants of sarcoidosis. Tissue Antigens (2001) 57:87–90.10.1034/j.1399-0039.2001.057001087.x PubMed DOI

Martinetti M, Tinelli C, Kolek V, Cuccia M, Salvaneschi L, Pasturenzi L, et al. “The sarcoidosis map”: a joint survey of clinical and immunogenetic findings in two European countries. Am J Respir Crit Care Med (1995) 152:557–64.10.1164/ajrccm.152.2.7633707 PubMed DOI

Morimoto T, Azuma A, Abe S, Usuki J, Kudoh S, Sugisaki K, et al. Epidemiology of sarcoidosis in Japan. Eur Respir J (2008) 31:372–9.10.1183/09031936.00075307 PubMed DOI

Berlin M, Fogdell-Hahn A, Olerup O, Eklund A, Grunewald J. HLA-DR predicts the prognosis in Scandinavian patients with pulmonary sarcoidosis. Am J Respir Crit Care Med (1997) 156:1601–5.10.1164/ajrccm.156.5.9704069 PubMed DOI

Spagnolo P, Sato H, Grunewald J, Brynedal B, Hillert J, Mañá J, et al. A common haplotype of the C-C chemokine receptor 2 gene and HLA-DRB1*0301 are independent genetic risk factors for Lofgren’s syndrome. J Intern Med (2008) 264:433–41.10.1111/j.1365-2796.2008.01984.x PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Next-Generation Sequencing Based HLA Typing: Deciphering Immunogenetic Aspects of Sarcoidosis

. 2018 ; 9 () : 503. [epub] 20181025

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...