Novel insights into miRNA in lung and heart inflammatory diseases

. 2014 ; 2014 () : 259131. [epub] 20140527

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid24991086

MicroRNAs (miRNAs) are noncoding regulatory sequences that govern posttranscriptional inhibition of genes through binding mainly at regulatory regions. The regulatory mechanism of miRNAs are influenced by complex crosstalk among single nucleotide polymorphisms (SNPs) within miRNA seed region and epigenetic modifications. Circulating miRNAs exhibit potential characteristics as stable biomarker. Functionally, miRNAs are involved in basic regulatory mechanisms of cells including inflammation. Thus, miRNA dysregulation, resulting in aberrant expression of a gene, is suggested to play an important role in disease susceptibility. This review focuses on the role of miRNA as diagnostic marker in pathogenesis of lung inflammatory diseases and in cardiac remodelling events during inflammation. From recent reports, In this context, the information about the models in which miRNAs expression were investigated including types of biological samples, as well as on the methods for miRNA validation and prediction/definition of their gene targets are emphasized in the review. Besides disease pathogenesis, promising role of miRNAs in early disease diagnosis and prognostication is also discussed. However, some miRNAs are also indicated with protective role. Thus, identifications and usage of such potential miRNAs as well as disruption of disease susceptible miRNAs using antagonists, antagomirs, are imperative and may provide a novel therapeutic approach towards combating the disease progression.

Zobrazit více v PubMed

Buckingham S. The major world of microRNAs. Proceedings of the 2nd Horizon Symposium: Understanding the RNAissance; 2003; Scarborough, Me, USA. Nature Publishing Group;

Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–854. PubMed

Pasquinelli AE, Reinhart BJ, Slack F, et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature. 2000;408(6808):86–89. PubMed

Reinhart BJ, Slack FJ, Basson M, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans . Nature. 2000;403(6772):901–906. PubMed

Blondal T, Nielsen SJ, Baker A, et al. Assessing sample and miRNA profile quality in serum and plasma or other biofluids. Methods. 2013;59(1):S1–S6. PubMed

Murchison EP, Hannon GJ. miRNAs on the move: miRNA biogenesis and the RNAi machinery. Current Opinion in Cell Biology. 2004;16(3):223–229. PubMed

Lee HY, Zhou K, Smith AM, Noland CL, Doudna JA. Differential roles of human Dicer-binding proteins TRBP and PACT in small RNA processing. Nucleic Acids Research. 2013;41(13):6568–6576. PubMed PMC

Sessa R, Hata A. Role of microRNAs in lung development and pulmonary diseases. Pulmonary Circulation. 2013;3(2):315–328. PubMed PMC

O’Connell RM, Rao DS, Chaudhuri AA, Baltimore D. Physiological and pathological roles for microRNAs in the immune system. Nature Reviews Immunology. 2010;10(2):111–122. PubMed

Yue J. miRNA and vascular cell movement. Advanced Drug Delivery Reviews. 2011;63(8):616–622. PubMed PMC

Tan Z, Randall G, Fan J, et al. Allele-specific targeting of microRNAs to HLA-G and risk of asthma. American Journal of Human Genetics. 2007;81(4):829–834. PubMed PMC

Su X-W, Yang Y, Lv M-L, et al. Association between single-nucleotide polymorphisms in pre-miRNAs and the risk of asthma in a Chinese population. DNA and Cell Biology. 2011;30(11):919–923. PubMed

Jimenez-Morales S, Gamboa-Becerra R, Baca V, et al. MiR-146a polymorphism is associated with asthma but not with systemic lupus erythematosus and juvenile rheumatoid arthritis in Mexican patients. Tissue Antigens. 2012;80(4):317–321. PubMed

Lung RW, Wang X, Hung-Man J, et al. A single nucleotide polymorphism in microRNA-146a is associated with the risk for nasopharyngeal carcinoma. Molecular Carcinogenesis. 2013;52(supplement 1):28–38. PubMed

Nicodemus-Johnson J, Laxman B, Stern RK, et al. Maternal asthma and microRNA regulation of soluble HLA-G in the airway. The Journal of Allergy and Clinical Immunology. 2013;131(6):1496–1503. PubMed PMC

Hu Z, Chen J, Tian T, et al. Genetic variants of miRNA sequences and non-small cell lung cancer survival. The Journal of Clinical Investigation. 2008;118(7):2600–2608. PubMed PMC

Yoon KA, Yoon H, Park S, et al. The prognostic impact of microRNA sequence polymorphisms on the recurrence of patients with completely resected non-small cell lung cancer. The Journal of Thoracic and Cardiovascular Surgery. 2012;144(4):794–807. PubMed

Tian T, Shu Y, Chen J, et al. A functional genetic variant in microRNA-196a2 is associated with increased susceptibility of lung cancer in Chinese. Cancer Epidemiology Biomarkers & Prevention. 2009;18(4):1183–1187. PubMed

Vinci S, Gelmini S, Pratesi N, et al. Genetic variants in miR-146a, miR-149, miR-196a2, miR-499 and their influence on relative expression in lung cancers. Clinical Chemistry and Laboratory Medicine. 2011;49(12):2073–2080. PubMed

Wang J, Wang Q, Liu H, et al. The association of miR-146a rs2910164 and miR-196a2 rs11614913 polymorphisms with cancer risk: a meta-analysis of 32 studies. Mutagenesis. 2012;27(6):779–788. PubMed

Yuan Z, Zeng X, Yang D, Wang W, Liu Z. Effects of common polymorphism rs11614913 in Hsa-miR-196a2 on lung cancer risk. PLoS ONE. 2013;8(4, article e61047) PubMed PMC

Qiu L-X, Wang Y, Xia Z-G, et al. miR-196a2 C allele is a low-penetrant risk factor for cancer development. Cytokine. 2011;56(3):589–592. PubMed

Wang F, Ma Y-L, Zhang P, et al. A genetic variant in microRNA-196a2 is associated with increased cancer risk: a meta-analysis. Molecular Biology Reports. 2012;39(1):269–275. PubMed

Xu J, Hu Z, Xu Z, et al. Functional variant in microRNA-196a2 contributes to the susceptibility of congenital heart disease in a Chinese population. Human Mutation. 2009;30(8):1231–1236. PubMed

Li L-J, Gao L-B, Lv M-L, et al. Association between SNPs in pre-miRNA and risk of chronic obstructive pulmonary disease. Clinical Biochemistry. 2011;44(10-11):813–816. PubMed

Li D, Wang T, Song X, et al. Genetic study of two single nucleotide polymorphisms within corresponding microRNAs and susceptibility to tuberculosis in a Chinese Tibetan and Han population. Human Immunology. 2011;72(7):598–602. PubMed

Taganov KD, Boldin MP, Chang K-J, Baltimore D. NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proceedings of the National Academy of Sciences of the United States of America. 2006;103(33):12481–12486. PubMed PMC

Hikami K, Kawasaki A, Ito I, et al. Association of a functional polymorphism in the 3′-untranslated region of SPI1 with systemic lupus erythematosus. Arthritis & Rheumatism. 2011;63(3):755–763. PubMed

Luo X, Yang W, Ye D-Q, et al. A functional variant in microRNA-146a promoter modulates its expression and confers disease risk for systemic lupus erythematosus. PLoS Genetics. 2011;7(6, article e1002128) PubMed PMC

Leng RX, Wang W, Cen H, et al. Gene-gene and gene-sex epistatic interactions of MiR146a, IRF5, IKZF1, ETS1 and IL21 in systemic lupus erythematosus. PLoS ONE. 2012;7(12, article e51090) PubMed PMC

Lofgren SE, Frostegård J, Truedsson L, et al. Genetic association of miRNA-146a with systemic lupus erythematosus in Europeans through decreased expression of the gene. Genes & Immunity. 2012;13(3):268–274. PubMed PMC

Deng Y, Zhao J, Sakurai D, et al. MicroRNA-3148 modulates allelic expression of toll-like receptor 7 variant associated with systemic lupus erythematosus. PLoS Genetics. 2013;9(2, article e1003336) PubMed PMC

Amato F, Seia M, Giordano S, et al. Gene mutation in microRNA target sites of CFTR gene: a novel pathogenetic mechanism in cystic fibrosis? PLoS ONE. 2013;8(3, article e60448) PubMed PMC

Tang Y, Luo X, Cui H, et al. MicroRNA-146a contributes to abnormal activation of the type I interferon pathway in human lupus by targeting the key signaling proteins. Arthritis & Rheumatism. 2009;60(4):1065–1075. PubMed

Elton TS, Sansom SE, Martin MM. Cardiovascular disease, single nucleotide polymorphisms, and the renin angiotensin system: is there a microRNA connection? International Journal of Hypertension. 2010;2010:13 pages.281692 PubMed PMC

Sethupathy P, Borel C, Gagnebin M, et al. Human microRNA-155 on chromosome 21 differentially interacts with its polymorphic target in the AGTR1 3′ untranslated region: a mechanism for functional single-nucleotide polymorphisms related to phenotypes. American Journal of Human Genetics. 2007;81(2):405–413. PubMed PMC

Haas U, Sczakiel G, Laufer SD. MicroRNA-mediated regulation of gene expression is affected by disease-associated SNPs within the 3′-UTR via altered RNA structure. RNA Biology. 2012;9(6):924–937. PubMed PMC

Mopidevi B, Ponnala M, Kumar A. Human angiotensinogen +11525 C/A polymorphism modulates its gene expression through microRNA binding. Physiological Genomics. 2013;45(19):901–906. PubMed PMC

Wu C, Gong Y, Sun A, et al. The human MTHFR rs4846049 polymorphism increases coronary heart disease risk through modifying miRNA binding. Nutrition, Metabolism & Cardiovascular Diseases. 2013;23(7):693–698. PubMed

Ding S-L, Wang J-X, Jiao J-Q, et al. A pre-microRNA-149 (miR-149) genetic variation affects miR-149 maturation and its ability to regulate the Puma protein in apoptosis. The Journal of Biological Chemistry. 2013;288(37):26865–26877. PubMed PMC

Zhou B, Rao L, Peng Y, et al. Common genetic polymorphisms in pre-microRNAs were associated with increased risk of dilated cardiomyopathy. Clinica Chimica Acta. 2010;411(17-18):1287–1290. PubMed

Sethupathy P. Illuminating microRNA transcription from the epigenome. Current Genomics. 2013;14(1):68–77. PubMed PMC

Volpe TA, Kidner C, Hall IM, Teng G, Grewal SIS, Martienssen RA. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science. 2002;297(5588):1833–1837. PubMed

Baer C, Claus R, Plass C. Genome-wide epigenetic regulation of miRNAs in cancer. Cancer Research. 2013;73(2):473–477. PubMed

Lin C-W, Chang Y-L, Chang Y-C, et al. MicroRNA-135b promotes lung cancer metastasis by regulating multiple targets in the Hippo pathway and LZTS1. Nature Communications. 2013;41877 PubMed

Fabbri M, Garzon R, Cimmino A, et al. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proceedings of the National Academy of Sciences of the United States of America. 2007;104(40):15805–15810. PubMed PMC

Lujambio A, Lowe SW. The microcosmos of cancer. Nature. 2012;482(7385):347–355. PubMed PMC

Brueckner B, Stresemann C, Kuner R, et al. The human let-7a-3 locus contains an epigenetically regulated microRNA gene with oncogenic function. Cancer Research. 2007;67(4):1419–1423. PubMed

Kunej T, Godnic I, Ferdin J, Horvat S, Dovc P, Calin GA. Epigenetic regulation of microRNAs in cancer: an integrated review of literature. Mutation Research. 2011;717(1-2):77–84. PubMed

Tanaka N, Toyooka S, Soh J, et al. Frequent methylation and oncogenic role of microRNA-34b/c in small-cell lung cancer. Lung Cancer. 2012;76(1):32–38. PubMed

Lodygin D, Tarasov V, Epanchintsev A, et al. Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. Cell Cycle. 2008;7(16):2591–2600. PubMed

Richardson B. Effect of an inhibitor of DNA methylation on T cells. II. 5-Azacytidine induces self-reactivity in antigen-specific T4+ cells. Human Immunology. 1986;17(4):456–470. PubMed

Richardson B, Scheinbart L, Strahler J, Gross L, Hanash S, Johnson M. Evidence for impaired T cell DNA methylation in systemic lupus erythematosus and rheumatoid arthritis. Arthritis & Rheumatism. 1990;33(11):1665–1673. PubMed

Deng C, Lu Q, Zhang Z, et al. Hydralazine may induce autoimmunity by inhibiting extracellular signal-regulated kinase pathway signaling. Arthritis & Rheumatism. 2003;48(3):746–756. PubMed

Hughes T, Sawalha AH. The role of epigenetic variation in the pathogenesis of systemic lupus erythematosus. Arthritis Research & Therapy. 2011;13(5, article 245) PubMed PMC

Pan W, Zhu S, Yuan M, et al. MicroRNA-21 and microRNA-148a contribute to DNA hypomethylation in lupus CD4+ T cells by directly and indirectly targeting DNA methyltransferase 1. The Journal of Immunology. 2010;184(12):6773–6781. PubMed

Zhao S, Wang Y, Liang Y, et al. MicroRNA-126 regulates DNA methylation in CD4+ T cells and contributes to systemic lupus erythematosus by targeting DNA methyltransferase 1. Arthritis & Rheumatism. 2011;63(5):1376–1386. PubMed

Qin H, Zhu X, Liang J, et al. MicroRNA-29b contributes to DNA hypomethylation of CD4+ T cells in systemic lupus erythematosus by indirectly targeting DNA methyltransferase 1. Journal of Dermatological Science. 2013;69(1):61–67. PubMed

Movassagh M, Choy M-K, Goddard M, Bennett MR, Down TA, Foo RS-Y. Differential DNA methylation correlates with differential expression of angiogenic factors in human heart failure. PLoS ONE. 2010;5(1, article e8564) PubMed PMC

Udali S, Guarini P, Moruzzi S, Choi S-W, Friso S. Cardiovascular epigenetics: from DNA methylation to microRNAs. Molecular Aspects of Medicine. 2013;34(4):883–901. PubMed

Yang S, Banerjee S, de Freitas A, et al. Participation of miR-200 in pulmonary fibrosis. The American Journal of Pathology. 2012;180(2):484–493. PubMed PMC

Liu G, Friggeri A, Yang Y, et al. miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis. The Journal of Experimental Medicine. 2010;207(8):1589–1597. PubMed PMC

Honeyman L, Bazett M, Tomko TG, Haston CK. MicroRNA profiling implicates the insulin-like growth factor pathway in bleomycin-induced pulmonary fibrosis in mice. Fibrogenesis & Tissue Repair. 2013;6(1, article 16) PubMed PMC

Li P, Zhao G-Q, Chen T-F, et al. Serum miR-21 and miR-155 expression in idiopathic pulmonary fibrosis. The Journal of Asthma. 2013;50(9):960–964. PubMed

Vettori S, Gay S, Distler O. Role of microRNAs in fibrosis. The Open Rheumatology Journal. 2012;6:130–139. PubMed PMC

Sato T, Liu X, Nelson A, et al. Reduced miR-146a increases prostaglandin E2 in chronic obstructive pulmonary disease fibroblasts. American Journal of Respiratory and Critical Care Medicine. 2010;182(8):1020–1029. PubMed PMC

Tsitsiou E, Williams AE, Moschos SA, et al. Transcriptome analysis shows activation of circulating CD8+ T cells in patients with severe asthma. The Journal of Allergy and Clinical Immunology. 2012;129(1):95–103. PubMed

Pinkerton M, Chinchilli V, Banta E, et al. Differential expression of microRNAs in exhaled breath condensates of patients with asthma, patients with chronic obstructive pulmonary disease, and healthy adults. The Journal of Allergy and Clinical Immunology. 2013;132(1):217–219. PubMed

Fujita Y, Takeshita F, Kuwano K, Ochiya T. RNAi therapeutic platforms for lung diseases. Pharmaceuticals. 2013;6(2):223–250. PubMed PMC

Tomankova T, Petrek M, Kriegova E. Involvement of microRNAs in physiological and pathological processes in the lung. Respiratory Research. 2010;11, article 159 PubMed PMC

Dakhlallah D, Batte K, Wang Y, et al. Epigenetic regulation of miR-17~92 contributes to the pathogenesis of pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2013;187(4):397–405. PubMed PMC

Renaud L, Kasiganesan H, Gao E, et al. Regulation of miR-21 expression by acetylation in myocardial infarction. Circulation Research. 2012;111(4)

Wills-Karp M, Luyimbazi J, Xu X, et al. Interleukin-13: central mediator of allergic asthma. Science. 1998;282(5397):2258–2261. PubMed

Lu TX, Rothenberg ME. Diagnostic, functional, and therapeutic roles of microRNA in allergic diseases. The Journal of Allergy and Clinical Immunology. 2013;132(1):3–14. PubMed PMC

Mattes J, Collison A, Plank M, Phipps S, Foster PS. Antagonism of microRNA-126 suppresses the effector function of TH2 cells and the development of allergic airways disease. Proceedings of the National Academy of Sciences of the United States of America. 2009;106(44):18704–18709. PubMed PMC

Chiba Y, Tanabe M, Goto K, Sakai H, Misawa M. Down-regulation of miR-133a contributes to up-regulation of RhoA in bronchial smooth muscle cells. American Journal of Respiratory and Critical Care Medicine. 2009;180(8):713–719. PubMed

Levanen B, Bhakta NR, Paredes PT, et al. Altered microRNA profiles in bronchoalveolar lavage fluid exosomes in asthmatic patients. The Journal of Allergy and Clinical Immunology. 2013;131(3):894–903. PubMed PMC

Soeda S, Ohyashiki JH, Ohtsuki K, Umezu T, Setoguchi Y, Ohyashiki K. Clinical relevance of plasma miR-106b levels in patients with chronic obstructive pulmonary disease. International Journal of Molecular Medicine. 2013;31(3):533–539. PubMed

Leidinger P, Keller A, Borries A, et al. Specific peripheral miRNA profiles for distinguishing lung cancer from COPD. Lung Cancer. 2011;74(1):41–47. PubMed

Sanfiorenzo C, Ilie MI, Belaid A, et al. Two panels of plasma microRNAs as non-invasive biomarkers for prediction of recurrence in resectable NSCLC. PLoS ONE. 2013;8(1, article e54596) PubMed PMC

Kumar M, Ahmad T, Sharma A, et al. Let-7 microRNA-mediated regulation of IL-13 and allergic airway inflammation. The Journal of Allergy and Clinical Immunology. 2011;128(5):1077.e10–1085.e10. PubMed

Song C, Ma H, Yao C, Tao X, Gan H. Alveolar macrophage-derived vascular endothelial growth factor contributes to allergic airway inflammation in a mouse asthma model. Scandinavian Journal of Immunology. 2012;75(6):599–605. PubMed

Lu TX, Munitz A, Rothenberg ME. MicroRNA-21 is up-regulated in allergic airway inflammation and regulates IL-12p35 expression. The Journal of Immunology. 2009;182(8):4994–5002. PubMed PMC

Sharma A, Kumar M, Ahmad T, et al. Antagonism of mmu-mir-106a attenuates asthma features in allergic murine model. Journal of Applied Physiology. 2012;113(3):459–464. PubMed

Sharma A, Kumar M, Aich J, et al. Posttranscriptional regulation of interleukin-10 expression by hsa-miR-106a. Proceedings of the National Academy of Sciences of the United States of America. 2009;106(14):5761–5766. PubMed PMC

Collison A, Herbert C, Siegle JS, Mattes J, Foster PS, Kumar RK. Altered expression of microRNA in the airway wall in chronic asthma: miR-126 as a potential therapeutic target. BMC Pulmonary Medicine. 2011;11, article 29 PubMed PMC

Collison A, Mattes J, Plank M, Foster PS. Inhibition of house dust mite-induced allergic airways disease by antagonism of microRNA-145 is comparable to glucocorticoid treatment. The Journal of Allergy and Clinical Immunology. 2011;128(1):160.e4–167.e4. PubMed

Feng MJ, Shi F, qiu C, Peng W-K. MicroRNA-181a, -146a and -146b in spleen CD4+ T lymphocytes play proinflammatory roles in a murine model of asthma. International Immunopharmacology. 2012;13(3):347–353. PubMed

Zheng Y, Xiong S, Jiang P, et al. Glucocorticoids inhibit lipopolysaccharide-mediated inflammatory response by downregulating microRNA-155: a novel anti-inflammation mechanism. Free Radical Biology and Medicine. 2012;52(8):1307–1317. PubMed

Mayoral RJ, Deho L, Rusca N, et al. MiR-221 influences effector functions and actin cytoskeleton in mast cells. PLoS ONE. 2011;6(10, article e26133) PubMed PMC

Perry MM, Baker JE, Gibeon DS, Adcock IM, Chung KE. Airway smooth muscle hyperproliferation is regulated by microRNA-221 in severe asthma. American Journal of Respiratory Cell and Molecular Biology. 2014;50(1):7–17. PubMed PMC

Pottelberge GR, Mestdagh P, Bracke KR, et al. MicroRNA expression in induced sputum of smokers and patients with chronic obstructive pulmonary disease. American Journal of Respiratory and Critical Care Medicine. 2011;183(7):898–906. PubMed

Lewis A, Riddoch-Contreras J, Natanek SA, et al. Downregulation of the serum response factor/miR-1 axis in the quadriceps of patients with COPD. Thorax. 2012;67(1):26–34. PubMed PMC

Donaldson A, Natanek SA, Lewis A, et al. Increased skeletal muscle-specific microRNA in the blood of patients with COPD. Thorax. 2013;68(12):1140–1149. PubMed PMC

Akbas F, Coskunpinar E, Aynacı E, Oltulu YM, Yildiz P. Analysis of serum micro-RNAs as potential biomarker in chronic obstructive pulmonary disease. Experimental Lung Research. 2012;38(6):286–294. PubMed

Ezzie ME, Crawford M, Cho J-H, et al. Gene expression networks in COPD: microRNA and mRNA regulation. Thorax. 2012;67(2):122–131. PubMed

Schembri F, Sridhar S, Perdomo C, et al. MicroRNAs as modulators of smoking-induced gene expression changes in human airway epithelium. Proceedings of the National Academy of Sciences of the United States of America. 2009;106(7):2319–2324. PubMed PMC

Hassan F, Nuovo GJ, Crawford M, et al. MiR-101 and miR-144 regulate the expression of the CFTR chloride channel in the lung. PLoS ONE. 2012;7(11, article e50837) PubMed PMC

Graff JW, Powers LS, Dickson AM, et al. Cigarette smoking decreases global microRNA expression in human alveolar macrophages. PLoS ONE. 2012;7(8, article e44066) PubMed PMC

Gillen AE, Gosalia N, Leir S-H, Harris A. microRNA regulation of expression of the cystic fibrosis transmembrane conductance regulator gene. The Biochemical Journal. 2011;438(1):25–32. PubMed PMC

Megiorni F, Cialfi S, Dominici C, Quattrucci S, Pizzuti A. Synergistic post-transcriptional regulation of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) by miR-101 and miR-494 specific binding. PLoS ONE. 2011;6(10, article e26601) PubMed PMC

Oglesby IK, Bray IM, Chotirmall SH, et al. miR-126 is downregulated in cystic fibrosis airway epithelial cells and regulates TOM1 expression. The Journal of Immunology. 2010;184(4):1702–1709. PubMed

Ramachandran S, Karp PH, Jiang P, et al. A microRNA network regulates expression and biosynthesis of wild-type and ΔF508 mutant cystic fibrosis transmembrane conductance regulator. Proceedings of the National Academy of Sciences of the United States of America. 2012;109(33):13362–13367. PubMed PMC

Oglesby IK, Chotirmall SH, McElvaney NG, Greene CM. Regulation of cystic fibrosis transmembrane conductance regulator by microRNA-145, -223, and -494 is altered in ΔF508 cystic fibrosis airway epithelium. The Journal of Immunology. 2013;190(7):3354–3362. PubMed

Megiorni F, Cialfi S, Cimino G, et al. Elevated levels of miR-145 correlate with SMAD3 down-regulation in Cystic Fibrosis patients. Journal of Cystic Fibrosis. 2013;12(6):797–802. PubMed

Pottier N, Maurin T, Chevalier B, et al. Identification of keratinocyte growth factor as a target of microRNA-155 in lung fibroblasts: implication in epithelial-mesenchymal interactions. PLoS ONE. 2009;4(8, article e6718) PubMed PMC

Bhattacharyya S, Balakathiresan NS, Dalgard C, et al. Elevated miR-155 promotes inflammation in cystic fibrosis by driving hyperexpression of interleukin-8. The Journal of Biological Chemistry. 2011;286(13):11604–11615. PubMed PMC

Tsuchiya M, Kumar P, Bhattacharyya S, et al. Differential regulation of inflammation by inflammatory mediators in cystic fibrosis lung epithelial cells. Journal of Interferon & Cytokine Research. 2013;33(3):121–129. PubMed

Bhattacharyya S, Kumar P, Tsuchiya M, Bhattacharyya A, Biswas R. Regulation of miR-155 biogenesis in cystic fibrosis lung epithelial cells: antagonistic role of two mRNA-destabilizing proteins, KSRP and TTP. Biochemical and Biophysical Research Communications. 2013;433(4):484–488. PubMed

Ramachandran S, Karp PH, Osterhaus SR, et al. Post-transcriptional regulation of cystic fibrosis transmembrane conductance regulator expression and function by microRNAs. American Journal of Respiratory Cell and Molecular Biology. 2013;49(4):544–551. PubMed PMC

Pandit KV, Corcoran D, Yousef H, et al. Inhibition and role of let-7d in idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2010;182(2):220–229. PubMed PMC

Oak SR, Murray L, Herath A, et al. A microRNA processing defect in rapidly progressing idiopathic pulmonary fibrosis. PLoS ONE. 2011;6(6, article e21253) PubMed PMC

Dakhlallah D. Cross-talk between epigenetic regulation and Mir-17~92 cluster expression in idiopathic pulmonary fibrosis (IPF) [Ph.D. dissertation] Columbus, Ohio, USA: The Ohio State University; 2011.

Yamada M, Kubo H, Ota C, et al. The increase of microRNA-21 during lung fibrosis and its contribution to epithelial-mesenchymal transition in pulmonary epithelial cells. Respiratory Research. 2013;14(1, article 95) PubMed PMC

Cushing L, Kuang PP, Qian J, et al. miR-29 is a major regulator of genes associated with pulmonary fibrosis. American Journal of Respiratory Cell and Molecular Biology. 2011;45(2):287–294. PubMed PMC

Pandit KV, Milosevic J, Kaminski N. MicroRNAs in idiopathic pulmonary fibrosis. Translational Research. 2011;157(4):191–199. PubMed

Xiao J, Meng X-M, Huang XR, et al. miR-29 inhibits bleomycin-induced pulmonary fibrosis in mice. Molecular Therapy. 2012;20(6):1251–1260. PubMed PMC

Milosevic J, Pandit K, Magister M, et al. Profibrotic role of miR-154 in pulmonary fibrosis. American Journal of Respiratory Cell and Molecular Biology. 2012;47(6):879–887. PubMed PMC

Xie T, Liang J, Liu N, et al. MicroRNA-127 inhibits lung inflammation by targeting IgG Fcγ receptor I. The Journal of Immunology. 2012;188(5):2437–2444. PubMed PMC

Vaporidi K, Vergadi E, Kaniaris E, et al. Pulmonary microRNA profiling in a mouse model of ventilator-induced lung injury. American Journal of Physiology: Lung Cellular and Molecular Physiology. 2012;303(3):L199–L207. PubMed PMC

Yehya N, Yerrapureddy A, Tobias J, Margulies SS. MicroRNA modulate alveolar epithelial response to cyclic stretch. BMC Genomics. 2012;13, article 154 PubMed PMC

Zeng Z, Gong H, Li Y, et al. Upregulation of miR-146a contributes to the suppression of inflammatory responses in LPS-induced acute lung injury. Experimental Lung Research. 2013;39(7):275–282. PubMed

Perry MM, Moschos SA, Williams AE, Shepherd NJ, Larner-Svensson HM, Lindsay MA. Rapid changes in microRNA-146a expression negatively regulate the IL-1β-induced inflammatory response in human lung alveolar epithelial cells1. The Journal of Immunology. 2008;180(8):5689–5698. PubMed PMC

Sun X, Icli B, Wara AK, et al. MicroRNA-181b regulates NF-κB-mediated vascular inflammation. The Journal of Clinical Investigation. 2012;122(6):1973–1990. PubMed PMC

Brock M, Trenkmann M, Gay RE, et al. Interleukin-6 modulates the expression of the bone morphogenic protein receptor type II through a novel STAT3-microRNA cluster 17/92 pathway. Circulation Research. 2009;104(10):1184–1191. PubMed

Sarkar J, Gou D, Turaka P, Viktorova E, Ramchandran R, Raj JU. MicroRNA-21 plays a role in hypoxia-mediated pulmonary artery smooth muscle cell proliferation and migration. American Journal of Physiology: Lung Cellular and Molecular Physiology. 2010;299(6):L861–L871. PubMed PMC

Yang S, Banerjee S, de Freitas A, et al. miR-21 regulates chronic hypoxia-induced pulmonary vascular remodeling. American Journal of Physiology: Lung Cellular and Molecular Physiology. 2012;302(6):L521–L529. PubMed PMC

Wei CY, Henderson H, Spradley C, et al. Circulating miRNAs as potential marker for pulmonary hypertension. PLoS ONE. 2013;8(5, article e64396) PubMed PMC

Kang K, Peng X, Zhang X, et al. MicroRNA-124 suppresses the transactivation of nuclear factor of activated T cells by targeting multiple genes and inhibits the proliferation of pulmonary artery smooth muscle cells. The Journal of Biological Chemistry. 2013;288(35):25414–25427. PubMed PMC

Caruso P, Dempsie Y, Stevens HC, et al. A role for miR-145 in pulmonary arterial hypertension: evidence from mouse models and patient samples. Circulation Research. 2012;111(3):290–300. PubMed

Courboulin A, Paulin R, Giguère NJ, et al. Role for miR-204 in human pulmonary arterial hypertension. Journal of Experimental Medicine. 2011;208(3):535–548. PubMed PMC

Jalali S, Ramanathan GK, Parthasarathy PT, et al. Mir-206 regulates pulmonary artery smooth muscle cell proliferation and differentiation. PLoS ONE. 2012;7(10, article e46808) PubMed PMC

Yue J, Guan J, Wang X, et al. MicroRNA-206 is involved in hypoxia-induced pulmonary hypertension through targeting of the HIF-1α/Fhl-1 pathway. Laboratory Investigation. 2013;93(7):748–759. PubMed

Kim J, Kang Y, Kojima Y, et al. An endothelial apelin-FGF link mediated by miR-424 and miR-503 is disrupted in pulmonary arterial hypertension. Nature Medicine. 2013;19(1):74–82. PubMed PMC

Raghu G, Collard HR, Egan JJ, et al. An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. American Journal of Respiratory and Critical Care Medicine. 2011;183(6):788–824. PubMed PMC

Yang T, Zhang G-F, Chen X-F, et al. MicroRNA-214 provokes cardiac hypertrophy via repression of EZH2. Biochemical and Biophysical Research Communications. 2013;436(4):578–584. PubMed

Orenes-Pinero E, Montoro-García S, Patel JV, Valdés M, Marín F, Lip GY. Role of microRNAs in cardiac remodelling: new insights and future perspectives. International Journal of Cardiology. 2013;167(5):1651–1659. PubMed

Condorelli G, Latronico MV, Cavarretta E. microRNAs in cardiovascular diseases: current knowledge and the road ahead. Journal of the American College of Cardiology. 2014 PubMed

Libby P. Inflammation and cardiovascular disease mechanisms. The American Journal of Clinical Nutrition. 2006;83(2):456S–460S. PubMed

Xiao L, Liu Y, Wang N. New paradigms in inflammatory signaling in vascular endothelial cells. American Journal of Physiology: Heart and Circulatory Physiology. 2013 PubMed

Bauersachs J, Thum T. Biogenesis and regulation of cardiovascular microRNAs. Circulation Research. 2011;109(3):334–347. PubMed

Ranjha R, Paul J. Micro-RNAs in inflammatory diseases and as a link between inflammation and cancer. Inflammation Research. 2013;62(4):343–355. PubMed

Raitoharju E, Lyytikäinen L-P, Levula M, et al. miR-21, miR-210, miR-34a, and miR-146a/b are up-regulated in human atherosclerotic plaques in the Tampere Vascular Study. Atherosclerosis. 2011;219(1):211–217. PubMed

Bidzhekov K, Gan L, Denecke B, et al. microRNA expression signatures and parallels between monocyte subsets and atherosclerotic plaque in humans. Thrombosis and Haemostasis. 2012;107(4):619–625. PubMed

Chen K-C, Liao Y-C, Hsieh I-C, Wang Y-S, Hu C-Y, Juo S-HH. OxLDL causes both epigenetic modification and signaling regulation on the microRNA-29b gene: novel mechanisms for cardiovascular diseases. Journal of Molecular and Cellular Cardiology. 2012;52(3):587–595. PubMed

Sun X, He S, Wara AK, et al. Systemic delivery of microRNA-181b inhibits nuclear factor-κB activation, vascular inflammation, and atherosclerosis in apolipoprotein E-deficient mice. Circulation Research. 2014;114(1):32–40. PubMed PMC

Son DJ, Kumar S, Takabe W, et al. The atypical mechanosensitive microRNA-712 derived from pre-ribosomal RNA induces endothelial inflammation and atherosclerosis. Nature Communications. 2013;43000 PubMed PMC

Long G, Wang F, Duan Q, et al. Circulating miR-30a, miR-195 and let-7b associated with acute myocardial infarction. PLoS ONE. 2012;7(12, article e50926) PubMed PMC

Ai J, Zhang R, Li Y, et al. Circulating microRNA-1 as a potential novel biomarker for acute myocardial infarction. Biochemical and Biophysical Research Communications. 2010;391(1):73–77. PubMed

Dimmeler S, Zeiher AM. Circulating microRNAs: novel biomarkers for cardiovascular diseases? European Heart Journal. 2010;31(22):2705–2707. PubMed

Gupta SK, Bang C, Thum T. Circulating microRNAs as biomarkers and potential paracrine mediators of cardiovascular disease. Circulation: Cardiovascular Genetics. 2010;3(5):484–488. PubMed

Cheng Y, Tan N, Yang J, et al. A translational study of circulating cell-free microRNA-1 in acute myocardial infarction. Clinical Science. 2010;119(2):87–95. PubMed PMC

Long G, Wang F, Duan Q, et al. Human circulating microRNA-1 and microRNA-126 as potential novel indicators for acute myocardial infarction. International Journal of Biological Sciences. 2012;8(6):811–818. PubMed PMC

Wang G-K, Zhu J-Q, Zhang J-T, et al. Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans. European Heart Journal. 2010;31(6):659–666. PubMed

Dong S, Cheng Y, Yang J, et al. MicroRNA expression signature and the role of microRNA-21 in the early phase of acute myocardial infarction. The Journal of Biological Chemistry. 2009;284(43):29514–29525. PubMed PMC

D’Alessandra Y, Devanna P, Limana F, et al. Circulating microRNAs are new and sensitive biomarkers of myocardial infarction. European Heart Journal. 2010;31(22):2765–2773. PubMed PMC

Wang R, Li N, Zhang Y, Ran Y, Pu J. Circulating microRNAs are promising novel biomarkers of acute myocardial infarction. Internal Medicine. 2011;50(17):1789–1795. PubMed

Tijsen AJ, Pinto YM, Creemers EE. Non-cardiomyocyte microRNAs in heart failure. Cardiovascular Research. 2012;93(4):573–582. PubMed

Corsten MF, Dennert R, Jochems S, et al. Circulating MicroRNA-208b and MicroRNA-499 reflect myocardial damage in cardiovascular disease. Circulation: Cardiovascular Genetics. 2010;3(6):499–506. PubMed

Adachi T, Nakanishi M, Otsuka Y, et al. Plasma microRNA 499 as a biomarker of acute myocardial infarction. Clinical Chemistry. 2010;56(7):1183–1185. PubMed

Li Q, Song X-W, Zou J, et al. Attenuation of microRNA-1 derepresses the cytoskeleton regulatory protein twinfilin-1 to provoke cardiac hypertrophy. Journal of Cell Science. 2010;123, part 14:2444–2452. PubMed

Cheng Y, Ji R, Yue J, et al. MicroRNAs are aberrantly expressed in hypertrophic heart: do they play a pole in cardiac hypertrophy? The American Journal of Pathology. 2007;170(6):1831–1840. PubMed PMC

Huang ZP, Chen J, Seok HY, et al. MicroRNA-22 regulates cardiac hypertrophy and remodeling in response to stress. Circulation Research. 2013;112(9):1234–1243. PubMed PMC

Wang J, Song Y, Zhang Y, et al. Cardiomyocyte overexpression of miR-27b induces cardiac hypertrophy and dysfunction in mice. Cell Research. 2012;22(3):516–527. PubMed PMC

Roncarati R, Anselmi CV, Losi MA, et al. Circulating miR-29a, among other up-regulated microRNAs, is the only biomarker for both hypertrophy and fibrosis in patients with hypertrophic cardiomyopathy. Journal of the American College of Cardiology. 2014;63(9):920–927. PubMed

Pan W, Zhong Y, Cheng C, et al. MiR-30-regulated autophagy mediates angiotensin II-induced myocardial hypertrophy. PLoS ONE. 2013;8(1, article e53950) PubMed PMC

Care A, Catalucci D, Felicetti F, et al. MicroRNA-133 controls cardiac hypertrophy. Nature Medicine. 2007;13(5):613–618. PubMed

Dong D-L, Chen C, Huo R, et al. Reciprocal repression between microRNA-133 and calcineurin regulates cardiac hypertrophy: a novel mechanism for progressive cardiac hypertrophy. Hypertension. 2010;55(4):946–952. PubMed

Heymans S, Corsten ME, Verhesen W, et al. Macrophage microRNA-155 promotes cardiac hypertrophy and failure. Circulation. 2013;128(13):1420–1432. PubMed

Small EM, Frost RJA, Olson EN. MicroRNAs add a new dimension to cardiovascular disease. Circulation. 2010;121(8):1022–1032. PubMed PMC

Sayed D, He M, Yang Z, Abdellatif M. MicroRNA-21 enhances AKT activity and reduces myocyte apoptosis and ischemic heart failure through suppression of PTEN. Circulation. 2009;120(18, article S838)

Tu Y, Wan L, Fan Y, et al. Ischemic postconditioning-mediated miRNA-21 protects against cardiac ischemia/reperfusion injury via PTEN/Akt pathway. PLoS ONE. 2013;8(10, article e75872) PubMed PMC

Kin K, Miyagawa S, Fukushima S, et al. Tissue- and plasma-specific MicroRNA signatures for atherosclerotic abdominal aortic aneurysm. Journal of the American Heart Association. 2012;1(5)e000745 PubMed PMC

Castoldi G, di Gioia CRT, Bombardi C, et al. MiR-133a regulates collagen 1A1: potential role of miR-133a in myocardial fibrosis in angiotensin II-dependent hypertension. Journal of Cellular Physiology. 2012;227(2):850–856. PubMed

Wei C, Kim IK, Kumar S, et al. NF-κB mediated miR-26a regulation in cardiac fibrosis. Journal of Cellular Physiology. 2013;228(7):1433–1442. PubMed

Duisters RF, Tijsen AJ, Schroen B, et al. miR-133 and miR-30 regulate connective tissue growth factor: implications for a role of micrornas in myocardial matrix remodeling. Circulation Research. 2009;104(2):170–178. PubMed

Beaumont J, López B, Hermida N, et al. microRNA-122 down-regulation may play a role in severe myocardial fibrosis in human aortic stenosis through TGF-β1 up-regulation. Clinical Science. 2014;126(7):497–506. PubMed

Fichtlscherer S, de Rosa S, Fox H, et al. Circulating microRNAs in patients with coronary artery disease. Circulation Research. 2010;107(5):677–684. PubMed

van Empel VP, de Windt LJ, da Costa Martins PA. Circulating miRNAs: reflecting or affecting cardiovascular disease? Current Hypertension Reports. 2012;14(6):498–509. PubMed

Ren J, Zhang J, Xu N, et al. Signature of circulating microRNAs as potential biomarkers in vulnerable coronary artery disease. PLoS ONE. 2013;8(12, article e80738) PubMed PMC

Hoekstra M, van der Lans CAC, Halvorsen B, et al. The peripheral blood mononuclear cell microRNA signature of coronary artery disease. Biochemical and Biophysical Research Communications. 2010;394(3):792–797. PubMed

Ikeda S, Pu WT. Expression and function of microRNAs in heart disease. Current Drug Targets. 2010;11(8):913–925. PubMed

Roy S, Khanna S, Hussain S-RA, et al. MicroRNA expression in response to murine myocardial infarction: miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue. Cardiovascular Research. 2009;82(1):21–29. PubMed PMC

Thum T, Gross C, Fiedler J, et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature. 2008;456(7224):980–984. PubMed

Dickinson BA, Semus HM, Montgomery RL, et al. Plasma microRNAs serve as biomarkers of therapeutic efficacy and disease progression in hypertension-induced heart failure. European Journal of Heart Failure. 2013;15(6):650–659. PubMed

Fukushima Y, Nakanishi M, Nonogi H, Goto Y, Iwai N. Assessment of plasma miRNAs in congestive heart failure. Circulation Journal. 2011;75(2):336–340. PubMed

Danowski N, Manthey I, Jakob HG, Siffert W, Peters J, Frey UH. Decreased expression of miR-133a but not of miR-1 is associated with signs of heart failure in patients undergoing coronary bypass surgery. Cardiology. 2013;125(2):125–130. PubMed

Montgomery RL, Hullinger TG, Semus HM, et al. Therapeutic inhibition of miR-208a improves cardiac function and survival during heart failure. Circulation. 2011;124(14):1537–1547. PubMed PMC

Endo K, Naito Y, Ji X, et al. MicroRNA 210 as a biomarker for congestive heart failure. Biological & Pharmaceutical Bulletin. 2013;36(1):48–54. PubMed

Fan KL, Zhang HF, Shen J, Zhang Q, Li XL. Circulating microRNAs levels in Chinese heart failure patients caused by dilated cardiomyopathy. Indian Heart Journal. 2013;65(1):12–16. PubMed PMC

Tijsen AJ, Creemers EE, Moerland PD, et al. MiR423-5p as a circulating biomarker for heart failure. Circulation Research. 2010;106(6):1035–1039. PubMed

Goren Y, Kushnir M, Zafrir B, Tabak S, Lewis BS, Amir O. Serum levels of microRNAs in patients with heart failure. European Journal of Heart Failure. 2012;14(2):147–154. PubMed

Creemers EE, Tijsen AJ, Pinto YM. Circulating microRNAs: novel biomarkers and extracellular communicators in cardiovascular disease? Circulation Research. 2012;110(3):483–495. PubMed

Kinet V, Halkein J, Dirkx E, de Windt LJ. Cardiovascular extracellular microRNAs: emerging diagnostic markers and mechanisms of cell-to-cell RNA communication. Frontiers in Genetics. 2013;4, article 214 PubMed PMC

Tijsen AJ, Pinto YM, Creemers EE. Circulating microRNAs as diagnostic biomarkers for cardiovascular diseases. American Journal of Physiology: Heart and Circulatory Physiology. 2012;303(9):H1085–H1095. PubMed

Small EM, Olson EN. Pervasive roles of microRNAs in cardiovascular biology. Nature. 2011;469(7330):336–342. PubMed PMC

van Rooij E, Olson EN. MicroRNA therapeutics for cardiovascular disease: opportunities and obstacles. Nature Reviews: Drug Discovery. 2012;11(11):860–872. PubMed PMC

Kuwabara Y, Ono K, Horie T, et al. Increased microRNA-1 and microRNA-133a levels in serum of patients with cardiovascular disease indicate myocardial damage. Circulation: Cardiovascular Genetics. 2011;4(4):446–454. PubMed

Tereshchenko IP, Petrkova J, Voevoda MI, et al. CCL5/RANTES gene polymorphisms in Slavonic patients with myocardial infarction. Mediators of Inflammation. 2011;2011:6 pages.525691 PubMed PMC

Nazari-Jahantigh M, Wei Y, Noels H, et al. MicroRNA-155 promotes atherosclerosis by repressing Bcl6 in macrophages. The Journal of Clinical Investigation. 2012;122(11):4190–4202. PubMed PMC

Chen W-J, Yin K, Zhao G-J, Fu Y-C, Tang C-K. The magic and mystery of MicroRNA-27 in atherosclerosis. Atherosclerosis. 2012;222(2):314–323. PubMed

Wei Y, Nazari-Jahantigh M, Chan L, et al. The microRNA-342-5p fosters inflammatory macrophage activation through an Akt1- and microRNA-155-dependent pathway during atherosclerosis. Circulation. 2013;127(15):1609–1619. PubMed

Zhu J, Chen T, Li Z, et al. Regulation of microRNA-155 in atherosclerotic inflammatory responses by targeting MAP3K10. PLoS ONE. 2012;7(11, article e46551) PubMed PMC

Wei Y, Nazari-Jahantigh M, Neth P, Weber C, Schober A. MicroRNA-126, -145, and -155: a therapeutic triad in atherosclerosis? Arteriosclerosis, Thrombosis, and Vascular Biology. 2013;33(3):449–454. PubMed

Aurora AB, Mahmoud AI, Luo X, et al. MicroRNA-214 protects the mouse heart from ischemic injury by controlling Ca2+ overload and cell death. The Journal of Clinical Investigation. 2012;122(4):1222–1232. PubMed PMC

Vassalli G, Winkelmann BR. Molecular genetics of myocardial infarction: many genes, more questions than answers. European Heart Journal. 2004;25(6):451–453. PubMed

Li C, Pei F, Zhu X, Duan DD, Zeng C. Circulating microRNAs as novel and sensitive biomarkers of acute myocardial Infarction. Clinical Biochemistry. 2012;45(10-11):727–732. PubMed PMC

Latronico MV, Condorelli G. microRNAs in hypertrophy and heart failure. Experimental Biology and Medicine. 2011;236(2):125–131. PubMed

Abdellatif M. The role of microRNA-133 in cardiac hypertrophy uncovered. Circulation Research. 2010;106(1):16–18. PubMed PMC

van Rooij E, Sutherland LB, Thatcher JE, et al. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proceedings of the National Academy of Sciences of the United States of America. 2008;105(35):13027–13032. PubMed PMC

Cheng Y, Zhang C. MicroRNA-21 in cardiovascular disease. Journal of Cardiovascular Translational Research. 2010;3(3):251–255. PubMed PMC

Zhu H, Fan G-C. Role of microRNAs in the reperfused myocardium towards post-infarct remodelling. Cardiovascular Research. 2012;94(2):284–292. PubMed PMC

Banerjee A, Luettich K. MicroRNAs as potential biomarkers of smoking-related diseases. Biomarkers in Medicine. 2012;6(5):671–684. PubMed

Chen X, Ba Y, Ma L, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Research. 2008;18(10):997–1006. PubMed

Mitchell PS, Parkin RK, Kroh EM, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proceedings of the National Academy of Sciences of the United States of America. 2008;105(30):10513–10518. PubMed PMC

Etheridge A, Lee I, Hood L, Galas D, Wang K. Extracellular microRNA: a new source of biomarkers. Mutation Research. 2011;717(1-2):85–90. PubMed PMC

Arroyo JD, Chevillet JR, Kroh EM, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proceedings of the National Academy of Sciences of the United States of America. 2011;108(12):5003–5008. PubMed PMC

Diehl P, Fricke A, Sander L, et al. Microparticles: major transport vehicles for distinct microRNAs in circulation. Cardiovascular Research. 2012;93(4):633–644. PubMed PMC

Boon RA, Vickers KC. Intercellular transport of microRNAs. Arteriosclerosis, Thrombosis, and Vascular Biology. 2013;33(2):186–192. PubMed PMC

Cheng HH, Yi HS, Kim Y, et al. Plasma processing conditions substantially influence circulating microRNA biomarker levels. PLoS ONE. 2013;8(6, article e64795) PubMed PMC

Wang K, Yuan Y, Cho J-H, McClarty S, Baxter D, Galas DJ. Comparing the MicroRNA spectrum between serum and plasma. PLoS ONE. 2012;7(7, article e41561) PubMed PMC

Weber JA, Baxter DH, Zhang S, et al. The microRNA spectrum in 12 body fluids. Clinical Chemistry. 2010;56(11):1733–1741. PubMed PMC

de Rosa S, Fichtlscherer S, Lehmann R, Assmus B, Dimmeler S, Zeiher AM. Transcoronary concentration gradients of circulating MicroRNAs. Circulation. 2011;124(18):1936–1944. PubMed

Willeit P, Zampetaki A, Dudek K, et al. Circulating microRNAs as novel biomarkers for platelet activation. Circulation Research. 2013;112(4):595–600. PubMed

Pritchard CC, Cheng HH, Tewari M. MicroRNA profiling: approaches and considerations. Nature Reviews Genetics. 2012;13(5):358–369. PubMed PMC

Huang Y, Zou Q, Wang SP, Tang SM, Zhang GZ, Shen XJ. The discovery approaches and detection methods of microRNAs. Molecular Biology Reports. 2011;38(6):4125–4135. PubMed

Russo F, di Bella S, Nigita G, et al. miRandola: extracellular circulating microRNAs database. PLoS ONE. 2012;7(10, article e47786) PubMed PMC

Lodes MJ, Caraballo M, Suciu D, Munro S, Kumar A, Anderson B. Detection of cancer with serum miRNAs on an oligonucleotide microarray. PLoS ONE. 2009;4(7, article e6229) PubMed PMC

Chen C, Ridzon DA, Broomer AJ, et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Research. 2005;33(20, article e179) PubMed PMC

Fu H-J, Zhu J, Yang M, et al. A novel method to monitor the expression of microRNAs. Molecular Biotechnology. 2006;32(3):197–204. PubMed

Peltier HJ, Latham GJ. Normalization of microRNA expression levels in quantitative RT-PCR assays: identification of suitable reference RNA targets in normal and cancerous human solid tissues. RNA. 2008;14(5):844–852. PubMed PMC

Mestdagh P, van Vlierberghe P, de Weer A, et al. A novel and universal method for microRNA RT-qPCR data normalization. Genome Biology. 2009;10(6, article R64) PubMed PMC

Garzon R, Marcucci G, Croce CM. Targeting microRNAs in cancer: rationale, strategies and challenges. Nature Reviews: Drug Discovery. 2010;9(10):775–789. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...