Increased Expression of miR-146a in Valvular Tissue From Patients With Aortic Valve Stenosis

. 2019 ; 6 () : 86. [epub] 20190626

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31294031

miR-146a has been implicated in the regulation of the immune response as well as in inflammatory process of atherosclerosis. In the present study, we have investigated the expression of miR-146a and its targets, TLR4 a IRAK1, in aortic valve stenosis. A total of 58 patients with aortic stenosis (non- and atherosclerotic; tissue obtained during standard aortic valve replacement) were enrolled. The relative expression of mir-146a was higher in valvular tissue from patients with atherosclerosis compared to those without atherosclerosis (p = 0.01). Number of the IRAK1 and TLR4 transcripts did not differ between the investigated groups. There was a trend toward elevation of miR-146a expression in context of inflammatory infiltrate observed in the valvular tissue from patients with atherosclerosis (p = 0.06). In conclusion, in line with the acknowledged role of miR-146a in atherosclerotic inflammation, our data suggest it may be extended to the specific location of aortic valves in aortic stenosis.

Zobrazit více v PubMed

Mohler ER. Are atherosclerotic processes involved in aortic-valve calcification? Lancet. (2000) 356:524–5. 10.1016/S0140-6736(00)02572-1 PubMed DOI

Thaden JJ, Nkomo VT, Enriquez-Sarano M. The global burden of aortic stenosis. Prog Cardiovasc Dis. (2014) 56:565–71. 10.1016/j.pcad.2014.02.006 PubMed DOI

Pasipoularides A. Calcific aortic valve disease: part 1—molecular pathogenetic aspects, hemodynamics, and adaptive feedbacks. J Cardiovasc Transl Res. (2016) 9:102–18. 10.1007/s12265-016-9679-z PubMed DOI PMC

Cho KI, Sakuma I, Sohn IS, Jo S-H, Koh KK. Inflammatory and metabolic mechanisms underlying the calcific aortic valve disease. Atherosclerosis. (2018) 277:60–5. 10.1016/j.atherosclerosis.2018.08.029 PubMed DOI

Gošev I, Zeljko M, Durić Ž, Nikolić I, Gošev M, Ivčević S, et al. . Epigenome alterations in aortic valve stenosis and its related left ventricular hypertrophy. Clin Epigenet. (2017) 9:106. 10.1186/s13148-017-0406-7 PubMed DOI PMC

Menon V, Lincoln J. The genetic regulation of aortic valve development and calcific disease. Front Cardiovasc Med. (2018) 5:162. 10.3389/fcvm.2018.00162 PubMed DOI PMC

Kishore A, Petrek M. Next-generation sequencing based HLA typing: deciphering immunogenetic aspects of sarcoidosis. Front Genet. (2018) 9:503. 10.3389/fgene.2018.00503 PubMed DOI PMC

Kishore A, Borucka J, Petrkova J, Petrek M. Novel insights into miRNA in lung and heart inflammatory diseases. Mediators Inflamm. (2014) 2014:1–27. 10.1155/2014/259131 PubMed DOI PMC

Cheng HS, Besla R, Li A, Chen Z, Shikatani EA, Nazari-Jahantigh M, et al. . Paradoxical Suppression of atherosclerosis in the absence of microRNA-146a. Circ Res. (2017) 121:354–67. 10.1161/CIRCRESAHA.116.310529 PubMed DOI PMC

Nguyen M-A, Karunakaran D, Geoffrion M, Cheng HS, Tandoc K, Perisic Matic L, et al. . Extracellular vesicles secreted by atherogenic macrophages transfer MicroRNA to inhibit cell migration. Arterioscler Thromb Vasc Biol. (2018) 38:49–63. 10.1161/ATVBAHA.117.309795 PubMed DOI PMC

Taganov KD, Boldin MP, Chang K-J, Baltimore D. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA. (2006) 103:12481–6. 10.1073/pnas.0605298103 PubMed DOI PMC

Li S, Yue Y, Xu W, Xiong S. MicroRNA-146a represses Mycobacteria-induced inflammatory response and facilitates bacterial replication via targeting IRAK-1 and TRAF-6. PLoS ONE. (2013) 8:e81438. 10.1371/journal.pone.0081438 PubMed DOI PMC

Edfeldt K, Swedenborg J, Hansson GK, Yan ZQ. Expression of toll-like receptors in human atherosclerotic lesions: a possible pathway for plaque activation. Circulation. (2002) 105:1158–61. 10.1161/circ.105.10.1158 PubMed DOI

García-Rodríquez C, Parra-Izquierdo I, Castaños-Mollor I, López J, San Román JA, Sánchez Crespo M. Toll-like receptors, inflammation, and calcific aortic valve disease. Front Physiol. (2018) 9:201 10.3389/fphys.2018.00201 PubMed DOI PMC

Li J, Wan Y, Guo Q, Zou L, Zhang J, Fang Y, et al. . Altered microRNA expression profile with miR-146a upregulation in CD4+ T cells from patients with rheumatoid arthritis. Arthritis Res Ther. (2010) 12:R81. 10.1186/ar3006 PubMed DOI PMC

Raitoharju E, Lyytikäinen L-P, Levula M, Oksala N, Mennander A, Tarkka M, et al. . MiR-21, miR-210, miR-34a, and miR-146a/b are up-regulated in human atherosclerotic plaques in the tampere vascular study. Atherosclerosis. (2011) 219:211–7. 10.1016/j.atherosclerosis.2011.07.020 PubMed DOI

Nazari-Jahantigh M, Wei Y, Schober A. The role of microRNAs in arterial remodelling. Thromb Haemost. (2012) 107:611–8. 10.1160/TH11-12-0826 PubMed DOI

Takahashi Y, Satoh M, Minami Y, Tabuchi T, Itoh T, Nakamura M. Expression of miR-146a/b is associated with the Toll-like receptor 4 signal in coronary artery disease: effect of renin–angiotensin system blockade and statins on miRNA-146a/b and Toll-like receptor 4 levels. Clin Sci. (2010) 119:395–405. 10.1042/CS20100003 PubMed DOI

Xia P, Fang X, Zhang Z-H, Huang Q, Yan K-X, Kang K-F, et al. . Dysregulation of miRNA146a versus IRAK1 induces IL-17 persistence in the psoriatic skin lesions. Immunol. Lett. (2012) 148:151–62. 10.1016/j.imlet.2012.09.004 PubMed DOI

Bhaumik D, Scott GK, Schokrpur S, Patil CK, Orjalo AV, Rodier F, et al. . MicroRNAs miR-146a/b negatively modulate the senescence-associated inflammatory mediators IL-6 and IL-8. Aging. (2009) 1:402–11. 10.18632/aging.100042 PubMed DOI PMC

Noreen M, Shah MAA, Mall SM, Choudhary S, Hussain T, Ahmed I, et al. . TLR4 polymorphisms and disease susceptibility. Inflamm Res. (2012) 61:177–88. 10.1007/s00011-011-0427-1 PubMed DOI

Zhu J, Mohan C. Toll-like receptor signaling pathways—therapeutic opportunities. Mediators Inflamm. (2010) 2010:781235. 10.1155/2010/781235 PubMed DOI PMC

Gong J, Tong Y, Zhang H-M, Wang K, Hu T, Shan G, et al. . Genome-wide identification of SNPs in microRNA genes and the SNP effects on microRNA target binding and biogenesis. Hum Mutat. (2012) 33:254–63. 10.1002/humu.21641 PubMed DOI

Xiong X-D, Cho M, Cai X-P, Cheng J, Jing X, Cen J-M, et al. . A common variant in pre-miR-146 is associated with coronary artery disease risk and its mature miRNA expression. Mutat Res. (2014) 761:15–20. 10.1016/j.mrfmmm.2014.01.001 PubMed DOI

He Y, Yang J, Kong D, Lin J, Xu C, Ren H, et al. . Association of miR-146a rs2910164 polymorphism with cardio-cerebrovascular diseases: a systematic review and meta-analysis. Gene. (2015) 565:171–9. 10.1016/j.gene.2015.04.020 PubMed DOI

Wang H, Shi J, Li B, Zhou Q, Kong X, Bei Y. MicroRNA expression signature in human calcific aortic valve disease. Biomed Res Int. (2017) 2017:4820275. 10.1155/2017/4820275 PubMed DOI PMC

Duan C, Cao Z, Tang F, Jian Z, Liang C, Liu H, et al. . miRNA-mRNA crosstalk in myocardial ischemia induced by calcified aortic valve stenosis. Aging. (2019) 11:448–66. 10.18632/aging.101751 PubMed DOI PMC

Blaser MC, Aikawa E. Roles and regulation of extracellular vesicles in cardiovascular ineral metabolism. Front Cardiovasc Med. (2018) 5:187. 10.3389/fcvm.2018.00187 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace