Deciphering the relationship among phosphate dynamics, electron-dense body and lipid accumulation in the green alga Parachlorella kessleri

. 2016 May 16 ; 6 () : 25731. [epub] 20160516

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid27180903

Phosphorus is an essential element for life on earth and is also important for modern agriculture, which is dependent on inorganic fertilizers from phosphate rock. Polyphosphate is a biological polymer of phosphate residues, which is accumulated in organisms during the biological wastewater treatment process to enhance biological phosphorus removal. Here, we investigated the relationship between polyphosphate accumulation and electron-dense bodies in the green alga Parachlorella kessleri. Under sulfur-depleted conditions, in which some symporter genes were upregulated, while others were downregulated, total phosphate accumulation increased in the early stage of culture compared to that under sulfur-replete conditions. The P signal was detected only in dense bodies by energy dispersive X-ray analysis. Transmission electron microscopy revealed marked ultrastructural variations in dense bodies with and without polyphosphate. Our findings suggest that the dense body is a site of polyphosphate accumulation, and P. kessleri has potential as a phosphate-accumulating organism.

Zobrazit více v PubMed

Smil V. Phosphorus in the environment: natural flows and human interferences. Annu. Rev. Energy Environ. 25, 53–88 (2000).

Koppelaar R. H. E. M. & Weikard H. P. Assessing phosphate rock depletion and phosphorus recycling options. Glob. Environ. Chang. 23, 1454–1466 (2013).

Cordell D. & White S. Peak phosphorus: clarifying the key issues of a vigorous debate about long-term phosphorus security. Sustainability 3, 2027–2049 (2011).

Powell N., Shilton A. N., Pratt S. & Chisti Y. Factors influencing luxury uptake of phosphorus by microalgae in waste stabilization ponds. Environ. Sci. Technol. 42, 5958–5962 (2008). PubMed

McMahon K. D. & Read E. K. Microbial contributions to phosphorus cycling in eutrophic lakes and wastewater. Annu. Rev. Microbiol. 67, 199–219 (2013). PubMed

Solovchenko A., Verschoor A. M., Jablonowski N. D. & Nedbal L. Phosphorus from wastewater to crops: An alternative path involving microalgae. Biotechnol. Adv. in press (2016), 10.1016/j.biotechadv.2016.01.002. PubMed DOI

Kornberg A., Rao N. N. & Ault-Riché D. Inorganic polyphosphate: a molecule of many functions. Annu. Rev. Biochem. 68, 89–125 (1999). PubMed

Rao N. N., Gómez-García M. R. & Kornberg A. Inorganic polyphosphate: essential for growth and survival. Annu. Rev. Biochem. 78, 605–647 (2009). PubMed

Seufferheld M. PubMed

Pallerla S. R. PubMed

Brock J., Rhiel E., Beutler M., Salman V. & Schulz-Vogt H. N. Unusual polyphosphate inclusions observed in a marine PubMed PMC

Marchesini N., Luo S., Rodrigues C. O., Moreno S. N. & Docampo R. Acidocalcisomes and a vacuolar H PubMed PMC

Docampo R., Ulrich P. & Moreno S. N. J. Evolution of acidocalcisomes and their role in polyphosphate storage and osmoregulation in eukaryotic microbes. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 365, 775–784 (2010). PubMed PMC

Marchesini N., Ruiz F. A., Vieira M. & Docampo R. Acidocalcisomes are functionally linked to the contractile vacuole of PubMed

Breus N. A., Ryazanova L. P., Dmitriev V. V., Kulakovskaya T. V. & Kulaev I. S. Accumulation of phosphate and polyphosphate by PubMed

Vítová M., Hendrychová, J., Cepák V. & Zachleder V. Visualization of DNA-containing structures in various species of Chlorophyta, Rhodophyta and Cyanophyta using SYBR Green I dye. Folia Microbiol. 50, 333–340 (2005). PubMed

Ramos I. PubMed PMC

Yagisawa F., Nishida K., Kuroiwa H., Nagata T. & Kuroiwa T. Identification and mitotic partitioning strategies of vacuoles in the unicellular red alga PubMed

Yagisawa F. PubMed

Komine Y., Eggink L. L., Park H. & Hoober J. K. Vacuolar granules in PubMed

Aksoy M., Pootakham W. & Grossman A. R. Critical function of a PubMed PMC

Peverly J. H. & Adamec J. Association of potassium and some other monovalent cations with occurrence of polyphosphate bodies in PubMed PMC

Meza B., De-Bashan L. E., Hernandez J.-P. & Bashan Y. Accumulation of intra-cellular polyphosphate in PubMed

Aschar-Sobbi R. PubMed

Gomes F. M. PubMed PMC

Kulakova A. N. PubMed

Vítová M., Bišová K., Kawano S. & Zachleder V. Accumulation of energy reserves in algae: From cell cycles to biotechnological applications. Biotechnol. Adv. 33, 1204–1218 (2015). PubMed

Brányiková I. PubMed

Ault-Riché D., Fraley C. D., Tzeng C. M. & Kornberg A. Novel assay reveals multiple pathways regulating stress-induced accumulations of inorganic polyphosphate in Escherichia coli. J. Bacteriol. 180, 1841–1847 (1998). PubMed PMC

Ruiz F. A., Rodrigues C. O. & Docampo R. Rapid changes in polyphosphate content within acidocalcisomes in response to cell growth, differentiation, and environmental stress in PubMed

Krienitz L.

Takeshita T. PubMed

Mizuno Y. PubMed

Li X. PubMed

Ota S. PubMed PMC

Reynolds E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17, 208–212 (1963). PubMed PMC

Courtoy R. & Simar L. J. Importance of controls for the demonstration of carbohydrates in electron microscopy with the silver methenamine or the thiocarbohydrazide-silver proteinate methods. J. Microsc. 100, 199–211 (1974). PubMed

Docampo R., de Souza W., Miranda K., Rohloff P. & Moreno S. N. J. Acidocalcisomes - conserved from bacteria to man. Nat. Rev. Microbiol. 3, 251–261 (2005). PubMed

Docampo R. & Moreno S. N. Acidocalcisome: A novel Ca PubMed

Ruiz F. A., Marchesini N., Seufferheld M., Govindjee & Docampo R. The polyphosphate bodies of PubMed

Huang G. PubMed PMC

Gray M. J. PubMed PMC

Gray M. J. & Jakob U. Oxidative stress protection by polyphosphate–new roles for an old player. Curr. Opin. Microbiol. 24, 1–6 (2015). PubMed PMC

Crooke E., Akiyama M., Rao N. N. & Kornberg A. Genetically altered levels of inorganic polyphosphate in PubMed

Rao N. N. & Kornberg A. Inorganic polyphosphate supports resistance and survival of stationary-phase Escherichia coli. J. Bacteriol. 178, 1394–1400 (1996). PubMed PMC

Pick U. & Weiss M. Polyphosphate hydrolysis within acidic vacuoles in response to amine-induced alkaline stress in the halotolerant alga PubMed PMC

González-Ballester D. PubMed PMC

Gómez-García M. R. & Kornberg A. Formation of an actin-like filament concurrent with the enzymatic synthesis of inorganic polyphosphate. Proc. Natl. Acad. Sci. USA 101, 15876–15880 (2004). PubMed PMC

Lander N., Cordeiro C., Huang G. & Docampo R. Polyphosphate and acidocalcisomes. Biochem. Soc. Trans. 44, 1–6 (2016). PubMed PMC

Wayama M. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...