Deciphering the relationship among phosphate dynamics, electron-dense body and lipid accumulation in the green alga Parachlorella kessleri
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27180903
PubMed Central
PMC4867602
DOI
10.1038/srep25731
PII: srep25731
Knihovny.cz E-zdroje
- MeSH
- barvení a značení MeSH
- biologické modely MeSH
- Chlorophyta cytologie růst a vývoj metabolismus ultrastruktura MeSH
- elektrony * MeSH
- fosfáty metabolismus MeSH
- lipidy chemie MeSH
- polyfosfáty metabolismus MeSH
- sekvenční analýza RNA MeSH
- síra metabolismus MeSH
- transkriptom genetika MeSH
- zobrazování trojrozměrné MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fosfáty MeSH
- lipidy MeSH
- polyfosfáty MeSH
- síra MeSH
Phosphorus is an essential element for life on earth and is also important for modern agriculture, which is dependent on inorganic fertilizers from phosphate rock. Polyphosphate is a biological polymer of phosphate residues, which is accumulated in organisms during the biological wastewater treatment process to enhance biological phosphorus removal. Here, we investigated the relationship between polyphosphate accumulation and electron-dense bodies in the green alga Parachlorella kessleri. Under sulfur-depleted conditions, in which some symporter genes were upregulated, while others were downregulated, total phosphate accumulation increased in the early stage of culture compared to that under sulfur-replete conditions. The P signal was detected only in dense bodies by energy dispersive X-ray analysis. Transmission electron microscopy revealed marked ultrastructural variations in dense bodies with and without polyphosphate. Our findings suggest that the dense body is a site of polyphosphate accumulation, and P. kessleri has potential as a phosphate-accumulating organism.
Zobrazit více v PubMed
Smil V. Phosphorus in the environment: natural flows and human interferences. Annu. Rev. Energy Environ. 25, 53–88 (2000).
Koppelaar R. H. E. M. & Weikard H. P. Assessing phosphate rock depletion and phosphorus recycling options. Glob. Environ. Chang. 23, 1454–1466 (2013).
Cordell D. & White S. Peak phosphorus: clarifying the key issues of a vigorous debate about long-term phosphorus security. Sustainability 3, 2027–2049 (2011).
Powell N., Shilton A. N., Pratt S. & Chisti Y. Factors influencing luxury uptake of phosphorus by microalgae in waste stabilization ponds. Environ. Sci. Technol. 42, 5958–5962 (2008). PubMed
McMahon K. D. & Read E. K. Microbial contributions to phosphorus cycling in eutrophic lakes and wastewater. Annu. Rev. Microbiol. 67, 199–219 (2013). PubMed
Solovchenko A., Verschoor A. M., Jablonowski N. D. & Nedbal L. Phosphorus from wastewater to crops: An alternative path involving microalgae. Biotechnol. Adv. in press (2016), 10.1016/j.biotechadv.2016.01.002. PubMed DOI
Kornberg A., Rao N. N. & Ault-Riché D. Inorganic polyphosphate: a molecule of many functions. Annu. Rev. Biochem. 68, 89–125 (1999). PubMed
Rao N. N., Gómez-García M. R. & Kornberg A. Inorganic polyphosphate: essential for growth and survival. Annu. Rev. Biochem. 78, 605–647 (2009). PubMed
Seufferheld M. et al. Identification of organelles in bacteria similar to acidocalcisomes of unicellular eukaryotes. J. Biol. Chem. 278, 29971–29978 (2003). PubMed
Pallerla S. R. et al. Formation of volutin granules in Corynebacterium glutamicum. FEMS Microbiol. Lett. 243, 133–140 (2005). PubMed
Brock J., Rhiel E., Beutler M., Salman V. & Schulz-Vogt H. N. Unusual polyphosphate inclusions observed in a marine Beggiatoa strain. Antonie Van Leeuwenhoek 101, 347–357 (2012). PubMed PMC
Marchesini N., Luo S., Rodrigues C. O., Moreno S. N. & Docampo R. Acidocalcisomes and a vacuolar H+ -pyrophosphatase in malaria parasites. Biochem. J. 347 Pt 1, 243–253 (2000). PubMed PMC
Docampo R., Ulrich P. & Moreno S. N. J. Evolution of acidocalcisomes and their role in polyphosphate storage and osmoregulation in eukaryotic microbes. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 365, 775–784 (2010). PubMed PMC
Marchesini N., Ruiz F. A., Vieira M. & Docampo R. Acidocalcisomes are functionally linked to the contractile vacuole of Dictyostelium discoideum. J. Biol. Chem. 277, 8146–8153 (2002). PubMed
Breus N. A., Ryazanova L. P., Dmitriev V. V., Kulakovskaya T. V. & Kulaev I. S. Accumulation of phosphate and polyphosphate by Cryptococcus humicola and Saccharomyces cerevisiae in the absence of nitrogen. FEMS Yeast Res. 12, 617–624 (2012). PubMed
Vítová M., Hendrychová, J., Cepák V. & Zachleder V. Visualization of DNA-containing structures in various species of Chlorophyta, Rhodophyta and Cyanophyta using SYBR Green I dye. Folia Microbiol. 50, 333–340 (2005). PubMed
Ramos I. et al. Acidocalcisomes as calcium- and polyphosphate-storage compartments during embryogenesis of the insect Rhodnius prolixus Stahl. PLoS One 6, e27276 (2011). PubMed PMC
Yagisawa F., Nishida K., Kuroiwa H., Nagata T. & Kuroiwa T. Identification and mitotic partitioning strategies of vacuoles in the unicellular red alga Cyanidioschyzon merolae. Planta 226, 1017–1029 (2007). PubMed
Yagisawa F. et al. Identification of novel proteins in isolated polyphosphate vacuoles in the primitive red alga Cyanidioschyzon merolae. Plant J. 60, 882–893 (2009). PubMed
Komine Y., Eggink L. L., Park H. & Hoober J. K. Vacuolar granules in Chlamydomonas reinhardtii: polyphosphate and a 70-kDa polypeptide as major components. Planta 210, 897–905 (2000). PubMed
Aksoy M., Pootakham W. & Grossman A. R. Critical function of a Chlamydomonas reinhardtii putative polyphosphate polymerase subunit during nutrient deprivation. Plant Cell 26, 4214–4229 (2014). PubMed PMC
Peverly J. H. & Adamec J. Association of potassium and some other monovalent cations with occurrence of polyphosphate bodies in Chlorella pyrenoidosa. Plant Physiol. 62, 120–126 (1978). PubMed PMC
Meza B., De-Bashan L. E., Hernandez J.-P. & Bashan Y. Accumulation of intra-cellular polyphosphate in Chlorella vulgaris cells is related to indole-3-acetic acid produced by Azospirillum brasilense. Res. Microbiol. 166, 399–407 (2015). PubMed
Aschar-Sobbi R. et al. High sensitivity, quantitative measurements of polyphosphate using a new DAPI-based approach. J. Fuorescence 18, 859–866 (2008). PubMed
Gomes F. M. et al. New insights into the in situ microscopic visualization and quantification of inorganic polyphosphate stores by 4′,6-diamidino-2-phenylindole (DAPI)-staining. Eur. J. Histochem. 57, e34 (2013). PubMed PMC
Kulakova A. N. et al. Direct quantification of inorganic polyphosphate in microbial cells using 4′-6-diamidino-2-phenylindole (DAPI). Environ. Sci. Technol. 45, 7799–7803 (2011). PubMed
Vítová M., Bišová K., Kawano S. & Zachleder V. Accumulation of energy reserves in algae: From cell cycles to biotechnological applications. Biotechnol. Adv. 33, 1204–1218 (2015). PubMed
Brányiková I. et al. Microalgae—novel highly efficient starch producers. Biotechnol. Bioeng. 108, 766–776 (2011). PubMed
Ault-Riché D., Fraley C. D., Tzeng C. M. & Kornberg A. Novel assay reveals multiple pathways regulating stress-induced accumulations of inorganic polyphosphate in Escherichia coli. J. Bacteriol. 180, 1841–1847 (1998). PubMed PMC
Ruiz F. A., Rodrigues C. O. & Docampo R. Rapid changes in polyphosphate content within acidocalcisomes in response to cell growth, differentiation, and environmental stress in Trypanosoma cruzi. J. Biol. Chem. 276, 26114–26121 (2001). PubMed
Krienitz L. et al. Phylogenetic relationship of Chlorella and Parachlorella gen. nov. (Chlorophyta, Trebouxiophyceae). Phycologia 43, 529–542 (2004).
Takeshita T. et al. Starch and lipid accumulation in eight strains of six Chlorella species under comparatively high light intensity and aeration culture conditions. Bioresour. Technol. 158, 127–134 (2014). PubMed
Mizuno Y. et al. Sequential accumulation of starch and lipid induced by sulfur deficiency in Chlorella and Parachlorella species. Bioresour. Technol. 129, 150–155 (2013). PubMed
Li X. et al. The microalga Parachlorella kessleri–a novel highly efficient lipid producer. Biotechnol. Bioeng. 110, 97–107 (2013). PubMed
Ota S. et al. Highly efficient lipid production in the green alga Parachlorella kessleri: draft genome and transcriptome endorsed by whole-cell 3D ultrastructure. Biotechnol. Biofuels 9, 13 (2016). PubMed PMC
Reynolds E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17, 208–212 (1963). PubMed PMC
Courtoy R. & Simar L. J. Importance of controls for the demonstration of carbohydrates in electron microscopy with the silver methenamine or the thiocarbohydrazide-silver proteinate methods. J. Microsc. 100, 199–211 (1974). PubMed
Docampo R., de Souza W., Miranda K., Rohloff P. & Moreno S. N. J. Acidocalcisomes - conserved from bacteria to man. Nat. Rev. Microbiol. 3, 251–261 (2005). PubMed
Docampo R. & Moreno S. N. Acidocalcisome: A novel Ca2+ storage compartment in trypanosomatids and apicomplexan parasites. Parasitol. Today 15, 443–448 (1999). PubMed
Ruiz F. A., Marchesini N., Seufferheld M., Govindjee & Docampo R. The polyphosphate bodies of Chlamydomonas reinhardtii possess a proton-pumping pyrophosphatase and are similar to acidocalcisomes. J. Biol. Chem. 276, 46196–46203 (2001). PubMed
Huang G. et al. Adaptor protein-3 (AP-3) complex mediates the biogenesis of acidocalcisomes and is essential for growth and virulence of Trypanosoma brucei. J. Biol. Chem. 286, 36619–36630 (2011). PubMed PMC
Gray M. J. et al. Polyphosphate is a primordial chaperone. Mol. Cell 53, 689–699 (2014). PubMed PMC
Gray M. J. & Jakob U. Oxidative stress protection by polyphosphate–new roles for an old player. Curr. Opin. Microbiol. 24, 1–6 (2015). PubMed PMC
Crooke E., Akiyama M., Rao N. N. & Kornberg A. Genetically altered levels of inorganic polyphosphate in Escherichia coli. J. Biol. Chem. 269, 6290–6295 (1994). PubMed
Rao N. N. & Kornberg A. Inorganic polyphosphate supports resistance and survival of stationary-phase Escherichia coli. J. Bacteriol. 178, 1394–1400 (1996). PubMed PMC
Pick U. & Weiss M. Polyphosphate hydrolysis within acidic vacuoles in response to amine-induced alkaline stress in the halotolerant alga Dunaliella salina. Plant Physiol. 97, 1234–1240 (1991). PubMed PMC
González-Ballester D. et al. RNA-seq analysis of sulfur-deprived Chlamydomonas cells reveals aspects of acclimation critical for cell survival. Plant Cell 22, 2058–2084 (2010). PubMed PMC
Gómez-García M. R. & Kornberg A. Formation of an actin-like filament concurrent with the enzymatic synthesis of inorganic polyphosphate. Proc. Natl. Acad. Sci. USA 101, 15876–15880 (2004). PubMed PMC
Lander N., Cordeiro C., Huang G. & Docampo R. Polyphosphate and acidocalcisomes. Biochem. Soc. Trans. 44, 1–6 (2016). PubMed PMC
Wayama M. et al. Three-dimensional ultrastructural study of oil and astaxanthin accumulation during encystment in the green alga Haematococcus pluvialis. PLoS One 8, e53618 (2013). PubMed PMC