Deciphering the relationship among phosphate dynamics, electron-dense body and lipid accumulation in the green alga Parachlorella kessleri
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27180903
PubMed Central
PMC4867602
DOI
10.1038/srep25731
PII: srep25731
Knihovny.cz E-zdroje
- MeSH
- barvení a značení MeSH
- biologické modely MeSH
- Chlorophyta cytologie růst a vývoj metabolismus ultrastruktura MeSH
- elektrony * MeSH
- fosfáty metabolismus MeSH
- lipidy chemie MeSH
- polyfosfáty metabolismus MeSH
- sekvenční analýza RNA MeSH
- síra metabolismus MeSH
- transkriptom genetika MeSH
- zobrazování trojrozměrné MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fosfáty MeSH
- lipidy MeSH
- polyfosfáty MeSH
- síra MeSH
Phosphorus is an essential element for life on earth and is also important for modern agriculture, which is dependent on inorganic fertilizers from phosphate rock. Polyphosphate is a biological polymer of phosphate residues, which is accumulated in organisms during the biological wastewater treatment process to enhance biological phosphorus removal. Here, we investigated the relationship between polyphosphate accumulation and electron-dense bodies in the green alga Parachlorella kessleri. Under sulfur-depleted conditions, in which some symporter genes were upregulated, while others were downregulated, total phosphate accumulation increased in the early stage of culture compared to that under sulfur-replete conditions. The P signal was detected only in dense bodies by energy dispersive X-ray analysis. Transmission electron microscopy revealed marked ultrastructural variations in dense bodies with and without polyphosphate. Our findings suggest that the dense body is a site of polyphosphate accumulation, and P. kessleri has potential as a phosphate-accumulating organism.
Zobrazit více v PubMed
Smil V. Phosphorus in the environment: natural flows and human interferences. Annu. Rev. Energy Environ. 25, 53–88 (2000).
Koppelaar R. H. E. M. & Weikard H. P. Assessing phosphate rock depletion and phosphorus recycling options. Glob. Environ. Chang. 23, 1454–1466 (2013).
Cordell D. & White S. Peak phosphorus: clarifying the key issues of a vigorous debate about long-term phosphorus security. Sustainability 3, 2027–2049 (2011).
Powell N., Shilton A. N., Pratt S. & Chisti Y. Factors influencing luxury uptake of phosphorus by microalgae in waste stabilization ponds. Environ. Sci. Technol. 42, 5958–5962 (2008). PubMed
McMahon K. D. & Read E. K. Microbial contributions to phosphorus cycling in eutrophic lakes and wastewater. Annu. Rev. Microbiol. 67, 199–219 (2013). PubMed
Solovchenko A., Verschoor A. M., Jablonowski N. D. & Nedbal L. Phosphorus from wastewater to crops: An alternative path involving microalgae. Biotechnol. Adv. in press (2016), 10.1016/j.biotechadv.2016.01.002. PubMed DOI
Kornberg A., Rao N. N. & Ault-Riché D. Inorganic polyphosphate: a molecule of many functions. Annu. Rev. Biochem. 68, 89–125 (1999). PubMed
Rao N. N., Gómez-García M. R. & Kornberg A. Inorganic polyphosphate: essential for growth and survival. Annu. Rev. Biochem. 78, 605–647 (2009). PubMed
Seufferheld M. PubMed
Pallerla S. R. PubMed
Brock J., Rhiel E., Beutler M., Salman V. & Schulz-Vogt H. N. Unusual polyphosphate inclusions observed in a marine PubMed PMC
Marchesini N., Luo S., Rodrigues C. O., Moreno S. N. & Docampo R. Acidocalcisomes and a vacuolar H PubMed PMC
Docampo R., Ulrich P. & Moreno S. N. J. Evolution of acidocalcisomes and their role in polyphosphate storage and osmoregulation in eukaryotic microbes. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 365, 775–784 (2010). PubMed PMC
Marchesini N., Ruiz F. A., Vieira M. & Docampo R. Acidocalcisomes are functionally linked to the contractile vacuole of PubMed
Breus N. A., Ryazanova L. P., Dmitriev V. V., Kulakovskaya T. V. & Kulaev I. S. Accumulation of phosphate and polyphosphate by PubMed
Vítová M., Hendrychová, J., Cepák V. & Zachleder V. Visualization of DNA-containing structures in various species of Chlorophyta, Rhodophyta and Cyanophyta using SYBR Green I dye. Folia Microbiol. 50, 333–340 (2005). PubMed
Yagisawa F., Nishida K., Kuroiwa H., Nagata T. & Kuroiwa T. Identification and mitotic partitioning strategies of vacuoles in the unicellular red alga PubMed
Yagisawa F. PubMed
Komine Y., Eggink L. L., Park H. & Hoober J. K. Vacuolar granules in PubMed
Aksoy M., Pootakham W. & Grossman A. R. Critical function of a PubMed PMC
Peverly J. H. & Adamec J. Association of potassium and some other monovalent cations with occurrence of polyphosphate bodies in PubMed PMC
Meza B., De-Bashan L. E., Hernandez J.-P. & Bashan Y. Accumulation of intra-cellular polyphosphate in PubMed
Aschar-Sobbi R. PubMed
Kulakova A. N. PubMed
Vítová M., Bišová K., Kawano S. & Zachleder V. Accumulation of energy reserves in algae: From cell cycles to biotechnological applications. Biotechnol. Adv. 33, 1204–1218 (2015). PubMed
Brányiková I. PubMed
Ault-Riché D., Fraley C. D., Tzeng C. M. & Kornberg A. Novel assay reveals multiple pathways regulating stress-induced accumulations of inorganic polyphosphate in Escherichia coli. J. Bacteriol. 180, 1841–1847 (1998). PubMed PMC
Ruiz F. A., Rodrigues C. O. & Docampo R. Rapid changes in polyphosphate content within acidocalcisomes in response to cell growth, differentiation, and environmental stress in PubMed
Krienitz L.
Takeshita T. PubMed
Mizuno Y. PubMed
Li X. PubMed
Reynolds E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17, 208–212 (1963). PubMed PMC
Courtoy R. & Simar L. J. Importance of controls for the demonstration of carbohydrates in electron microscopy with the silver methenamine or the thiocarbohydrazide-silver proteinate methods. J. Microsc. 100, 199–211 (1974). PubMed
Docampo R., de Souza W., Miranda K., Rohloff P. & Moreno S. N. J. Acidocalcisomes - conserved from bacteria to man. Nat. Rev. Microbiol. 3, 251–261 (2005). PubMed
Docampo R. & Moreno S. N. Acidocalcisome: A novel Ca PubMed
Ruiz F. A., Marchesini N., Seufferheld M., Govindjee & Docampo R. The polyphosphate bodies of PubMed
Gray M. J. & Jakob U. Oxidative stress protection by polyphosphate–new roles for an old player. Curr. Opin. Microbiol. 24, 1–6 (2015). PubMed PMC
Crooke E., Akiyama M., Rao N. N. & Kornberg A. Genetically altered levels of inorganic polyphosphate in PubMed
Rao N. N. & Kornberg A. Inorganic polyphosphate supports resistance and survival of stationary-phase Escherichia coli. J. Bacteriol. 178, 1394–1400 (1996). PubMed PMC
Pick U. & Weiss M. Polyphosphate hydrolysis within acidic vacuoles in response to amine-induced alkaline stress in the halotolerant alga PubMed PMC
González-Ballester D. PubMed PMC
Gómez-García M. R. & Kornberg A. Formation of an actin-like filament concurrent with the enzymatic synthesis of inorganic polyphosphate. Proc. Natl. Acad. Sci. USA 101, 15876–15880 (2004). PubMed PMC
Lander N., Cordeiro C., Huang G. & Docampo R. Polyphosphate and acidocalcisomes. Biochem. Soc. Trans. 44, 1–6 (2016). PubMed PMC