Decade of Twist Channel Angular Pressing: A Review
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
19-15479S
Grantová Agentura České Republiky
PubMed
32272679
PubMed Central
PMC7178671
DOI
10.3390/ma13071725
PII: ma13071725
Knihovny.cz E-zdroje
- Klíčová slova
- mechanical properties, microstructure, severe plastic deformation, twist channel angular pressing,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The methods of severe plastic deformation (SPD) have gained attention within the last decades primarily owing to their ability to substantially refine the grains within metallic materials and, therefore, significantly enhance the properties. Among one of the most efficient SPD methods is the equal channel angular pressing (ECAP)-based twist channel angular pressing (TCAP) method, combining channel twist and channel bending within a single die. This unique die affects the processed material with three independent strain paths during a single pass, which supports the development of substructure and efficiently refines the grains. This review is intended to summarize the characteristics of the TCAP method and its main features documented within the last decade, since its development in 2010. The article is supplemented with a brief characterization of other known SPD methods based on the combination of ECAP and twist extrusion (TE) within a single die.
Zobrazit více v PubMed
Hansen N. Hall–Petch relation and boundary strengthening. Scr. Mater. 2004;51:801–806. doi: 10.1016/j.scriptamat.2004.06.002. DOI
Verlinden B., Driver J., Samajdar I., Doherty R.D. Thermo-Mechanical Processing of Metallic Materials. Elsevier; Amsterdam, The Netherlands: 2007.
Fang Y., Chen X., Madigan B., Cao H., Konovalov S. Effects of strain rate on the hot deformation behavior and dynamic recrystallization in China low activation martensitic steel. Fusion Eng. Des. 2016;103:21–30. doi: 10.1016/j.fusengdes.2015.11.036. DOI
Glezer A.M., Metlov L.S. Physics of megaplastic (Severe) deformation in solids. Phys. Solid State. 2010;52:1162–1169. doi: 10.1134/S1063783410060089. DOI
Bagherpour E., Pardis N., Reihanian M., Ebrahimi R. An overview on severe plastic deformation: Research status, techniques classification, microstructure evolution, and applications. Int. J. Adv. Manuf. Technol. 2019;100:1647–1694. doi: 10.1007/s00170-018-2652-z. DOI
Langdon T.G. Twenty-five years of ultrafine-grained materials: Achieving exceptional properties through grain refinement. Acta Mater. 2013;61:7035–7059. doi: 10.1016/j.actamat.2013.08.018. DOI
Qian C., He Z., Liang C., Cha Y., Ji W. Superior intracluster conductivity of metallic lithium-ion battery anode achieved by high-pressure torsion. Mater. Lett. 2020;260:126933. doi: 10.1016/j.matlet.2019.126933. DOI
Voronova L.M., Chashchukhina T.I., Gapontseva T.M., Krasnoperova Y.G., Degtyarev M.V., Pilyugin V.P. Effect of the deformation temperature on the structural refinement of BCC metals with a high stacking fault energy during high pressure torsion. Russ. Metall. 2016;2016:960–965. doi: 10.1134/S0036029516100232. DOI
Kunčická L., Lowe T.C., Davis C.F., Kocich R., Pohludka M. Synthesis of an Al/Al2O3 composite by severe plastic deformation. Mater. Sci. Eng. A. 2015;646:234–241. doi: 10.1016/j.msea.2015.08.075. DOI
Kocich R., Greger M., Macháčková A. Finite element investigation of influence of selected factors on ECAP process; Proceedings of the METAL 2010: 19th International Metallurgical and Materials Conference, Roznov pod Radhostem; Czech Republic. 20–22 May 2010; Ostrava, Czech Republic: Tanger Ltd.; 2010. pp. 166–171.
Elhefnawey M., Shuai G.L., Li Z., Nemat-Alla M., Zhang D.T., Li L. On achieving superior strength for Al–Mg–Zn alloy adopting cold ECAP. Vacuum. 2020;174:109191. doi: 10.1016/j.vacuum.2020.109191. DOI
Hlaváč L.M., Kocich R., Gembalová L., Jonšta P., Hlaváčová I.M. AWJ cutting of copper processed by ECAP. Int. J. Adv. Manuf. Technol. 2016;86:885–894. doi: 10.1007/s00170-015-8236-2. DOI
Valiev R.Z., Langdon T.G. Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater. Sci. 2006;51:881–981. doi: 10.1016/j.pmatsci.2006.02.003. DOI
Tang Y., Sumikawa K., Takizawa Y., Yumoto M., Otagiri Y., Horita Z. Multi-pass high-pressure sliding (MP-HPS) for grain refinement and superplasticity in metallic round rods. Mater. Sci. Eng. A. 2019;748:108–118. doi: 10.1016/j.msea.2019.01.071. DOI
Tóth L.S., Arzaghi M., Fundenberger J.J., Beausir B., Bouaziz O., Arruffat-Massion R. Severe plastic deformation of metals by high-pressure tube twisting. Scr. Mater. 2009;60:175–177. doi: 10.1016/j.scriptamat.2008.09.029. DOI
Kunčická L., Král P., Dvořák J., Kocich R. Texture evolution in biocompatible mg-y-re alloy after friction stir processing. Metals. 2019;9:1181. doi: 10.3390/met9111181. DOI
Zisman A.A., Rybin V.V., Van Boxel S., Seefeldt M., Verlinden B. Equal channel angular drawing of aluminium sheet. Mater. Sci. Eng. A. 2006;427:123–129. doi: 10.1016/j.msea.2006.04.007. DOI
Kocich R., Macháčková A., Andreyachshenko V.A. A study of plastic deformation behaviour of Ti alloy during equal channel angular pressing with partial back pressure. Comput. Mater. Sci. 2015;101:233–241. doi: 10.1016/j.commatsci.2015.02.003. DOI
Fatemi-Varzaneh S.M., Zarei-Hanzaki A., Izadi S. Shear deformation and grain refinement during accumulative back extrusion of AZ31 magnesium alloy. J. Mater. Sci. 2010;46:1937–1944. doi: 10.1007/s10853-010-5029-8. DOI
Kocich R., Macháčková A., Fojtík F. Comparison of strain and stress conditions in conventional and ARB rolling processes. Int. J. Mech. Sci. 2012;64:54–61. doi: 10.1016/j.ijmecsci.2012.08.003. DOI
Mohebbi M.S., Akbarzadeh A. Accumulative spin-bonding (ASB) as a novel SPD process for fabrication of nanostructured tubes. Mater. Sci. Eng. A. 2010;528:180–188. doi: 10.1016/j.msea.2010.08.081. DOI
Gupta A.K., Maddukuri T.S., Singh S.K. Constrained groove pressing for sheet metal processing. Prog. Mater. Sci. 2016;84:403–462. doi: 10.1016/j.pmatsci.2016.09.008. DOI
Torkestani A., Dashtbayazi M.R. A new method for severe plastic deformation of the copper sheets. Mater. Sci. Eng. A. 2018;737:236–244. doi: 10.1016/j.msea.2018.09.054. DOI
Abdolvand H., Sohrabi H., Faraji G., Yusof F. A novel combined severe plastic deformation method for producing thin-walled ultrafine grained cylindrical tubes. Mater. Lett. 2015;143:167–171. doi: 10.1016/j.matlet.2014.12.107. DOI
Zangiabadi A., Kazeminezhad M. Development of a novel severe plastic deformation method for tubular materials: Tube Channel Pressing (TCP) Mater. Sci. Eng. A. 2011;528:5066–5072. doi: 10.1016/j.msea.2011.03.012. DOI
Wang C., Li F., Li Q., Li J., Wang L., Dong J. A novel severe plastic deformation method for fabricating ultrafine grained pure copper. Mater. Des. 2013;43:492–498. doi: 10.1016/j.matdes.2012.07.047. DOI
Wang Q.D., Chen Y.J., Lin J.B., Zhang L.J., Zhai C.Q. Microstructure and properties of magnesium alloy processed by a new severe plastic deformation method. Mater. Lett. 2007;61:4599–4602. doi: 10.1016/j.matlet.2007.02.067. DOI
Kim K., Yoon J. Evolution of the microstructure and mechanical properties of AZ61 alloy processed by half channel angular extrusion (HCAE), a novel severe plastic deformation process. Mater. Sci. Eng. A. 2013;578:160–166. doi: 10.1016/j.msea.2013.04.073. DOI
Richert M., Liu Q., Hansen N. Microstructural evolution over a large strain range in aluminium deformed by cyclic-extrusion–compression. Mater. Sci. Eng. A. 1999;260:275–283. doi: 10.1016/S0921-5093(98)00988-5. DOI
Ghosh A.K., Huang W. Investigations and Applications of Severe Plastic Deformation. Springer; Dordrecht, The Netherlands: 2000. Severe Deformation Based Process for Grain Subdivision and Resulting Microstructures; pp. 29–36.
Pardis N., Talebanpour B., Ebrahimi R., Zomorodian S. Cyclic expansion-extrusion (CEE): A modified counterpart of cyclic extrusion-compression (CEC) Mater. Sci. Eng. A. 2011;528:7537–7540. doi: 10.1016/j.msea.2011.06.059. DOI
Ensafi M., Faraji G., Abdolvand H. Cyclic extrusion compression angular pressing (CECAP) as a novel severe plastic deformation method for producing bulk ultrafine grained metals. Mater. Lett. 2017;197:12–16. doi: 10.1016/j.matlet.2017.03.142. DOI
Khoddam S., Farhoumand A., Hodgson P.D. Axi-symmetric forward spiral extrusion, a kinematic and experimental study. Mater. Sci. Eng. A. 2011;528:1023–1029. doi: 10.1016/j.msea.2010.09.062. DOI
Farhoumand A., Hodgson P.D., Khoddam S. Finite element analysis of plastic deformation in variable lead axisymmetric forward spiral extrusion. J. Mater. Sci. 2013;48:2454–2461. doi: 10.1007/s10853-012-7033-7. DOI
Ebrahimi G.R., Barghamadi A., Ezatpour H.R., Amiri A. A novel single pass severe plastic deformation method using combination of planar twist extrusion and conventional extrusion. J. Manuf. Process. 2019;47:427–436. doi: 10.1016/j.jmapro.2019.09.033. DOI
Yu J., Zhang Z., Wang Q., Hao H., Cui J., Li L. Rotary extrusion as a novel severe plastic deformation method for cylindrical tubes. Mater. Lett. 2018;215:195–199. doi: 10.1016/j.matlet.2017.12.048. DOI
Mizunuma S. Large Straining Behavior and Microstructure Refinement of Several Metals by Torsion Extrusion Process. Mater. Sci. Forum. 2006;503–504:185–192. doi: 10.4028/www.scientific.net/MSF.503-504.185. DOI
Noor S.V., Eivani A.R., Jafarian H.R., Mirzaei M. Inhomogeneity in microstructure and mechanical properties during twist extrusion. Mater. Sci. Eng. A. 2016;652:186–191. doi: 10.1016/j.msea.2015.11.056. DOI
Pardis N., Ebrahimi R. Deformation behavior in Simple Shear Extrusion (SSE) as a new severe plastic deformation technique. Mater. Sci. Eng. A. 2009;527:355–360. doi: 10.1016/j.msea.2009.08.051. DOI
Utsunomiya H., Hatsuda K., Sakai T., Saito Y. Continuous grain refinement of aluminum strip by conshearing. Mater. Sci. Eng. A. 2004;372:199–206. doi: 10.1016/j.msea.2003.12.014. DOI
Lee J.-C., Seok H.-K., Suh J.-Y. Microstructural evolutions of the Al strip prepared by cold rolling and continuous equal channel angular pressing. Acta Mater. 2002;50:4005–4019. doi: 10.1016/S1359-6454(02)00200-8. DOI
Huang Y., Prangnell P.B. Continuous frictional angular extrusion and its application in the production of ultrafine-grained sheet metals. Scr. Mater. 2007;56:333–336. doi: 10.1016/j.scriptamat.2006.11.011. DOI
Huang J.Y., Zhu Y.T., Jiang H., Lowe T.C. Microstructures and dislocation configurations in nanostructured Cu processed by repetitive corrugation and straightening. Acta Mater. 2001;49:1497–1505. doi: 10.1016/S1359-6454(01)00069-6. DOI
Nakamura K., Neishi K., Kaneko K., Nakagaki M., Horita Z. Development of Severe Torsion Straining Process for Rapid Continuous Grain Refinement. Mater. Trans. 2004;45:3338–3342. doi: 10.2320/matertrans.45.3338. DOI
Kocich R., Lukáč P. Handbook of Mechanical Nanostructuring. Wiley-VCH Verlag GmbH & Co. KGaA; Weinheim, Germany: 2015. SPD Processes-Methods for Mechanical Nanostructuring; pp. 235–262.
Semenova I.P., Polyakov A.V., Raab G.I., Lowe T.C., Valiev R.Z. Enhanced fatigue properties of ultrafine-grained Ti rods processed by ECAP-Conform. J. Mater. Sci. 2012;47:7777–7781. doi: 10.1007/s10853-012-6675-9. DOI
Kocich R., Greger M., Kursa M., Szurman I., Macháčková A. Twist channel angular pressing (TCAP) as a method for increasing the efficiency of SPD. Mater. Sci. Eng. A. 2010;527:6386–6392. doi: 10.1016/j.msea.2010.06.057. DOI
Jamili A.M., Zarei-Hanzaki A., Abedi H.R., Mosayebi M., Kocich R., Kunčická L. Development of fresh and fully recrystallized microstructures through friction stir processing of a rare earth bearing magnesium alloy. Mater. Sci. Eng. A. 2019;775:138837. doi: 10.1016/j.msea.2019.138837. DOI
Kocich R., Fiala J., Szurman I., Macháčková A., Mihola M. Twist-channel angular pressing: Effect of the strain path on grain refinement and mechanical properties of copper. J. Mater. Sci. 2011;46:7865–7876. doi: 10.1007/s10853-011-5768-1. DOI
Iqbal U.M., Muralidharan S. Optimization of die design parameters and experimental validation on twist channel angular pressing process of AA6061-T6 aluminium alloy. Mater. Res. Express. 2019;6:0865f2. doi: 10.1088/2053-1591/ab25b2. DOI
Segal V.M. Slip line solutions, deformation mode and loading history during equal channel angular extrusion. Mater. Sci. Eng. A. 2003;345:36–46. doi: 10.1016/S0921-5093(02)00258-7. DOI
Kim H.S., Seo M.H., Hong S.I. On the die corner gap formation in equal channel angular pressing. Mater. Sci. Eng. A. 2000;291:86–90. doi: 10.1016/S0921-5093(00)00970-9. DOI
Orlov D., Beygelzimer Y., Synkov S., Varyukhin V., Horita Z. Evolution of Microstructure and Hardness in Pure Al by Twist Extrusion. Mater. Trans. 2008;49:2–6. doi: 10.2320/matertrans.ME200724. DOI
Latypov M.I., Lee M.G., Beygelzimer Y., Kulagin R., Kim H.S. On the simple shear model of twist extrusion and its deviations. Met. Mater. Int. 2015;21:569–579. doi: 10.1007/s12540-015-4387-9. DOI
Bahadori S.R., Dehghani K., Akbari Mousavi S.A.A. Comparison of microstructure and mechanical properties of pure copper processed by twist extrusion and equal channel angular pressing. Mater. Lett. 2015;152:48–52. doi: 10.1016/j.matlet.2015.03.063. DOI
Kocich R., Kunčická L., Mihola M., Skotnicová K. Numerical and experimental analysis of twist channel angular pressing (TCAP) as a SPD process. Mater. Sci. Eng. A. 2013;563:86–94. doi: 10.1016/j.msea.2012.11.047. DOI
Glezer A.M., Sundeev R.V. General view of severe plastic deformation in solid state. Mater. Lett. 2015;139:455–457. doi: 10.1016/j.matlet.2014.10.052. DOI
Kunčická L., Kocich R., Král P., Pohludka M., Marek M. Effect of strain path on severely deformed aluminium. Mater. Lett. 2016;180:280–283. doi: 10.1016/j.matlet.2016.05.163. DOI
Kocich R., Kunčická L., Král P., Macháčková A. Sub-structure and mechanical properties of twist channel angular pressed aluminium. Mater. Charact. 2016;119:75–83. doi: 10.1016/j.matchar.2016.07.020. DOI
Stolyarov V.V., Zhu Y.T., Alexandrov I.V., Lowe T.C., Valiev R.Z. Influence of ECAP routes on the microstructure and properties of pure Ti. Mater. Sci. Eng. A. 2001;299:59–67. doi: 10.1016/S0921-5093(00)01411-8. DOI
Kunčická L., Kocich R. Structure Development after Twist Channel Angular Pressing. Acta Phys. Pol. A. 2017;134:681–685. doi: 10.12693/APhysPolA.134.683. DOI
Kunčická L., Kocich R., Ryukhtin V., Cullen J.C.T., Lavery N.P. Study of structure of naturally aged aluminium after twist channel angular pressing. Mater. Charact. 2019;152:94–100. doi: 10.1016/j.matchar.2019.03.045. DOI
Beyerlein I.J., Tóth L.S. Texture evolution in equal-channel angular extrusion. Prog. Mater. Sci. 2009;54:427–510. doi: 10.1016/j.pmatsci.2009.01.001. DOI
Kocich R., Macháčková A., Kunčická L. Twist channel multi-angular pressing (TCMAP) as a new SPD process: Numerical and experimental study. Mater. Sci. Eng. A. 2014;612:445–455. doi: 10.1016/j.msea.2014.06.079. DOI
Kocich R., Kunčická L., Macháčková A. Twist Channel Multi-Angular Pressing ( TCMAP ) as a method for increasing the efficiency of SPD. IOP Conf. Ser. Mater. Sci. Eng. 2014;63:012006. doi: 10.1088/1757-899X/63/1/012006. DOI
Alavizadeh S.M., Abrinia K., Parvizi A. Twisted Multi Channel Angular Pressing (TMCAP) as a Novel Severe Plastic Deformation Method. Met. Mater. Int. 2020;26:260–271. doi: 10.1007/s12540-019-00319-x. DOI
Shamsborhan M., Ebrahimi M. Production of nanostructure copper by planar twist channel angular extrusion process. J. Alloys Compd. 2016;682:552–556. doi: 10.1016/j.jallcom.2016.05.012. DOI
Shokuhfar A., Shamsborhan M. Finite element analysis of planar twist channel angular extrusion (PTCAE) as a novel severe plastic deformation method. J. Mech. Sci. Technol. 2014;28:1753–1757. doi: 10.1007/s12206-014-0321-1. DOI
Shamsborhan M., Shokuhfar A., Nejadseyfi O., Kakemam J., Moradi M. Experimental and numerical comparison of equal channel angular extrusion (ECAE) with planar twist channel angular extrusion (PTCAE) Proc. Inst. Mech. Eng. Part C. 2015;229:3059–3067. doi: 10.1177/0954406214566035. DOI
Special Issue: Mechanical Properties in Progressive Mechanically Processed Metallic Materials
Deformation Behavior of Al/Cu Clad Composite During Twist Channel Angular Pressing