Deformation Behavior of Al/Cu Clad Composite During Twist Channel Angular Pressing
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-15479S
Grantová Agentura České Republiky
PubMed
32933103
PubMed Central
PMC7559872
DOI
10.3390/ma13184047
PII: ma13184047
Knihovny.cz E-zdroje
- Klíčová slova
- clad composite, effective strain, finite element analysis, residual stress, rotary swaging,
- Publikační typ
- časopisecké články MeSH
The research and development of modern metallic materials goes hand in hand with increasing their lifetime via optimized deformation processing. The presented work deals with preparation of an Al/Cu clad composite with implemented reinforcing Cu wires by the method of twist channel angular pressing (TCAP). Single and double pass extrusion of the clad composite was simulated numerically and carried out experimentally. This work is unique as no such study has been presented so far. Detailed monitoring of the deformation behavior during both the passes was enabled by superimposed grids and sensors. Both the sets of results revealed that already the single pass imparted significant effective strain (higher than e.g., conventional equal channel angular pressing (ECAP)), especially to the Al matrix, and resulted in notable deformation strengthening of both the Al and Cu composite components, which was confirmed by the increased punch load and decreased plastic flow velocity (second pass compared to first pass). Processing via the second pass also resulted in homogenization of the imposed strain and residual stress across the composite cross-section. However, the investigated parameters featured slight variations in dependence on the monitored location across the cross-section.
Zobrazit více v PubMed
Kocich R., Kursa M., Szurman I., Dlouhý A. The influence of imposed strain on the development of microstructure and transformation characteristics of Ni–Ti shape memory alloys. J. Alloys Compd. 2011;509:2716–2722. doi: 10.1016/j.jallcom.2010.12.003. DOI
Kunčická L., Kocich R., Drápala J., Andreyachshenko V.A. FEM simulations and comparison of the ecap and ECAP-PBP influence on Ti6Al4V alloy’s deformation behavior; Proceedings of the Metal 2013—22nd International Conference on Metallurgy and Materials; Brno, Czech Republic. 15–17 May 2013; pp. 391–396.
Kocich R., Kunčická L., Král P., Macháčková A. Sub-structure and mechanical properties of twist channel angular pressed aluminium. Mater. Charact. 2016;119:75–83. doi: 10.1016/j.matchar.2016.07.020. DOI
Kocich R., Kunčická L., Macháčková A. Twist Channel Multi-Angular Pressing (TCMAP) as a method for increasing the efficiency of SPD. IOP Conf. Ser. Mater. Sci. Eng. 2014;63:12006. doi: 10.1088/1757-899X/63/1/012006. DOI
Jamaati R., Naseri M., Toroghinejad M.R. Wear behavior of nanostructured Al/Al2O3 composite fabricated via accumulative roll bonding (ARB) process. Mater. Des. 2014;59:540–549. doi: 10.1016/j.matdes.2014.03.027. DOI
Kawasaki M., Foissey J., Langdon T. Development of hardness homogeneity and superplastic behavior in an aluminum–copper eutectic alloy processed by high-pressure torsion. Mater. Sci. Eng. A. 2013;561:118–125. doi: 10.1016/j.msea.2012.10.096. DOI
Kocich R., Szurman I., Kursa M., Fiala J. Investigation of influence of preparation and heat treatment on deformation behaviour of the alloy NiTi after ECAE. Mater. Sci. Eng. A. 2009;512:100–104. doi: 10.1016/j.msea.2009.01.054. DOI
Khosravifard A., Jahedi M., Yaghtin A.H. Three dimensional finite element study on torsion extrusion processing of 1050 aluminum alloy. Trans. Nonferrous Met. Soc. China. 2012;22:2771–2776. doi: 10.1016/S1003-6326(11)61531-8. DOI
Valiev R.Z., Alexandrov I.V., Zhu Y.T., Lowe T.C. Paradox of Strength and Ductility in Metals Processed Bysevere Plastic Deformation. J. Mater. Res. 2002;17:5–8. doi: 10.1557/JMR.2002.0002. DOI
Humphreys F., Hatherly M. Recrystallization and Related Annealing Phenomena. 2nd ed. Elsevier; Oxford, UK: 2004.
Langdon T. Grain boundary sliding revisited: Developments in sliding over four decades. J. Mater. Sci. 2006;41:597–609. doi: 10.1007/s10853-006-6476-0. DOI
Cetin A., Krebs J., Durussel A., Rossoll A., Inoue J., Koseki T., Nambu S., Mortensen A. Laminated Metal Composites by Infiltration. Met. Mater. Trans. A. 2011;42:3509–3520. doi: 10.1007/s11661-011-0756-2. DOI
Polyanskii S.N., Kolnogorov V.S. Cladded Steel for the Oil and Gas Industries. Chem. Pet. Eng. 2002;38:703–707. doi: 10.1023/A:1023355018056. DOI
Motarjemi A.K., Kocak M., Ventzke V. Mechanical and fracture characterization of a bi-material steel plate. Int. J. Press. Vessel. Pip. 2002;79:181–191. doi: 10.1016/S0308-0161(02)00012-1. DOI
Jin J.Y., Hong S.I. Effect of heat treatment on tensile deformation characteristics and properties of Al3003/STS439 clad composite. Mater. Sci. Eng. A. 2014;596:1–8. doi: 10.1016/j.msea.2013.12.019. DOI
Movahedi M., Kokabi A., Reihani S.S. Investigation on the bond strength of Al-1100/St-12 roll bonded sheets, optimization and characterization. Mater. Des. 2011;32:3143–3149. doi: 10.1016/j.matdes.2011.02.057. DOI
Inoue J., Sadeghi A., Kyokuta N., Ohmori T., Koseki T. Multilayer Mg: Stainless Steel Sheets, Microstructure, and Mechanical Properties. Metall. Mater. Trans. A. 2017;48:2483–2495. doi: 10.1007/s11661-017-3997-x. DOI
Kocich R., Kunčická L., Davis C.F., Lowe T.C., Szurman I., Macháčková A. Deformation behavior of multilayered Al–Cu clad composite during cold-swaging. Mater. Des. 2016;90:379–388. doi: 10.1016/j.matdes.2015.10.145. DOI
Kunčická L., Kocich R., Dvořák K., Macháčková A. Rotary swaged laminated Cu-Al composites: Effect of structure on residual stress and mechanical and electric properties. Mater. Sci. Eng. A. 2019;742:743–750. doi: 10.1016/j.msea.2018.11.026. DOI
Kim I.K., Hong S.I. Effect of heat treatment on the bending behavior of tri-layered Cu/Al/Cu composite plates. Mater. Des. 2013;47:590–598. doi: 10.1016/j.matdes.2012.12.070. DOI
Lee T.H., Lee Y.J., Park K.T., Jeong H.G., Lee J.H. Mechanical and asymmetrical thermal properties of Al/Cu composite fabricated by repeated hydrostatic extrusion process. Met. Mater. Int. 2015;21:402–407. doi: 10.1007/s12540-015-4242-z. DOI
Li F.S., Xu R.Z., Wei Z.C., Sun X.F., Wang P.F., Li X.F., Li Z. Investigation on the Electron Beam Welding of Al/Cu Composite Plates. Trans. Indian Inst. Met. 2020;73:353–363. doi: 10.1007/s12666-019-01846-2. DOI
Fronczek D., Wojewoda-Budka J., Chulist R., Sypien A., Korneva A., Szulc Z., Schell N., Zieba P. Structural properties of Ti/Al clads manufactured by explosive welding and annealing. Mater. Des. 2016;91:80–89. doi: 10.1016/j.matdes.2015.11.087. DOI
Kim I.K., Hong S.I. Roll-Bonded Tri-Layered Mg/Al/Stainless Steel Clad Composites and their Deformation and Fracture Behavior. Metall. Mater. Trans. A. 2013;44:3890–3900. doi: 10.1007/s11661-013-1697-8. DOI
Li X., Zu G., Ding M., Mu Y., Wang P. Interfacial microstructure and mechanical properties of Cu/Al clad sheet fabricated by asymmetrical roll bonding and annealing. Mater. Sci. Eng. A. 2011;529:485–491. doi: 10.1016/j.msea.2011.09.087. DOI
Jee M.H., Choi J.U., Park S.H., Jeong Y.G., Baik D.H. Influences of tensile drawing on structures, mechanical, and electrical properties of wet-spun multi-walled carbon nanotube composite fiber. Macromol. Res. 2012;20:650–657. doi: 10.1007/s13233-012-0094-2. DOI
Kazanowski P., E Epler M., Misiolek W.Z. Bi-metal rod extrusion—Process and product optimization. Mater. Sci. Eng. A. 2004;369:170–180. doi: 10.1016/j.msea.2003.11.002. DOI
Kocich R., Kunčická L., Macháčková A., Šofer M. Improvement of mechanical and electrical properties of rotary swaged Al-Cu clad composites. Mater. Des. 2017;123:137–146. doi: 10.1016/j.matdes.2017.03.048. DOI
Ma X., Huang C., Xu W., Zhou H., Wu X.L., Zhu Y. Strain hardening and ductility in a coarse-grain/nanostructure laminate material. Scr. Mater. 2015;103:57–60. doi: 10.1016/j.scriptamat.2015.03.006. DOI
Jafarlou D., Zalnezhad E., Ezazi M., Mardi N., Hassan M. The application of equal channel angular pressing to join dissimilar metals, aluminium alloy and steel, using an Ag–Cu–Sn interlayer. Mater. Des. 2015;87:553–566. doi: 10.1016/j.matdes.2015.08.062. DOI
Sapanathan T., Khoddam S., Zahiri S.H., Zarei-Hanzaki A. Strength changes and bonded interface investigations in a spiral extruded aluminum/copper composite. Mater. Des. 2014;57:306–314. doi: 10.1016/j.matdes.2014.01.030. DOI
Kwon H.C., Jung T.K., Lim S.C., Kim M.S., Kwon H.C. Fabrication of Copper Clad Aluminum Wire (CCAW) by Indirect Extrusion and Drawing. Mater. Sci. Forum. 2004;449–452:317–320. doi: 10.4028/www.scientific.net/MSF.449-452.317. DOI
Kim H., Hong S.I. Deformation and fracture of diffusion-bonded Cu–Ni–Zn/Cu–Cr layered composite. Mater. Des. 2015;67:42–49. doi: 10.1016/j.matdes.2014.11.005. DOI
Kunčická L., Kocich R., Král P., Pohludka M., Marek M. Effect of strain path on severely deformed aluminium. Mater. Lett. 2016;180:280–283. doi: 10.1016/j.matlet.2016.05.163. DOI
Kocich R., Fiala J., Szurman I., Macháčková A., Mihola M. Twist-channel angular pressing: Effect of the strain path on grain refinement and mechanical properties of copper. J. Mater. Sci. 2011;46:7865–7876. doi: 10.1007/s10853-011-5768-1. DOI
Macháčková A. Decade of Twist Channel Angular Pressing: A Review. Mater. Basel. 2020;13:1725. doi: 10.3390/ma13071725. PubMed DOI PMC
Russell A., Lee K.L. Structure-Property Relations in Nonferrous Metals. 1st ed. John Wiley & Sons; Hoboken, NJ, USA: 2005.
Orlov D., Beygelzimer Y., Synkov S., Varyukhin V., Tsuji N., Horita Z. Microstructure Evolution in Pure Al Processed with Twist Extrusion. Mater. Trans. 2009;50:96–100. doi: 10.2320/matertrans.MD200802. DOI
Kocich R., Greger M., Kursa M., Szurman I., Macháčková A. Twist channel angular pressing (TCAP) as a method for increasing the efficiency of SPD. Mater. Sci. Eng. A. 2010;527:6386–6392. doi: 10.1016/j.msea.2010.06.057. DOI
Kocich R., Kunčická L., Král P., Strunz P. Characterization of innovative rotary swaged Cu-Al clad composite wire conductors. Mater. Des. 2018;160:828–835. doi: 10.1016/j.matdes.2018.10.027. DOI
Djavanroodi F., Ebrahimi M. Effect of die channel angle, friction and back pressure in the equal channel angular pressing using 3D finite element simulation. Mater. Sci. Eng. A. 2010;527:1230–1235. doi: 10.1016/j.msea.2009.09.052. DOI
Effect of Oxide Systems on Purity of Tool Steels Fabricated by Electro Slag Remelting
Structural Phenomena Introduced by Rotary Swaging: A Review
Special Issue: Mechanical Properties in Progressive Mechanically Processed Metallic Materials