Deformation Behavior of Al/Cu Clad Composite During Twist Channel Angular Pressing

. 2020 Sep 11 ; 13 (18) : . [epub] 20200911

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32933103

Grantová podpora
19-15479S Grantová Agentura České Republiky

The research and development of modern metallic materials goes hand in hand with increasing their lifetime via optimized deformation processing. The presented work deals with preparation of an Al/Cu clad composite with implemented reinforcing Cu wires by the method of twist channel angular pressing (TCAP). Single and double pass extrusion of the clad composite was simulated numerically and carried out experimentally. This work is unique as no such study has been presented so far. Detailed monitoring of the deformation behavior during both the passes was enabled by superimposed grids and sensors. Both the sets of results revealed that already the single pass imparted significant effective strain (higher than e.g., conventional equal channel angular pressing (ECAP)), especially to the Al matrix, and resulted in notable deformation strengthening of both the Al and Cu composite components, which was confirmed by the increased punch load and decreased plastic flow velocity (second pass compared to first pass). Processing via the second pass also resulted in homogenization of the imposed strain and residual stress across the composite cross-section. However, the investigated parameters featured slight variations in dependence on the monitored location across the cross-section.

Zobrazit více v PubMed

Kocich R., Kursa M., Szurman I., Dlouhý A. The influence of imposed strain on the development of microstructure and transformation characteristics of Ni–Ti shape memory alloys. J. Alloys Compd. 2011;509:2716–2722. doi: 10.1016/j.jallcom.2010.12.003. DOI

Kunčická L., Kocich R., Drápala J., Andreyachshenko V.A. FEM simulations and comparison of the ecap and ECAP-PBP influence on Ti6Al4V alloy’s deformation behavior; Proceedings of the Metal 2013—22nd International Conference on Metallurgy and Materials; Brno, Czech Republic. 15–17 May 2013; pp. 391–396.

Kocich R., Kunčická L., Král P., Macháčková A. Sub-structure and mechanical properties of twist channel angular pressed aluminium. Mater. Charact. 2016;119:75–83. doi: 10.1016/j.matchar.2016.07.020. DOI

Kocich R., Kunčická L., Macháčková A. Twist Channel Multi-Angular Pressing (TCMAP) as a method for increasing the efficiency of SPD. IOP Conf. Ser. Mater. Sci. Eng. 2014;63:12006. doi: 10.1088/1757-899X/63/1/012006. DOI

Jamaati R., Naseri M., Toroghinejad M.R. Wear behavior of nanostructured Al/Al2O3 composite fabricated via accumulative roll bonding (ARB) process. Mater. Des. 2014;59:540–549. doi: 10.1016/j.matdes.2014.03.027. DOI

Kawasaki M., Foissey J., Langdon T. Development of hardness homogeneity and superplastic behavior in an aluminum–copper eutectic alloy processed by high-pressure torsion. Mater. Sci. Eng. A. 2013;561:118–125. doi: 10.1016/j.msea.2012.10.096. DOI

Kocich R., Szurman I., Kursa M., Fiala J. Investigation of influence of preparation and heat treatment on deformation behaviour of the alloy NiTi after ECAE. Mater. Sci. Eng. A. 2009;512:100–104. doi: 10.1016/j.msea.2009.01.054. DOI

Khosravifard A., Jahedi M., Yaghtin A.H. Three dimensional finite element study on torsion extrusion processing of 1050 aluminum alloy. Trans. Nonferrous Met. Soc. China. 2012;22:2771–2776. doi: 10.1016/S1003-6326(11)61531-8. DOI

Valiev R.Z., Alexandrov I.V., Zhu Y.T., Lowe T.C. Paradox of Strength and Ductility in Metals Processed Bysevere Plastic Deformation. J. Mater. Res. 2002;17:5–8. doi: 10.1557/JMR.2002.0002. DOI

Humphreys F., Hatherly M. Recrystallization and Related Annealing Phenomena. 2nd ed. Elsevier; Oxford, UK: 2004.

Langdon T. Grain boundary sliding revisited: Developments in sliding over four decades. J. Mater. Sci. 2006;41:597–609. doi: 10.1007/s10853-006-6476-0. DOI

Cetin A., Krebs J., Durussel A., Rossoll A., Inoue J., Koseki T., Nambu S., Mortensen A. Laminated Metal Composites by Infiltration. Met. Mater. Trans. A. 2011;42:3509–3520. doi: 10.1007/s11661-011-0756-2. DOI

Polyanskii S.N., Kolnogorov V.S. Cladded Steel for the Oil and Gas Industries. Chem. Pet. Eng. 2002;38:703–707. doi: 10.1023/A:1023355018056. DOI

Motarjemi A.K., Kocak M., Ventzke V. Mechanical and fracture characterization of a bi-material steel plate. Int. J. Press. Vessel. Pip. 2002;79:181–191. doi: 10.1016/S0308-0161(02)00012-1. DOI

Jin J.Y., Hong S.I. Effect of heat treatment on tensile deformation characteristics and properties of Al3003/STS439 clad composite. Mater. Sci. Eng. A. 2014;596:1–8. doi: 10.1016/j.msea.2013.12.019. DOI

Movahedi M., Kokabi A., Reihani S.S. Investigation on the bond strength of Al-1100/St-12 roll bonded sheets, optimization and characterization. Mater. Des. 2011;32:3143–3149. doi: 10.1016/j.matdes.2011.02.057. DOI

Inoue J., Sadeghi A., Kyokuta N., Ohmori T., Koseki T. Multilayer Mg: Stainless Steel Sheets, Microstructure, and Mechanical Properties. Metall. Mater. Trans. A. 2017;48:2483–2495. doi: 10.1007/s11661-017-3997-x. DOI

Kocich R., Kunčická L., Davis C.F., Lowe T.C., Szurman I., Macháčková A. Deformation behavior of multilayered Al–Cu clad composite during cold-swaging. Mater. Des. 2016;90:379–388. doi: 10.1016/j.matdes.2015.10.145. DOI

Kunčická L., Kocich R., Dvořák K., Macháčková A. Rotary swaged laminated Cu-Al composites: Effect of structure on residual stress and mechanical and electric properties. Mater. Sci. Eng. A. 2019;742:743–750. doi: 10.1016/j.msea.2018.11.026. DOI

Kim I.K., Hong S.I. Effect of heat treatment on the bending behavior of tri-layered Cu/Al/Cu composite plates. Mater. Des. 2013;47:590–598. doi: 10.1016/j.matdes.2012.12.070. DOI

Lee T.H., Lee Y.J., Park K.T., Jeong H.G., Lee J.H. Mechanical and asymmetrical thermal properties of Al/Cu composite fabricated by repeated hydrostatic extrusion process. Met. Mater. Int. 2015;21:402–407. doi: 10.1007/s12540-015-4242-z. DOI

Li F.S., Xu R.Z., Wei Z.C., Sun X.F., Wang P.F., Li X.F., Li Z. Investigation on the Electron Beam Welding of Al/Cu Composite Plates. Trans. Indian Inst. Met. 2020;73:353–363. doi: 10.1007/s12666-019-01846-2. DOI

Fronczek D., Wojewoda-Budka J., Chulist R., Sypien A., Korneva A., Szulc Z., Schell N., Zieba P. Structural properties of Ti/Al clads manufactured by explosive welding and annealing. Mater. Des. 2016;91:80–89. doi: 10.1016/j.matdes.2015.11.087. DOI

Kim I.K., Hong S.I. Roll-Bonded Tri-Layered Mg/Al/Stainless Steel Clad Composites and their Deformation and Fracture Behavior. Metall. Mater. Trans. A. 2013;44:3890–3900. doi: 10.1007/s11661-013-1697-8. DOI

Li X., Zu G., Ding M., Mu Y., Wang P. Interfacial microstructure and mechanical properties of Cu/Al clad sheet fabricated by asymmetrical roll bonding and annealing. Mater. Sci. Eng. A. 2011;529:485–491. doi: 10.1016/j.msea.2011.09.087. DOI

Jee M.H., Choi J.U., Park S.H., Jeong Y.G., Baik D.H. Influences of tensile drawing on structures, mechanical, and electrical properties of wet-spun multi-walled carbon nanotube composite fiber. Macromol. Res. 2012;20:650–657. doi: 10.1007/s13233-012-0094-2. DOI

Kazanowski P., E Epler M., Misiolek W.Z. Bi-metal rod extrusion—Process and product optimization. Mater. Sci. Eng. A. 2004;369:170–180. doi: 10.1016/j.msea.2003.11.002. DOI

Kocich R., Kunčická L., Macháčková A., Šofer M. Improvement of mechanical and electrical properties of rotary swaged Al-Cu clad composites. Mater. Des. 2017;123:137–146. doi: 10.1016/j.matdes.2017.03.048. DOI

Ma X., Huang C., Xu W., Zhou H., Wu X.L., Zhu Y. Strain hardening and ductility in a coarse-grain/nanostructure laminate material. Scr. Mater. 2015;103:57–60. doi: 10.1016/j.scriptamat.2015.03.006. DOI

Jafarlou D., Zalnezhad E., Ezazi M., Mardi N., Hassan M. The application of equal channel angular pressing to join dissimilar metals, aluminium alloy and steel, using an Ag–Cu–Sn interlayer. Mater. Des. 2015;87:553–566. doi: 10.1016/j.matdes.2015.08.062. DOI

Sapanathan T., Khoddam S., Zahiri S.H., Zarei-Hanzaki A. Strength changes and bonded interface investigations in a spiral extruded aluminum/copper composite. Mater. Des. 2014;57:306–314. doi: 10.1016/j.matdes.2014.01.030. DOI

Kwon H.C., Jung T.K., Lim S.C., Kim M.S., Kwon H.C. Fabrication of Copper Clad Aluminum Wire (CCAW) by Indirect Extrusion and Drawing. Mater. Sci. Forum. 2004;449–452:317–320. doi: 10.4028/www.scientific.net/MSF.449-452.317. DOI

Kim H., Hong S.I. Deformation and fracture of diffusion-bonded Cu–Ni–Zn/Cu–Cr layered composite. Mater. Des. 2015;67:42–49. doi: 10.1016/j.matdes.2014.11.005. DOI

Kunčická L., Kocich R., Král P., Pohludka M., Marek M. Effect of strain path on severely deformed aluminium. Mater. Lett. 2016;180:280–283. doi: 10.1016/j.matlet.2016.05.163. DOI

Kocich R., Fiala J., Szurman I., Macháčková A., Mihola M. Twist-channel angular pressing: Effect of the strain path on grain refinement and mechanical properties of copper. J. Mater. Sci. 2011;46:7865–7876. doi: 10.1007/s10853-011-5768-1. DOI

Macháčková A. Decade of Twist Channel Angular Pressing: A Review. Mater. Basel. 2020;13:1725. doi: 10.3390/ma13071725. PubMed DOI PMC

Russell A., Lee K.L. Structure-Property Relations in Nonferrous Metals. 1st ed. John Wiley & Sons; Hoboken, NJ, USA: 2005.

Orlov D., Beygelzimer Y., Synkov S., Varyukhin V., Tsuji N., Horita Z. Microstructure Evolution in Pure Al Processed with Twist Extrusion. Mater. Trans. 2009;50:96–100. doi: 10.2320/matertrans.MD200802. DOI

Kocich R., Greger M., Kursa M., Szurman I., Macháčková A. Twist channel angular pressing (TCAP) as a method for increasing the efficiency of SPD. Mater. Sci. Eng. A. 2010;527:6386–6392. doi: 10.1016/j.msea.2010.06.057. DOI

Kocich R., Kunčická L., Král P., Strunz P. Characterization of innovative rotary swaged Cu-Al clad composite wire conductors. Mater. Des. 2018;160:828–835. doi: 10.1016/j.matdes.2018.10.027. DOI

Djavanroodi F., Ebrahimi M. Effect of die channel angle, friction and back pressure in the equal channel angular pressing using 3D finite element simulation. Mater. Sci. Eng. A. 2010;527:1230–1235. doi: 10.1016/j.msea.2009.09.052. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...