Photooxidation of Dipyrrinones: Reaction with Singlet Oxygen and Characterization of Reaction Intermediates
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39909730
PubMed Central
PMC11833878
DOI
10.1021/acs.joc.4c02954
Knihovny.cz E-zdroje
- MeSH
- bilirubin chemie MeSH
- fotochemické procesy MeSH
- metamizol chemie MeSH
- molekulární struktura MeSH
- oxidace-redukce * MeSH
- singletový kyslík * chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bilirubin MeSH
- metamizol MeSH
- singletový kyslík * MeSH
Bilirubin (BR) is a water-insoluble product of heme catabolism in mammals. Elevated blood concentrations of BR, especially in the neonatal period, are treated with blue-green light phototherapy. The major mechanism of BR elimination during phototherapy is photoisomerization, while a minor, less studied mechanism of degradation is oxidation. In this work, we studied the oxidation of the bilirubin model tetramethyl-dipyrrinone (Z-13) by singlet oxygen in methanol using UV-vis and ESI-MS spectroscopy, resulting in propentdyopents as the main oxidation products. We also identified two additional intermediates that were formed during the reaction (hydroperoxide 21a and imine 17). The structure of the hydroperoxide was confirmed by helium-tagging IR spectroscopy. Such reaction intermediates formed during the oxidation of BR or bilirubin models have not been described so far. We believe that this work can be used as a first step in studying the complex oxidation mechanism of BR during phototherapy.
Department of Chemistry Faculty of Science Masaryk University Kamenice 5 Brno 625 00 Czech Republic
RECETOX Faculty of Science Masaryk University Kamenice 5 Brno 625 00 Czech Republic
Zobrazit více v PubMed
Wagner K. H.; Wallner M.; Molzer C.; Gazzin S.; Bulmer A. C.; Tiribelli C.; Vitek L. Looking to the horizon: the role of bilirubin in the development and prevention of age-related chronic diseases. Clin. Sci. (Lond) 2015, 129, 1–25. 10.1042/CS20140566. PubMed DOI
Vitek L. Bilirubin as a signaling molecule. Med. Res. Rev. 2020, 40, 1335–1351. 10.1002/med.21660. PubMed DOI
Vítek L.; Ostrow J. D. Bilirubin Chemistry and Metabolism; Harmful and Protective Aspects. Curr. Pharm. Des. 2009, 15, 2869–2883. 10.2174/138161209789058237. PubMed DOI
Vreman H. J.; Kourula S.; Jasprova J.; Ludvikova L.; Klan P.; Muchova L.; Vitek L.; Cline B. K.; Wong R. J.; Stevenson D. K. The effect of light wavelength on in vitro bilirubin photodegradation and photoisomer production. Pediatr. Res. 2019, 85, 905–905. 10.1038/s41390-019-0356-1. PubMed DOI
Roll E. B.; Christensen T. Formation of photoproducts and cytotoxicity of bilirubin irradiated with turquoise and blue phototherapy light. Acta Paediatr. 2005, 94, 1448–1454. 10.1080/08035250510032655. PubMed DOI
Ebbesen F.; Agati G.; Pratesi R. Phototherapy with turquoise versus blue light. Arch. Dis. Child Fetal Neonatal Ed. 2003, 88, 430F–431. 10.1136/fn.88.5.F430. PubMed DOI PMC
McDonagh A. F.; Palma L. A.; Lightner D. A. Blue light and bilirubin excretion. Science 1980, 208, 145–151. 10.1126/science.7361112. PubMed DOI
Lightner D. A.; McDonagh A. F. Molecular Mechanisms of Phototherapy for Neonatal Jaundice. Acc. Chem. Res. 1984, 17, 417–424. 10.1021/ar00108a002. DOI
Mujawar T.; Sevelda P.; Madea D.; Klan P.; Svenda J. A Platform for the Synthesis of Oxidation Products of Bilirubin. J. Am. Chem. Soc. 2024, 146, 1603–1611. 10.1021/jacs.3c11778. PubMed DOI PMC
Vitek L.; Bellarosa C.; Tiribelli C. Induction of Mild Hyperbilirubinemia: Hype or Real Therapeutic Opportunity?. Clin. Pharmacol. Ther. 2019, 106, 568–575. 10.1002/cpt.1341. PubMed DOI
Tomat E. Propentdyopents: Brief History of a Family of Dipyrrolic Pigments. J. Porphyr. Phthalocyanines 2019, 23, 1265–1272. 10.1142/S1088424619300210. DOI
Kranc K. R.; Pyne G. J.; Tao L.; Claridge T. D. W.; Harris D. A.; Cadoux-Hudson T. A. D.; Turnbull J. J.; Schofield C. J.; Clark J. F. Oxidative Degradation of Bilirubin Produces Vasoactive Compounds. Eur. J. Biochem. 2000, 267, 7094–7101. 10.1046/j.1432-1327.2000.01812.x. PubMed DOI
Ritter M.; Neupane S.; Seidel R. A.; Steinbeck C.; Pohnert G. In vivo and in vitro identification of Z-BOX C - a new bilirubin oxidation end product. Org. Biomol. Chem. 2018, 16, 3553–3555. 10.1039/C8OB00164B. PubMed DOI
Rapoport R. M. Bilirubin Oxidation Products and Cerebral Vasoconstriction. Front. Pharmacol. 2018, 9, 303.10.3389/fphar.2018.00303. PubMed DOI PMC
Lightner D. A.; Linnane W. P.; Ahlfors C. E. Bilirubin Photooxidation Products in the Urine of Jaundiced Neonates Receiving Phototherapy. Pediatr. Res. 1984, 18, 696–700. 10.1203/00006450-198408000-00003. PubMed DOI
Lightner D. A. Photochemistry of Pyrroles, Bile-Pigments and Porphyrins. Photochem. Photobiol. 1974, 19, 457–459. 10.1111/j.1751-1097.1974.tb06537.x. PubMed DOI
Lightner D. A.; Quistad G. B. Hematinic Acid and Propentdyopents from Bilirubin Photo-Oxidation in Vitro. FEBS Lett. 1972, 25, 94–96. 10.1016/0014-5793(72)80462-9. PubMed DOI
Bonnett R.; Stewart J. C. M. Photooxidation of Bilirubin in Hydroxylic Solvents - Propentdyopent Adducts as Major Products. J. Chem. Soc., Chem. Commun. 1972, 596–597. 10.1039/c39720000596. DOI
Lightner D. A.; Quistad G. B. Imide products from photo-oxidation of bilirubin and mesobilirubin. Nat. New Biol. 1972, 236, 203–205. 10.1038/newbio236203a0. PubMed DOI
Lightner D. A.; Quistad G. B. Methylvinylmaleimide from bilirubin photooxidation. Science 1972, 175, 324–324. 10.1126/science.175.4019.324. PubMed DOI
Landen G. L.; Park Y. T.; Lightner D. A. On the Role of Singlet Oxygen in the Self-Sensitized Photo-Oxygenation of Bilirubin and Its Pyrromethenone Models. Tetrahedron 1983, 39, 1893–1907. 10.1016/S0040-4020(01)88703-2. DOI
Baptista M. S.; Cadet J.; Di Mascio P.; Ghogare A. A.; Greer A.; Hamblin M. R.; Lorente C.; Nunez S. C.; Ribeiro M. S.; Thomas A. H.; et al. Type I and Type II Photosensitized Oxidation Reactions: Guidelines and Mechanistic Pathways. Photochem. Photobiol. 2017, 93, 912–919. 10.1111/php.12716. PubMed DOI PMC
Lu C.; Lin J.-M.; Huie C. W. Determination of total bilirubin in human serum by chemiluminescence from the reaction of bilirubin and peroxynitrite. Talanta 2004, 63, 333–337. 10.1016/j.talanta.2003.10.049. PubMed DOI
Palilis L. P.; Calokerinos A. C.; Grekas N. Chemiluminescence arising from the oxidation of bilirubin in aqueous media. Anal. Chim. Acta 1996, 333, 267–275. 10.1016/0003-2670(96)00279-6. PubMed DOI
Watanabe H.; Usa M.; Kobayashi M.; Agatsuma S.-I.; Inaba H. Weak chemiluminescence of bilirubin and its stimulation by aldehydes. J. Biolumin. Chemilumin. 1992, 7, 1–11. 10.1002/bio.1170070102. PubMed DOI
Watanabe H.; Nagoshi T.; Agatsuma S.; Kobayashi M.; Inaba H. Bilirubin chemiluminescence induced by the attack of active oxygen species. J. Biolumin. Chemilumin. 1992, 7, 13–19. 10.1002/bio.1170070103. PubMed DOI
Boiadjiev S. E.; Lightner D. A. DIPYRRINONES-CONSTITUENTS OF THE PIGMENTS OF LIFE. A REVIEW. Org. Prep. Proced. Int. 2006, 38, 347–399. 10.1080/00304940609355999. DOI
Lightner D. A.; Park Y. T. Dye-Sensitized Photooxygenation of Oxopyrromethenes Related to Bilirubin. Tetrahedron Lett. 1976, 17, 2209–2212. 10.1016/0040-4039(76)80030-5. DOI
Lightner D. A.; Pak C. S. Oxygenation of a Dipyrromethene Model for Bilirubin - Formation of a Singlet Oxygen-Like Product. Experientia 1976, 32, 1107–1109. 10.1007/BF01927570. PubMed DOI
Grunewald J. O.; Walker J. C.; Strope E. R. Photooxidation of Xanthobilirubic Acid in Aqueous-Solution - Product and Mechanism Studies. Photochem. Photobiol. 1976, 24, 29–40. 10.1111/j.1751-1097.1976.tb06794.x. PubMed DOI
Lightner D. A.; Park Y.-T. On the vinyl group photooxygenation of bilirubin-like model compounds. J. Heterocycl. Chem. 1978, 15, 1117–1120. 10.1002/jhet.5570150709. DOI
Lightner D. A.; Park Y. T. Singlet Oxygen Reactivity of Bilirubin and Related Tetrapyrroles. Experientia 1978, 34, 555–557. 10.1007/BF01936954. DOI
Lightner D. A.; Park Y. T. On the syntheses and singlet oxygen reactivity of oxodipyrromethene models for bilirubin. Tetrahedron 1979, 35, 463–471. 10.1016/0040-4020(79)80141-6. DOI
Lightner D. A.; Rodgers S. L. Enzymatic Oxidation of Xanthobilirubic Acid. Experientia 1981, 37, 1245–1247. 10.1007/BF01948337. DOI
Bonnett R.; Ioannou S.; Swanson F. J. Propentdyopents and Related Compounds. Part 4. Propentdyopent–Alkanol Adducts by the Photo-Oxygenation of Pyrromethenones. J. Chem. Soc., Perkin Trans. 1989, 1, 711–714. 10.1039/P19890000711. DOI
Madea D.; Mujawar T.; Dvořák A.; Pospíšilová K.; Muchová L.; Čubáková P.; Kloz M.; Švenda J.; Vítek L.; Klán P. Photochemistry of (Z)-Isovinylneoxanthobilirubic Acid Methyl Ester, a Bilirubin Dipyrrinone Subunit: Femtosecond Transient Absorption and Stimulated Raman Emission Spectroscopy. J. Org. Chem. 2022, 87, 3089–3103. 10.1021/acs.joc.1c02870. PubMed DOI
Lightner D. A.; Quistad G. B. The dye-sensitized photooxygenation of pyrrole α-aldehydes. J. Heterocycl. Chem. 1973, 10, 273–274. 10.1002/jhet.5570100232. DOI
Foote C. S.; Dzakpasu A. A.; Lin J. W. P. Chemistry of Singlet Oxygen. XX. Mechanism of Sensitized Photooxidation of Enamines. Tetrahedron Lett. 1975, 16, 1247–1250. 10.1016/S0040-4039(00)72109-5. DOI
Lightner D. A.; Park Y. T. Synthesis, Photooxidation and Z Reversible E Photoisomerization of Benzalpyrrolinones. J. Heterocycl. Chem. 1977, 14, 415–422. 10.1002/jhet.5570140311. DOI
Koppenol W. H.; Stanbury D. M.; Bounds P. L. Electrode potentials of partially reduced oxygen species, from dioxygen to water. Free. Radic. Biol. Med. 2010, 49, 317–322. 10.1016/j.freeradbiomed.2010.04.011. PubMed DOI
Schweitzer C.; Schmidt R. Physical mechanisms of generation and deactivation of singlet oxygen. Chem. Rev. 2003, 103, 1685–1757. 10.1021/cr010371d. PubMed DOI
Fukuzumi S.; Fujita S.; Suenobu T.; Yamada H.; Imahori H.; Araki Y.; Ito O. Electron transfer properties of singlet oxygen and promoting effects of scandium ion. J. Phys. Chem. A 2002, 106, 1241–1247. 10.1021/jp013829o. DOI
Peters G.; Rodgers M. A. Single-electron transfer from NADH analogues to singlet oxygen. Biochim. Biophys. Acta 1981, 637, 43–52. 10.1016/0005-2728(81)90208-5. PubMed DOI
Saito I.; Matsuura T.; Inoue K. Formation of superoxide ion via one-electron transfer from electron donors to singlet oxygen. J. Am. Chem. Soc. 1983, 105, 3200–3206. 10.1021/ja00348a040. DOI
Inoue K.; Matsuura T.; Saito I. Importance of single electron-transfer in singlet oxygen reaction in aqueous solution: Oxidation of electron-rich thioanisoles. Tetrahedron 1985, 41, 2177–2181. 10.1016/S0040-4020(01)96590-1. DOI
Ferroud C.; Rool P.; Santamaria J. Singlet oxygen mediated alkaloid tertiary amines oxidation by single electron transfer. Tetrahedron Lett. 1998, 39, 9423–9426. 10.1016/S0040-4039(98)02184-4. DOI
Baciocchi E.; Del Giacco T.; Lapi A. Dual pathways for the desilylation of silylamines by singlet oxygen. Org. Lett. 2006, 8, 1783–1786. 10.1021/ol0602607. PubMed DOI
Baciocchi E.; Del Giacco T.; Lapi A. Oxygenation of benzyldimethylamine by singlet oxygen. Products and mechanism. Org. Lett. 2004, 6, 4791–4794. 10.1021/ol047876l. PubMed DOI
Baciocchi E.; Del Giacco T.; Lapi A. Quenching of singlet oxygen by tertiary aliphatic amines. Structural effects on rates and products. Helv. Chim. Acta 2006, 89, 2273–2280. 10.1002/hlca.200690211. DOI
Baciocchi E.; Del Giacco T.; Lanzalunga O.; Lapi A. Singlet oxygen promoted carbon-heteroatom bond cleavage in dibenzyl sulfides and tertiary dibenzylamines. Structural effects and the role of exciplexes. J. Org. Chem. 2007, 72, 9582–9589. 10.1021/jo701641b. PubMed DOI
Baciocchi E.; Del Giacco T.; Lanzalunga O.; Lapi A.; Raponi D. The singlet oxygen oxidation of chlorpromazine and some phenothiazine derivatives. Products and reaction mechanisms. J. Org. Chem. 2007, 72, 5912–5915. 10.1021/jo0706980. PubMed DOI
Howard J. K.; Rihak K. J.; Bissember A. C.; Smith J. A. The Oxidation of Pyrrole. Chem.—Asian J. 2016, 11, 155–167. 10.1002/asia.201500659. PubMed DOI
George M. V.; Bhat V. V. Photooxygenations of nitrogen heterocycles. Chem. Rev. 1979, 79, 447–478. 10.1021/cr60321a003. DOI
Zeinali N.; Oluwoye I.; Altarawneh M.; Dlugogorski B. Z. The mechanism of electrophilic addition of singlet oxygen to pyrrolic ring. Theor. Chem. Acc. 2019, 138, 1–11. 10.1007/s00214-019-2478-2. DOI
Yang J. X.; Lv G. C.; Wang Z. H.; Sun X. M.; Gao J. Mechanisms, kinetics and eco-toxicity assessment of singlet oxygen, sulfate and hydroxyl radicals-initiated degradation of fenpiclonil in aquatic environments. J. Hazard. Mater. 2021, 409, 12450510.1016/j.jhazmat.2020.124505. PubMed DOI
Xue M.; Zhuang D. L.; Fu L. Z.; Chen G.; Su J. Y.; Zhu J.; Yi X. Y. Mechanism of metalated pyrrole-singlet oxygen chemiluminescent reaction. Polyhedron 2023, 238, 11642110.1016/j.poly.2023.116421. DOI
Lightner D. A.; Pak C. S. Dye-Sensitized Photooxygenation of Tert-Butylpyrroles. J. Org. Chem. 1975, 40, 2724–2728. 10.1021/jo00907a005. DOI
Wasserman H. H.; Xia M. D.; Wang J. J.; Petersen A. K.; Jorgensen M. Singlet oxygen oxidation of pyrroles. Formation of 5-substituted derivatives. Tetrahedron Lett. 1999, 40, 6145–6148. 10.1016/S0040-4039(99)01171-5. DOI
Lightner D. A.; Bisacchi G. S.; Norris R. D. On the Mechanism of the Sensitized Photooxygenation of Pyrroles. J. Am. Chem. Soc. 1976, 98, 802–807. 10.1021/ja00419a029. DOI
Low L. K.; Lightner D. A. Pyrrole Photooxidation - Unusual Products from 2,5-Dimethylpyrrole. J. Chem. Soc., Chem. Commun. 1972, 116–117. 10.1039/c39720000116. DOI
Lightner D. A.; Quistad G. B. Photooxidation of 3,4-Diethyl-2,5-Dimethylpyrrole. Angew. Chem., Int. Ed. 1972, 11, 215–216. 10.1002/anie.197202151. PubMed DOI
Alberti M. N.; Vougioukalakis G. C.; Orfanopoulos M. Photosensitized oxidations of substituted pyrroles: unanticipated radical-derived oxygenated products. J. Org. Chem. 2009, 74, 7274–7282. 10.1021/jo9012942. PubMed DOI
Fang X. W.; Jin F. M.; Jin H. F.; von Sonntag C. Reaction of the superoxide radical with the N-centered radical derived from N-acetyltryptophan methyl ester. J. Chem. Soc., Perkin Trans. 2 1998, 2, 259–264. 10.1039/a706979k. DOI
Lightner D. A. THE PHOTOREACTIVITY OF BILIRUBIN AND RELATED PYRROLES. Photochem. Photobiol. 1977, 26, 427–436. 10.1111/j.1751-1097.1977.tb07510.x. DOI
Bonnett R.; Hamzetash D.; Vallés M. A. Propentdyopents [5-(2-Oxo-2H-Pyrrol-5-ylmethylene)pyrrol-2(5H)-Ones] and Related Compounds. Part 2. The Z⇄E Photoisomerisation of Pyrromethenone Systems. J. Chem. Soc., Perkin Trans. 1987, 1, 1383–1388. 10.1039/P19870001383. DOI
Chen Q. Q.; Wang T. Y.; Zhang Y.; Wang Q. A.; Ma J. S. Large scale, efficient synthesis of 9-unsubstituted dipyrrinone. Synth. Commun. 2002, 32, 1031–1040. 10.1081/SCC-120003151. DOI
Ichimura K.; Ichikawa S.; Imamura K. Syntheses of 3,4-Dimethylpyrrole. Bull. Chem. Soc. Jpn. 1976, 49, 1157–1158. 10.1246/bcsj.49.1157. DOI
Madea D.; Mahvidi S.; Chalupa D.; Mujawar T.; Dvořák A.; Muchová L.; Janoš J.; Slavíček P.; Švenda J.; Vítek L.; Klán P. Wavelength-Dependent Photochemistry and Biological Relevance of a Bilirubin Dipyrrinone Subunit. J. Org. Chem. 2020, 85, 13015–13028. 10.1021/acs.joc.0c01673. PubMed DOI
Ritter M.; Seidel R. A.; Bellstedt P.; Schneider B.; Bauer M.; Görls H.; Pohnert G. Isolation and Identification of Intermediates of the Oxidative Bilirubin Degradation. Org. Lett. 2016, 18, 4432–4435. 10.1021/acs.orglett.6b02287. PubMed DOI
Huggins M. T.; Lightner D. A. Hydrogen-bonded dimers in dipyrrinones and acyldipyrrinones. Monatsh. Chem. 2001, 132, 203–221. 10.1007/s007060170131. DOI
Montforts F.-P.; Schwartz U. M. Ein gezielter Aufbau des Chlorinsystems. Liebigs Ann. Chem. 1985, 1985, 1228–1253. 10.1002/jlac.198519850614. DOI
Henning; Dobeneck; Schnierle F. Zur Stokvis-Reaktion, XVI Die Konstitution der Propentdyopent-Addukte. Justus Liebigs Ann. Chem. 1968, 711, 135–138. 10.1002/jlac.19687110119. DOI
Turro N. J.; Chow M. F. Magnetic-Field Effects on the Thermolysis of Endoperoxides of Aromatic-Compounds - Correlations with Singlet Oxygen Yield and Activation Entropies. J. Am. Chem. Soc. 1979, 101, 3701–3703. 10.1021/ja00507a067. DOI
Ludvikova L.; Fris P.; Heger D.; Sebej P.; Wirz J.; Klan P. Photochemistry of rose bengal in water and acetonitrile: a comprehensive kinetic analysis. Phys. Chem. Chem. Phys. 2016, 18, 16266–16273. 10.1039/C6CP01710J. PubMed DOI
Quistad G. B.; Lightner D. A. Pyrrole Photo-Oxidation - Direct Formation of Maleimides. J. Chem. Soc. D 1971, 1099–1100. 10.1039/c29710001099. DOI
Nogales D. F.; Ma J. S.; Lightner D. A. Self-Association of Dipyrrinones Observed by 2D-NOE NMR and Dimerization Constants Calculated from 1H-NMR Chemical-Shifts. Tetrahedron 1993, 49, 2361–2372. 10.1016/S0040-4020(01)86316-X. DOI
Frisch M. J.; Trucks G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Scalmani G.; Barone V.; Petersson G. A.; Nakatsuji H.;. et al.Gaussian 16 Rev. C.01; Gaussian Inc.: Wallingford, CT, 2016.
Rio G.; Ranjon A.; Pouchot O.; Scholl M. J. 2,3,4,5 Tetraphenyl Pyrrole Hydroperoxide Formed by Photo Oxidation. Bull. Soc. Chim. Fr. 1969, 5, 1667.
Ramasseul R.; Rassat A. Photoxydation des di-t-butyl-2,5 et tri-t-butyl-2,3,5 pyrrole isolement des hydroperoxydes correspondants. Tetrahedron Lett. 1972, 13, 1337–1340. 10.1016/S0040-4039(01)84621-9. DOI
Mizuno K.; Ohmura N.; Nakanishi S.; Otsuji Y. Regioselective Photo-Oxygenation of 2-Aryl-4,5,6,7-Tetra-Hydroindoles - Preparation and Reactions of 2-Aryl-7a-Hydroperoxy-4,5,6,7,7a-Pentahydroindolenines. J. Chem. Soc., Chem. Commun. 1983, 355–356. 10.1039/c39830000355. DOI
Zhang Z.; Shi C.; Xia X.; Du J.; Fan J.; Peng X. Molecular Design of Monochromophore-Based Bifunctional Photosensitizers for Simultaneous Ratiometric Oxygen Reporting and Photodynamic Cancer Therapy. Anal. Chem. 2021, 93, 13539–13547. 10.1021/acs.analchem.1c02485. PubMed DOI
Wells J. M.; McLuckey S. A. Collision-induced dissociation (CID) of peptides and proteins. Biol. Mass Spectrom. 2005, 402, 148–185. 10.1016/S0076-6879(05)02005-7. PubMed DOI
Freyer W.; Flatau S. The first annulated porphyrazine containing four endoperoxide bridges. Tetrahedron Lett. 1996, 37, 5083–5086. 10.1016/0040-4039(96)01034-9. DOI
Jasik J.; Zabka J.; Roithova J.; Gerlich D. Infrared spectroscopy of trapped molecular dications below 4 K. Int. J. Mass Spectrom. 2013, 354, 204–210. 10.1016/j.ijms.2013.06.007. DOI
Roithova J.; Gray A.; Andris E.; Jasik J.; Gerlich D. Helium Tagging Infrared Photodissociation Spectroscopy of Reactive Ions. Acc. Chem. Res. 2016, 49, 223–230. 10.1021/acs.accounts.5b00489. PubMed DOI
Galliani G.; Manitto P.; Monti D. A Kinetic-Study of the Interaction between Bilirubin and Thermally Produced Singlet Oxygen. Isr. J. Chem. 1983, 23, 219–222. 10.1002/ijch.198300031. DOI
Bielski B. H. J.; Shiue G. G.; Bajuk S. Reduction of Nitro Blue Tetrazolium by CO2- and O2- Radicals. J. Phys. Chem. 1980, 84, 830–833. 10.1021/j100445a006. DOI
Kuga T.; Sasano Y.; Iwabuchi Y. IBX as a catalyst for dehydration of hydroperoxides: green entry to α,β-unsaturated ketones oxygenative allylic transposition. Chem. Commun. 2018, 54, 798–801. 10.1039/C7CC08957K. PubMed DOI
Kornblum N.; Delamare H. E. The Base Catalyzed Decomposition of a Dialkyl Peroxide. J. Am. Chem. Soc. 1951, 73, 880–881. 10.1021/ja01146a542. DOI
Li H.-Y.; Drummond S.; DeLucca I.; Boswell G. A. Singlet oxygen oxidation of pyrroles: Synthesis and chemical transformations of novel 4,4-bis(trifluoromethyl)imidazoline analogs. Tetrahedron 1996, 52, 11153–11162. 10.1016/0040-4020(96)00578-9. DOI
Gottlieb H. E.; Kotlyar V.; Nudelman A. NMR Chemical Shifts of Common Laboratory Solvents as Trace Impurities. J. Org. Chem. 1997, 62, 7512–7515. 10.1021/jo971176v. PubMed DOI
Pierce K. M.; Parsons B. A.; Synovec R. E.; Chapter 10 - Pixel-Level Data Analysis Methods for Comprehensive Two-Dimensional Chromatography. In Data Handling in Science and Technology, de la Peña A. M.; Goicoechea H. C.; Escandar G. M.; Olivieri A. C., Eds.; Vol. 29; Elsevier, 2015; pp 427–463.
Baek S. J.; Park A.; Ahn Y. J.; Choo J. Baseline Correction Using Asymmetrically Reweighted Penalized Least Squares Smoothing. Analyst 2015, 140, 250–257. 10.1039/C4AN01061B. PubMed DOI
Garcia D. Robust Smoothing of Gridded Data in One and Higher Dimensions with Missing Values. Comput. Stat. Data Anal. 2010, 54, 1167–1178. 10.1016/j.csda.2009.09.020. PubMed DOI PMC
Virtanen P.; Gommers R.; Oliphant T. E.; Haberland M.; Reddy T.; Cournapeau D.; Burovski E.; Peterson P.; Weckesser W.; Bright J.; et al. Scipy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261–272. 10.1038/s41592-019-0686-2. PubMed DOI PMC
Newville M.; Otten R.; Nelson A.; Stensitzki T.; Ingargiola A.; Allan D.; Fox A.; Carter F.; Michał R.; Osborn R.;. et al.LMFIT: Non-Linear Least-Square Minimization and Curve-Fitting for Python; Zenodo: 2024.
Robben U.; Lindner I.; Gartner W. G. New open-chain tetrapyrroles as chromophores in the plant photoreceptor phytochrome. J. Am. Chem. Soc. 2008, 130, 11303–11311. 10.1021/ja076728y. PubMed DOI
Lemon C. M.; Marletta M. A. Corrole-Substituted Fluorescent Heme Proteins. Inorg. Chem. 2021, 60, 2716–2729. 10.1021/acs.inorgchem.0c03599. PubMed DOI PMC
Coffin A. R.; Roussell M. A.; Tserlin E.; Pelkey E. T. Regiocontrolled synthesis of pyrrole-2-carboxaldehydes and 3-pyrrolin-2-ones from pyrrole Weinreb amides. J. Org. Chem. 2006, 71, 6678–6681. 10.1021/jo061043m. PubMed DOI
Hwang K. O.; Lightner D. A. Synthesis and Spectroscopic Properties of N,N-Bridged Dipyrrinones. Tetrahedron 1994, 50, 1955–1966. 10.1016/S0040-4020(01)85059-6. DOI
Vondoben H.; Brunner E. Über eine Ordnung der Dipyrromethene und Über die Betainstruktur des Bilirubins. XI. Mitteilung zur Stokvis-Reaktion. Hoppe-Seyler’s Z. Physiol. Chem. 1965, 341, 157–166. 10.1515/bchm2.1965.341.1.157. PubMed DOI
von Dobeneck H.; Hägel E.; Graf W. Die Konstitution des Propentdyopents. VIII. Mitteil. zur Stokvis-Reaktion. II. Mitteil. Über Pyrrolderivate mit O-Funktionen in α-Stellung. Hoppe-Seyler’s Z. Physiol. Chem. 1962, 329, 182–187. 10.1515/bchm2.1962.329.1.182. PubMed DOI
Carney J. M.; Hammer R. J.; Hulce M.; Lomas C. M.; Miyashiro D. High-efficiency microphotooxidation using milliwatt LED sources. Tetrahedron Lett. 2011, 52, 352–355. 10.1016/j.tetlet.2010.11.071. DOI