Photooxidation of Dipyrrinones: Reaction with Singlet Oxygen and Characterization of Reaction Intermediates

. 2025 Feb 14 ; 90 (6) : 2403-2420. [epub] 20250205

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39909730

Bilirubin (BR) is a water-insoluble product of heme catabolism in mammals. Elevated blood concentrations of BR, especially in the neonatal period, are treated with blue-green light phototherapy. The major mechanism of BR elimination during phototherapy is photoisomerization, while a minor, less studied mechanism of degradation is oxidation. In this work, we studied the oxidation of the bilirubin model tetramethyl-dipyrrinone (Z-13) by singlet oxygen in methanol using UV-vis and ESI-MS spectroscopy, resulting in propentdyopents as the main oxidation products. We also identified two additional intermediates that were formed during the reaction (hydroperoxide 21a and imine 17). The structure of the hydroperoxide was confirmed by helium-tagging IR spectroscopy. Such reaction intermediates formed during the oxidation of BR or bilirubin models have not been described so far. We believe that this work can be used as a first step in studying the complex oxidation mechanism of BR during phototherapy.

Zobrazit více v PubMed

Wagner K. H.; Wallner M.; Molzer C.; Gazzin S.; Bulmer A. C.; Tiribelli C.; Vitek L. Looking to the horizon: the role of bilirubin in the development and prevention of age-related chronic diseases. Clin. Sci. (Lond) 2015, 129, 1–25. 10.1042/CS20140566. PubMed DOI

Vitek L. Bilirubin as a signaling molecule. Med. Res. Rev. 2020, 40, 1335–1351. 10.1002/med.21660. PubMed DOI

Vítek L.; Ostrow J. D. Bilirubin Chemistry and Metabolism; Harmful and Protective Aspects. Curr. Pharm. Des. 2009, 15, 2869–2883. 10.2174/138161209789058237. PubMed DOI

Vreman H. J.; Kourula S.; Jasprova J.; Ludvikova L.; Klan P.; Muchova L.; Vitek L.; Cline B. K.; Wong R. J.; Stevenson D. K. The effect of light wavelength on in vitro bilirubin photodegradation and photoisomer production. Pediatr. Res. 2019, 85, 905–905. 10.1038/s41390-019-0356-1. PubMed DOI

Roll E. B.; Christensen T. Formation of photoproducts and cytotoxicity of bilirubin irradiated with turquoise and blue phototherapy light. Acta Paediatr. 2005, 94, 1448–1454. 10.1080/08035250510032655. PubMed DOI

Ebbesen F.; Agati G.; Pratesi R. Phototherapy with turquoise versus blue light. Arch. Dis. Child Fetal Neonatal Ed. 2003, 88, 430F–431. 10.1136/fn.88.5.F430. PubMed DOI PMC

McDonagh A. F.; Palma L. A.; Lightner D. A. Blue light and bilirubin excretion. Science 1980, 208, 145–151. 10.1126/science.7361112. PubMed DOI

Lightner D. A.; McDonagh A. F. Molecular Mechanisms of Phototherapy for Neonatal Jaundice. Acc. Chem. Res. 1984, 17, 417–424. 10.1021/ar00108a002. DOI

Mujawar T.; Sevelda P.; Madea D.; Klan P.; Svenda J. A Platform for the Synthesis of Oxidation Products of Bilirubin. J. Am. Chem. Soc. 2024, 146, 1603–1611. 10.1021/jacs.3c11778. PubMed DOI PMC

Vitek L.; Bellarosa C.; Tiribelli C. Induction of Mild Hyperbilirubinemia: Hype or Real Therapeutic Opportunity?. Clin. Pharmacol. Ther. 2019, 106, 568–575. 10.1002/cpt.1341. PubMed DOI

Tomat E. Propentdyopents: Brief History of a Family of Dipyrrolic Pigments. J. Porphyr. Phthalocyanines 2019, 23, 1265–1272. 10.1142/S1088424619300210. DOI

Kranc K. R.; Pyne G. J.; Tao L.; Claridge T. D. W.; Harris D. A.; Cadoux-Hudson T. A. D.; Turnbull J. J.; Schofield C. J.; Clark J. F. Oxidative Degradation of Bilirubin Produces Vasoactive Compounds. Eur. J. Biochem. 2000, 267, 7094–7101. 10.1046/j.1432-1327.2000.01812.x. PubMed DOI

Ritter M.; Neupane S.; Seidel R. A.; Steinbeck C.; Pohnert G. In vivo and in vitro identification of Z-BOX C - a new bilirubin oxidation end product. Org. Biomol. Chem. 2018, 16, 3553–3555. 10.1039/C8OB00164B. PubMed DOI

Rapoport R. M. Bilirubin Oxidation Products and Cerebral Vasoconstriction. Front. Pharmacol. 2018, 9, 303.10.3389/fphar.2018.00303. PubMed DOI PMC

Lightner D. A.; Linnane W. P.; Ahlfors C. E. Bilirubin Photooxidation Products in the Urine of Jaundiced Neonates Receiving Phototherapy. Pediatr. Res. 1984, 18, 696–700. 10.1203/00006450-198408000-00003. PubMed DOI

Lightner D. A. Photochemistry of Pyrroles, Bile-Pigments and Porphyrins. Photochem. Photobiol. 1974, 19, 457–459. 10.1111/j.1751-1097.1974.tb06537.x. PubMed DOI

Lightner D. A.; Quistad G. B. Hematinic Acid and Propentdyopents from Bilirubin Photo-Oxidation in Vitro. FEBS Lett. 1972, 25, 94–96. 10.1016/0014-5793(72)80462-9. PubMed DOI

Bonnett R.; Stewart J. C. M. Photooxidation of Bilirubin in Hydroxylic Solvents - Propentdyopent Adducts as Major Products. J. Chem. Soc., Chem. Commun. 1972, 596–597. 10.1039/c39720000596. DOI

Lightner D. A.; Quistad G. B. Imide products from photo-oxidation of bilirubin and mesobilirubin. Nat. New Biol. 1972, 236, 203–205. 10.1038/newbio236203a0. PubMed DOI

Lightner D. A.; Quistad G. B. Methylvinylmaleimide from bilirubin photooxidation. Science 1972, 175, 324–324. 10.1126/science.175.4019.324. PubMed DOI

Landen G. L.; Park Y. T.; Lightner D. A. On the Role of Singlet Oxygen in the Self-Sensitized Photo-Oxygenation of Bilirubin and Its Pyrromethenone Models. Tetrahedron 1983, 39, 1893–1907. 10.1016/S0040-4020(01)88703-2. DOI

Baptista M. S.; Cadet J.; Di Mascio P.; Ghogare A. A.; Greer A.; Hamblin M. R.; Lorente C.; Nunez S. C.; Ribeiro M. S.; Thomas A. H.; et al. Type I and Type II Photosensitized Oxidation Reactions: Guidelines and Mechanistic Pathways. Photochem. Photobiol. 2017, 93, 912–919. 10.1111/php.12716. PubMed DOI PMC

Lu C.; Lin J.-M.; Huie C. W. Determination of total bilirubin in human serum by chemiluminescence from the reaction of bilirubin and peroxynitrite. Talanta 2004, 63, 333–337. 10.1016/j.talanta.2003.10.049. PubMed DOI

Palilis L. P.; Calokerinos A. C.; Grekas N. Chemiluminescence arising from the oxidation of bilirubin in aqueous media. Anal. Chim. Acta 1996, 333, 267–275. 10.1016/0003-2670(96)00279-6. PubMed DOI

Watanabe H.; Usa M.; Kobayashi M.; Agatsuma S.-I.; Inaba H. Weak chemiluminescence of bilirubin and its stimulation by aldehydes. J. Biolumin. Chemilumin. 1992, 7, 1–11. 10.1002/bio.1170070102. PubMed DOI

Watanabe H.; Nagoshi T.; Agatsuma S.; Kobayashi M.; Inaba H. Bilirubin chemiluminescence induced by the attack of active oxygen species. J. Biolumin. Chemilumin. 1992, 7, 13–19. 10.1002/bio.1170070103. PubMed DOI

Boiadjiev S. E.; Lightner D. A. DIPYRRINONES-CONSTITUENTS OF THE PIGMENTS OF LIFE. A REVIEW. Org. Prep. Proced. Int. 2006, 38, 347–399. 10.1080/00304940609355999. DOI

Lightner D. A.; Park Y. T. Dye-Sensitized Photooxygenation of Oxopyrromethenes Related to Bilirubin. Tetrahedron Lett. 1976, 17, 2209–2212. 10.1016/0040-4039(76)80030-5. DOI

Lightner D. A.; Pak C. S. Oxygenation of a Dipyrromethene Model for Bilirubin - Formation of a Singlet Oxygen-Like Product. Experientia 1976, 32, 1107–1109. 10.1007/BF01927570. PubMed DOI

Grunewald J. O.; Walker J. C.; Strope E. R. Photooxidation of Xanthobilirubic Acid in Aqueous-Solution - Product and Mechanism Studies. Photochem. Photobiol. 1976, 24, 29–40. 10.1111/j.1751-1097.1976.tb06794.x. PubMed DOI

Lightner D. A.; Park Y.-T. On the vinyl group photooxygenation of bilirubin-like model compounds. J. Heterocycl. Chem. 1978, 15, 1117–1120. 10.1002/jhet.5570150709. DOI

Lightner D. A.; Park Y. T. Singlet Oxygen Reactivity of Bilirubin and Related Tetrapyrroles. Experientia 1978, 34, 555–557. 10.1007/BF01936954. DOI

Lightner D. A.; Park Y. T. On the syntheses and singlet oxygen reactivity of oxodipyrromethene models for bilirubin. Tetrahedron 1979, 35, 463–471. 10.1016/0040-4020(79)80141-6. DOI

Lightner D. A.; Rodgers S. L. Enzymatic Oxidation of Xanthobilirubic Acid. Experientia 1981, 37, 1245–1247. 10.1007/BF01948337. DOI

Bonnett R.; Ioannou S.; Swanson F. J. Propentdyopents and Related Compounds. Part 4. Propentdyopent–Alkanol Adducts by the Photo-Oxygenation of Pyrromethenones. J. Chem. Soc., Perkin Trans. 1989, 1, 711–714. 10.1039/P19890000711. DOI

Madea D.; Mujawar T.; Dvořák A.; Pospíšilová K.; Muchová L.; Čubáková P.; Kloz M.; Švenda J.; Vítek L.; Klán P. Photochemistry of (Z)-Isovinylneoxanthobilirubic Acid Methyl Ester, a Bilirubin Dipyrrinone Subunit: Femtosecond Transient Absorption and Stimulated Raman Emission Spectroscopy. J. Org. Chem. 2022, 87, 3089–3103. 10.1021/acs.joc.1c02870. PubMed DOI

Lightner D. A.; Quistad G. B. The dye-sensitized photooxygenation of pyrrole α-aldehydes. J. Heterocycl. Chem. 1973, 10, 273–274. 10.1002/jhet.5570100232. DOI

Foote C. S.; Dzakpasu A. A.; Lin J. W. P. Chemistry of Singlet Oxygen. XX. Mechanism of Sensitized Photooxidation of Enamines. Tetrahedron Lett. 1975, 16, 1247–1250. 10.1016/S0040-4039(00)72109-5. DOI

Lightner D. A.; Park Y. T. Synthesis, Photooxidation and Z Reversible E Photoisomerization of Benzalpyrrolinones. J. Heterocycl. Chem. 1977, 14, 415–422. 10.1002/jhet.5570140311. DOI

Koppenol W. H.; Stanbury D. M.; Bounds P. L. Electrode potentials of partially reduced oxygen species, from dioxygen to water. Free. Radic. Biol. Med. 2010, 49, 317–322. 10.1016/j.freeradbiomed.2010.04.011. PubMed DOI

Schweitzer C.; Schmidt R. Physical mechanisms of generation and deactivation of singlet oxygen. Chem. Rev. 2003, 103, 1685–1757. 10.1021/cr010371d. PubMed DOI

Fukuzumi S.; Fujita S.; Suenobu T.; Yamada H.; Imahori H.; Araki Y.; Ito O. Electron transfer properties of singlet oxygen and promoting effects of scandium ion. J. Phys. Chem. A 2002, 106, 1241–1247. 10.1021/jp013829o. DOI

Peters G.; Rodgers M. A. Single-electron transfer from NADH analogues to singlet oxygen. Biochim. Biophys. Acta 1981, 637, 43–52. 10.1016/0005-2728(81)90208-5. PubMed DOI

Saito I.; Matsuura T.; Inoue K. Formation of superoxide ion via one-electron transfer from electron donors to singlet oxygen. J. Am. Chem. Soc. 1983, 105, 3200–3206. 10.1021/ja00348a040. DOI

Inoue K.; Matsuura T.; Saito I. Importance of single electron-transfer in singlet oxygen reaction in aqueous solution: Oxidation of electron-rich thioanisoles. Tetrahedron 1985, 41, 2177–2181. 10.1016/S0040-4020(01)96590-1. DOI

Ferroud C.; Rool P.; Santamaria J. Singlet oxygen mediated alkaloid tertiary amines oxidation by single electron transfer. Tetrahedron Lett. 1998, 39, 9423–9426. 10.1016/S0040-4039(98)02184-4. DOI

Baciocchi E.; Del Giacco T.; Lapi A. Dual pathways for the desilylation of silylamines by singlet oxygen. Org. Lett. 2006, 8, 1783–1786. 10.1021/ol0602607. PubMed DOI

Baciocchi E.; Del Giacco T.; Lapi A. Oxygenation of benzyldimethylamine by singlet oxygen. Products and mechanism. Org. Lett. 2004, 6, 4791–4794. 10.1021/ol047876l. PubMed DOI

Baciocchi E.; Del Giacco T.; Lapi A. Quenching of singlet oxygen by tertiary aliphatic amines. Structural effects on rates and products. Helv. Chim. Acta 2006, 89, 2273–2280. 10.1002/hlca.200690211. DOI

Baciocchi E.; Del Giacco T.; Lanzalunga O.; Lapi A. Singlet oxygen promoted carbon-heteroatom bond cleavage in dibenzyl sulfides and tertiary dibenzylamines. Structural effects and the role of exciplexes. J. Org. Chem. 2007, 72, 9582–9589. 10.1021/jo701641b. PubMed DOI

Baciocchi E.; Del Giacco T.; Lanzalunga O.; Lapi A.; Raponi D. The singlet oxygen oxidation of chlorpromazine and some phenothiazine derivatives. Products and reaction mechanisms. J. Org. Chem. 2007, 72, 5912–5915. 10.1021/jo0706980. PubMed DOI

Howard J. K.; Rihak K. J.; Bissember A. C.; Smith J. A. The Oxidation of Pyrrole. Chem.—Asian J. 2016, 11, 155–167. 10.1002/asia.201500659. PubMed DOI

George M. V.; Bhat V. V. Photooxygenations of nitrogen heterocycles. Chem. Rev. 1979, 79, 447–478. 10.1021/cr60321a003. DOI

Zeinali N.; Oluwoye I.; Altarawneh M.; Dlugogorski B. Z. The mechanism of electrophilic addition of singlet oxygen to pyrrolic ring. Theor. Chem. Acc. 2019, 138, 1–11. 10.1007/s00214-019-2478-2. DOI

Yang J. X.; Lv G. C.; Wang Z. H.; Sun X. M.; Gao J. Mechanisms, kinetics and eco-toxicity assessment of singlet oxygen, sulfate and hydroxyl radicals-initiated degradation of fenpiclonil in aquatic environments. J. Hazard. Mater. 2021, 409, 12450510.1016/j.jhazmat.2020.124505. PubMed DOI

Xue M.; Zhuang D. L.; Fu L. Z.; Chen G.; Su J. Y.; Zhu J.; Yi X. Y. Mechanism of metalated pyrrole-singlet oxygen chemiluminescent reaction. Polyhedron 2023, 238, 11642110.1016/j.poly.2023.116421. DOI

Lightner D. A.; Pak C. S. Dye-Sensitized Photooxygenation of Tert-Butylpyrroles. J. Org. Chem. 1975, 40, 2724–2728. 10.1021/jo00907a005. DOI

Wasserman H. H.; Xia M. D.; Wang J. J.; Petersen A. K.; Jorgensen M. Singlet oxygen oxidation of pyrroles. Formation of 5-substituted derivatives. Tetrahedron Lett. 1999, 40, 6145–6148. 10.1016/S0040-4039(99)01171-5. DOI

Lightner D. A.; Bisacchi G. S.; Norris R. D. On the Mechanism of the Sensitized Photooxygenation of Pyrroles. J. Am. Chem. Soc. 1976, 98, 802–807. 10.1021/ja00419a029. DOI

Low L. K.; Lightner D. A. Pyrrole Photooxidation - Unusual Products from 2,5-Dimethylpyrrole. J. Chem. Soc., Chem. Commun. 1972, 116–117. 10.1039/c39720000116. DOI

Lightner D. A.; Quistad G. B. Photooxidation of 3,4-Diethyl-2,5-Dimethylpyrrole. Angew. Chem., Int. Ed. 1972, 11, 215–216. 10.1002/anie.197202151. PubMed DOI

Alberti M. N.; Vougioukalakis G. C.; Orfanopoulos M. Photosensitized oxidations of substituted pyrroles: unanticipated radical-derived oxygenated products. J. Org. Chem. 2009, 74, 7274–7282. 10.1021/jo9012942. PubMed DOI

Fang X. W.; Jin F. M.; Jin H. F.; von Sonntag C. Reaction of the superoxide radical with the N-centered radical derived from N-acetyltryptophan methyl ester. J. Chem. Soc., Perkin Trans. 2 1998, 2, 259–264. 10.1039/a706979k. DOI

Lightner D. A. THE PHOTOREACTIVITY OF BILIRUBIN AND RELATED PYRROLES. Photochem. Photobiol. 1977, 26, 427–436. 10.1111/j.1751-1097.1977.tb07510.x. DOI

Bonnett R.; Hamzetash D.; Vallés M. A. Propentdyopents [5-(2-Oxo-2H-Pyrrol-5-ylmethylene)pyrrol-2(5H)-Ones] and Related Compounds. Part 2. The Z⇄E Photoisomerisation of Pyrromethenone Systems. J. Chem. Soc., Perkin Trans. 1987, 1, 1383–1388. 10.1039/P19870001383. DOI

Chen Q. Q.; Wang T. Y.; Zhang Y.; Wang Q. A.; Ma J. S. Large scale, efficient synthesis of 9-unsubstituted dipyrrinone. Synth. Commun. 2002, 32, 1031–1040. 10.1081/SCC-120003151. DOI

Ichimura K.; Ichikawa S.; Imamura K. Syntheses of 3,4-Dimethylpyrrole. Bull. Chem. Soc. Jpn. 1976, 49, 1157–1158. 10.1246/bcsj.49.1157. DOI

Madea D.; Mahvidi S.; Chalupa D.; Mujawar T.; Dvořák A.; Muchová L.; Janoš J.; Slavíček P.; Švenda J.; Vítek L.; Klán P. Wavelength-Dependent Photochemistry and Biological Relevance of a Bilirubin Dipyrrinone Subunit. J. Org. Chem. 2020, 85, 13015–13028. 10.1021/acs.joc.0c01673. PubMed DOI

Ritter M.; Seidel R. A.; Bellstedt P.; Schneider B.; Bauer M.; Görls H.; Pohnert G. Isolation and Identification of Intermediates of the Oxidative Bilirubin Degradation. Org. Lett. 2016, 18, 4432–4435. 10.1021/acs.orglett.6b02287. PubMed DOI

Huggins M. T.; Lightner D. A. Hydrogen-bonded dimers in dipyrrinones and acyldipyrrinones. Monatsh. Chem. 2001, 132, 203–221. 10.1007/s007060170131. DOI

Montforts F.-P.; Schwartz U. M. Ein gezielter Aufbau des Chlorinsystems. Liebigs Ann. Chem. 1985, 1985, 1228–1253. 10.1002/jlac.198519850614. DOI

Henning; Dobeneck; Schnierle F. Zur Stokvis-Reaktion, XVI Die Konstitution der Propentdyopent-Addukte. Justus Liebigs Ann. Chem. 1968, 711, 135–138. 10.1002/jlac.19687110119. DOI

Turro N. J.; Chow M. F. Magnetic-Field Effects on the Thermolysis of Endoperoxides of Aromatic-Compounds - Correlations with Singlet Oxygen Yield and Activation Entropies. J. Am. Chem. Soc. 1979, 101, 3701–3703. 10.1021/ja00507a067. DOI

Ludvikova L.; Fris P.; Heger D.; Sebej P.; Wirz J.; Klan P. Photochemistry of rose bengal in water and acetonitrile: a comprehensive kinetic analysis. Phys. Chem. Chem. Phys. 2016, 18, 16266–16273. 10.1039/C6CP01710J. PubMed DOI

Quistad G. B.; Lightner D. A. Pyrrole Photo-Oxidation - Direct Formation of Maleimides. J. Chem. Soc. D 1971, 1099–1100. 10.1039/c29710001099. DOI

Nogales D. F.; Ma J. S.; Lightner D. A. Self-Association of Dipyrrinones Observed by 2D-NOE NMR and Dimerization Constants Calculated from 1H-NMR Chemical-Shifts. Tetrahedron 1993, 49, 2361–2372. 10.1016/S0040-4020(01)86316-X. DOI

Frisch M. J.; Trucks G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Scalmani G.; Barone V.; Petersson G. A.; Nakatsuji H.;. et al.Gaussian 16 Rev. C.01; Gaussian Inc.: Wallingford, CT, 2016.

Rio G.; Ranjon A.; Pouchot O.; Scholl M. J. 2,3,4,5 Tetraphenyl Pyrrole Hydroperoxide Formed by Photo Oxidation. Bull. Soc. Chim. Fr. 1969, 5, 1667.

Ramasseul R.; Rassat A. Photoxydation des di-t-butyl-2,5 et tri-t-butyl-2,3,5 pyrrole isolement des hydroperoxydes correspondants. Tetrahedron Lett. 1972, 13, 1337–1340. 10.1016/S0040-4039(01)84621-9. DOI

Mizuno K.; Ohmura N.; Nakanishi S.; Otsuji Y. Regioselective Photo-Oxygenation of 2-Aryl-4,5,6,7-Tetra-Hydroindoles - Preparation and Reactions of 2-Aryl-7a-Hydroperoxy-4,5,6,7,7a-Pentahydroindolenines. J. Chem. Soc., Chem. Commun. 1983, 355–356. 10.1039/c39830000355. DOI

Zhang Z.; Shi C.; Xia X.; Du J.; Fan J.; Peng X. Molecular Design of Monochromophore-Based Bifunctional Photosensitizers for Simultaneous Ratiometric Oxygen Reporting and Photodynamic Cancer Therapy. Anal. Chem. 2021, 93, 13539–13547. 10.1021/acs.analchem.1c02485. PubMed DOI

Wells J. M.; McLuckey S. A. Collision-induced dissociation (CID) of peptides and proteins. Biol. Mass Spectrom. 2005, 402, 148–185. 10.1016/S0076-6879(05)02005-7. PubMed DOI

Freyer W.; Flatau S. The first annulated porphyrazine containing four endoperoxide bridges. Tetrahedron Lett. 1996, 37, 5083–5086. 10.1016/0040-4039(96)01034-9. DOI

Jasik J.; Zabka J.; Roithova J.; Gerlich D. Infrared spectroscopy of trapped molecular dications below 4 K. Int. J. Mass Spectrom. 2013, 354, 204–210. 10.1016/j.ijms.2013.06.007. DOI

Roithova J.; Gray A.; Andris E.; Jasik J.; Gerlich D. Helium Tagging Infrared Photodissociation Spectroscopy of Reactive Ions. Acc. Chem. Res. 2016, 49, 223–230. 10.1021/acs.accounts.5b00489. PubMed DOI

Galliani G.; Manitto P.; Monti D. A Kinetic-Study of the Interaction between Bilirubin and Thermally Produced Singlet Oxygen. Isr. J. Chem. 1983, 23, 219–222. 10.1002/ijch.198300031. DOI

Bielski B. H. J.; Shiue G. G.; Bajuk S. Reduction of Nitro Blue Tetrazolium by CO2- and O2- Radicals. J. Phys. Chem. 1980, 84, 830–833. 10.1021/j100445a006. DOI

Kuga T.; Sasano Y.; Iwabuchi Y. IBX as a catalyst for dehydration of hydroperoxides: green entry to α,β-unsaturated ketones oxygenative allylic transposition. Chem. Commun. 2018, 54, 798–801. 10.1039/C7CC08957K. PubMed DOI

Kornblum N.; Delamare H. E. The Base Catalyzed Decomposition of a Dialkyl Peroxide. J. Am. Chem. Soc. 1951, 73, 880–881. 10.1021/ja01146a542. DOI

Li H.-Y.; Drummond S.; DeLucca I.; Boswell G. A. Singlet oxygen oxidation of pyrroles: Synthesis and chemical transformations of novel 4,4-bis(trifluoromethyl)imidazoline analogs. Tetrahedron 1996, 52, 11153–11162. 10.1016/0040-4020(96)00578-9. DOI

Gottlieb H. E.; Kotlyar V.; Nudelman A. NMR Chemical Shifts of Common Laboratory Solvents as Trace Impurities. J. Org. Chem. 1997, 62, 7512–7515. 10.1021/jo971176v. PubMed DOI

Pierce K. M.; Parsons B. A.; Synovec R. E.; Chapter 10 - Pixel-Level Data Analysis Methods for Comprehensive Two-Dimensional Chromatography. In Data Handling in Science and Technology, de la Peña A. M.; Goicoechea H. C.; Escandar G. M.; Olivieri A. C., Eds.; Vol. 29; Elsevier, 2015; pp 427–463.

Baek S. J.; Park A.; Ahn Y. J.; Choo J. Baseline Correction Using Asymmetrically Reweighted Penalized Least Squares Smoothing. Analyst 2015, 140, 250–257. 10.1039/C4AN01061B. PubMed DOI

Garcia D. Robust Smoothing of Gridded Data in One and Higher Dimensions with Missing Values. Comput. Stat. Data Anal. 2010, 54, 1167–1178. 10.1016/j.csda.2009.09.020. PubMed DOI PMC

Virtanen P.; Gommers R.; Oliphant T. E.; Haberland M.; Reddy T.; Cournapeau D.; Burovski E.; Peterson P.; Weckesser W.; Bright J.; et al. Scipy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261–272. 10.1038/s41592-019-0686-2. PubMed DOI PMC

Newville M.; Otten R.; Nelson A.; Stensitzki T.; Ingargiola A.; Allan D.; Fox A.; Carter F.; Michał R.; Osborn R.;. et al.LMFIT: Non-Linear Least-Square Minimization and Curve-Fitting for Python; Zenodo: 2024.

Robben U.; Lindner I.; Gartner W. G. New open-chain tetrapyrroles as chromophores in the plant photoreceptor phytochrome. J. Am. Chem. Soc. 2008, 130, 11303–11311. 10.1021/ja076728y. PubMed DOI

Lemon C. M.; Marletta M. A. Corrole-Substituted Fluorescent Heme Proteins. Inorg. Chem. 2021, 60, 2716–2729. 10.1021/acs.inorgchem.0c03599. PubMed DOI PMC

Coffin A. R.; Roussell M. A.; Tserlin E.; Pelkey E. T. Regiocontrolled synthesis of pyrrole-2-carboxaldehydes and 3-pyrrolin-2-ones from pyrrole Weinreb amides. J. Org. Chem. 2006, 71, 6678–6681. 10.1021/jo061043m. PubMed DOI

Hwang K. O.; Lightner D. A. Synthesis and Spectroscopic Properties of N,N-Bridged Dipyrrinones. Tetrahedron 1994, 50, 1955–1966. 10.1016/S0040-4020(01)85059-6. DOI

Vondoben H.; Brunner E. Über eine Ordnung der Dipyrromethene und Über die Betainstruktur des Bilirubins. XI. Mitteilung zur Stokvis-Reaktion. Hoppe-Seyler’s Z. Physiol. Chem. 1965, 341, 157–166. 10.1515/bchm2.1965.341.1.157. PubMed DOI

von Dobeneck H.; Hägel E.; Graf W. Die Konstitution des Propentdyopents. VIII. Mitteil. zur Stokvis-Reaktion. II. Mitteil. Über Pyrrolderivate mit O-Funktionen in α-Stellung. Hoppe-Seyler’s Z. Physiol. Chem. 1962, 329, 182–187. 10.1515/bchm2.1962.329.1.182. PubMed DOI

Carney J. M.; Hammer R. J.; Hulce M.; Lomas C. M.; Miyashiro D. High-efficiency microphotooxidation using milliwatt LED sources. Tetrahedron Lett. 2011, 52, 352–355. 10.1016/j.tetlet.2010.11.071. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...