Birds have primate-like numbers of neurons in the forebrain
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27298365
PubMed Central
PMC4932926
DOI
10.1073/pnas.1517131113
PII: 1517131113
Knihovny.cz E-zdroje
- Klíčová slova
- birds, brain size, evolution, intelligence, number of neurons,
- MeSH
- mozek cytologie MeSH
- neurony * MeSH
- počet buněk MeSH
- primáti MeSH
- ptáci * MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Some birds achieve primate-like levels of cognition, even though their brains tend to be much smaller in absolute size. This poses a fundamental problem in comparative and computational neuroscience, because small brains are expected to have a lower information-processing capacity. Using the isotropic fractionator to determine numbers of neurons in specific brain regions, here we show that the brains of parrots and songbirds contain on average twice as many neurons as primate brains of the same mass, indicating that avian brains have higher neuron packing densities than mammalian brains. Additionally, corvids and parrots have much higher proportions of brain neurons located in the pallial telencephalon compared with primates or other mammals and birds. Thus, large-brained parrots and corvids have forebrain neuron counts equal to or greater than primates with much larger brains. We suggest that the large numbers of neurons concentrated in high densities in the telencephalon substantially contribute to the neural basis of avian intelligence.
Department of Cognitive Biology University of Vienna 1090 Vienna Austria;
Department of Zoology Faculty of Science Charles University Prague CZ 12844 Prague Czech Republic;
Zobrazit více v PubMed
Emery NJ. Cognitive ornithology: The evolution of avian intelligence. Philos Trans R Soc Lond B Biol Sci. 2006;361(1465):23–43. PubMed PMC
Emery NJ, Clayton NS. The mentality of crows: Convergent evolution of intelligence in corvids and apes. Science. 2004;306(5703):1903–1907. PubMed
Clayton NS, Emery NJ. Avian models for human cognitive neuroscience: A proposal. Neuron. 2015;86(6):1330–1342. PubMed
Weir AA, Chappell J, Kacelnik A. Shaping of hooks in New Caledonian crows. Science. 2002;297(5583):981. PubMed
Auersperg AMI, Szabo B, von Bayern AMP, Kacelnik A. Spontaneous innovation in tool manufacture and use in a Goffin’s cockatoo. Curr Biol. 2012;22(21):R903–R904. PubMed
Huber L, Gajdon GK. Technical intelligence in animals: The kea model. Anim Cogn. 2006;9(4):295–305. PubMed
Taylor AH, Miller R, Gray RD. New Caledonian crows reason about hidden causal agents. Proc Natl Acad Sci USA. 2012;109(40):16389–16391. PubMed PMC
Prior H, Schwarz A, Güntürkün O. Mirror-induced behavior in the magpie (Pica pica): Evidence of self-recognition. PLoS Biol. 2008;6(8):e202. PubMed PMC
Raby CR, Alexis DM, Dickinson A, Clayton NS. Planning for the future by western scrub-jays. Nature. 2007;445(7130):919–921. PubMed
Emery NJ, Clayton NS. Effects of experience and social context on prospective caching strategies by scrub jays. Nature. 2001;414(6862):443–446. PubMed
Bugnyar T, Schwab C, Schloegl C, Kotrschal K, Heinrich B. Ravens judge competitors through experience with play caching. Curr Biol. 2007;17(20):1804–1808. PubMed
Jarvis ED. Learned birdsong and the neurobiology of human language. Ann N Y Acad Sci. 2004;1016:749–777. PubMed PMC
Pepperberg IM. The Alex Studies: Cognitive and Communicative Abilities of Grey Parrots. Harvard Univ Press; Cambridge, MA: 1999.
Jarvis ED, et al. Avian Brain Nomenclature Consortium Avian brains and a new understanding of vertebrate brain evolution. Nat Rev Neurosci. 2005;6(2):151–159. PubMed PMC
Jarvis ED, et al. Global view of the functional molecular organization of the avian cerebrum: Mirror images and functional columns. J Comp Neurol. 2013;521(16):3614–3665. PubMed PMC
Pfenning AR, et al. Convergent transcriptional specializations in the brains of humans and song-learning birds. Science. 2014;346(6215):1256846. PubMed PMC
Shanahan M, Bingman VP, Shimizu T, Wild M, Güntürkün O. Large-scale network organization in the avian forebrain: A connectivity matrix and theoretical analysis. Front Comput Neurosci. 2013;7:89. PubMed PMC
Calabrese A, Woolley SM. Coding principles of the canonical cortical microcircuit in the avian brain. Proc Natl Acad Sci USA. 2015;112(11):3517–3522. PubMed PMC
Kirsch JA, Güntürkün O, Rose J. Insight without cortex: Lessons from the avian brain. Conscious Cogn. 2008;17(2):475–483. PubMed
Güntürkün O. The avian “prefrontal cortex” and cognition. Curr Opin Neurobiol. 2005;15(6):686–693. PubMed
Veit L, Nieder A. Abstract rule neurons in the endbrain support intelligent behaviour in corvid songbirds. Nat Commun. 2013;4:2878. PubMed
Striedter GF. Principles of Brain Evolution. Sinauer Associates; Sunderland, MA: 2005.
Roth G, Dicke U. Evolution of the brain and intelligence. Trends Cogn Sci. 2005;9(5):250–257. PubMed
Herculano-Houzel S. Brains matter, bodies maybe not: The case for examining neuron numbers irrespective of body size. Ann N Y Acad Sci. 2011;1225:191–199. PubMed
Dicke U, Roth G. 2016. Neuronal factors determining high intelligence. Philos Trans R Soc Lond B Biol Sci 371(1685):20150180.
Deaner RO, Isler K, Burkart J, van Schaik C. Overall brain size, and not encephalization quotient, best predicts cognitive ability across non-human primates. Brain Behav Evol. 2007;70(2):115–124. PubMed
MacLean EL, et al. The evolution of self-control. Proc Natl Acad Sci USA. 2014;111(20):E2140–E2148. PubMed PMC
Stevens JR. 2014. Evolutionary pressures on primate intertemporal choice. Proc Biol Sci 281(1786):20140499.
Mlikovsky J. Brain size and forearmen magnum area in crows and allies (Aves: Corvidae) Acta Soc Zool Bohem. 2003;67(1-4):203–211.
Iwaniuk AN, Dean KM, Nelson JE. Interspecific allometry of the brain and brain regions in parrots (Psittaciformes): Comparisons with other birds and primates. Brain Behav Evol. 2005;65(1):40–59. PubMed
Herculano-Houzel S, Manger PR, Kaas JH. Brain scaling in mammalian evolution as a consequence of concerted and mosaic changes in numbers of neurons and average neuronal cell size. Front Neuroanat. 2014;8:77. PubMed PMC
Herculano-Houzel S, Mota B, Lent R. Cellular scaling rules for rodent brains. Proc Natl Acad Sci USA. 2006;103(32):12138–12143. PubMed PMC
Herculano-Houzel S, Collins CE, Wong P, Kaas JH. Cellular scaling rules for primate brains. Proc Natl Acad Sci USA. 2007;104(9):3562–3567. PubMed PMC
Sarko DK, Catania KC, Leitch DB, Kaas JH, Herculano-Houzel S. Cellular scaling rules of insectivore brains. Front Neuroanat. 2009;3:8. PubMed PMC
Neves K, et al. Cellular scaling rules for the brain of afrotherians. Front Neuroanat. 2014;8:5. PubMed PMC
Kazu RS, Maldonado J, Mota B, Manger PR, Herculano-Houzel S. Cellular scaling rules for the brain of Artiodactyla include a highly folded cortex with few neurons. Front Neuroanat. 2014;8:128. PubMed PMC
Gabi M, et al. Cellular scaling rules for the brains of an extended number of primate species. Brain Behav Evol. 2010;76(1):32–44. PubMed PMC
Azevedo FA, et al. Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol. 2009;513(5):532–541. PubMed
Herculano-Houzel S, et al. Updated neuronal scaling rules for the brains of Glires (rodents/lagomorphs) Brain Behav Evol. 2011;78(4):302–314. PubMed PMC
Herculano-Houzel S, Lent R. Isotropic fractionator: A simple, rapid method for the quantification of total cell and neuron numbers in the brain. J Neurosci. 2005;25(10):2518–2521. PubMed PMC
Reiner A, et al. Avian Brain Nomenclature Forum Revised nomenclature for avian telencephalon and some related brainstem nuclei. J Comp Neurol. 2004;473(3):377–414. PubMed PMC
Clark DA, Mitra PP, Wang SSH. Scalable architecture in mammalian brains. Nature. 2001;411(6834):189–193. PubMed
Iwaniuk AN, Hurd PL. The evolution of cerebrotypes in birds. Brain Behav Evol. 2005;65(4):215–230. PubMed
Reiner A, Medina L, Veenman CL. Structural and functional evolution of the basal ganglia in vertebrates. Brain Res Brain Res Rev. 1998;28(3):235–285. PubMed
Chakraborty M, et al. Core and shell song systems unique to the parrot brain. PLoS One. 2015;10(6):e0118496. PubMed PMC
Herculano-Houzel S. The glia/neuron ratio: How it varies uniformly across brain structures and species and what that means for brain physiology and evolution. Glia. 2014;62(9):1377–1391. PubMed
Herculano-Houzel S. The human brain in numbers: A linearly scaled-up primate brain. Front Hum Neurosci. 2009;3:31. PubMed PMC
Hackett SJ, et al. A phylogenomic study of birds reveals their evolutionary history. Science. 2008;320(5884):1763–1768. PubMed
Jetz W, Thomas GH, Joy JB, Hartmann K, Mooers AO. The global diversity of birds in space and time. Nature. 2012;491(7424):444–448. PubMed
Jarvis ED, et al. Whole-genome analyses resolve early branches in the tree of life of modern birds. Science. 2014;346(6215):1320–1331. PubMed PMC
Prum RO, et al. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature. 2015;526(7574):569–573. PubMed
Lui JH, Hansen DV, Kriegstein AR. Development and evolution of the human neocortex. Cell. 2011;146(1):18–36. PubMed PMC
Charvet CJ, Striedter GF. Developmental species differences in brain cell cycle rates between northern bobwhite quail (Colinus virginianus) and parakeets (Melopsittacus undulatus): Implications for mosaic brain evolution. Brain Behav Evol. 2008;72(4):295–306. PubMed
Charvet CJ, Striedter GF. Developmental origins of mosaic brain evolution: Morphometric analysis of the developing zebra finch brain. J Comp Neurol. 2009;514(2):203–213. PubMed
Charvet CJ, Striedter GF. Causes and consequences of expanded subventricular zones. Eur J Neurosci. 2011;34(6):988–993. PubMed
Charvet CJ, Striedter GF. Developmental modes and developmental mechanisms can channel brain evolution. Front Neuroanat. 2011;5:4. PubMed PMC
Feenders G, et al. Molecular mapping of movement-associated areas in the avian brain: A motor theory for vocal learning origin. PLoS One. 2008;3(3):e1768. PubMed PMC
Chakraborty M, Jarvis ED. 2015. Brain evolution by brain pathway duplication. Philos Trans R Soc Lond B Biol Sci 370(1684):20150056.
Taylor MP, Wedel MJ. Why sauropods had long necks; and why giraffes have short necks. PeerJ. 2013;1:e36. PubMed PMC
Peterson AT, Brisbin IL. Genetic endangerment of wild red junglefowl Gallus gallus? Bird Conserv Int. 1998;8(04):387–394.
Mullen RJ, Buck CR, Smith AM. NeuN, a neuronal specific nuclear protein in vertebrates. Development. 1992;116(1):201–211. PubMed
Mezey S, et al. Postnatal changes in the distribution and density of neuronal nuclei and doublecortin antigens in domestic chicks (Gallus domesticus) J Comp Neurol. 2012;520(1):100–116. PubMed
Bohonak AJ, van der Linde K. 2004 RMA: Software for reduced major axis regression, Java version. Available at www.kimvdlinde.com/professional/rma.html. Accessed January 5, 2015.
Nixdorf-Bergweiler B, Bischof H-J. 2007 A Stereotaxic Atlas of the Brain of the Zebra Finch, Taeniopygia guttata, with Special Emphasis on Telencephalic Visual and Song System Nuclei in Transverse and Sagittal Sections (National Library of Medicine, National Center for Biotechnology Information, Bethesda, MD). Available at www.ncbi.nlm.nih.gov/books/NBK2356/. Accessed March 3, 2016.
A comparative study of mirror self-recognition in three corvid species
Cannabinoid receptor 2 evolutionary gene loss makes parrots more susceptible to neuroinflammation
Neuron numbers link innovativeness with both absolute and relative brain size in birds
The evolution of brain neuron numbers in amniotes
Brain size and neuron numbers drive differences in yawn duration across mammals and birds
Individual and age-related variation of cellular brain composition in a squamate reptile
The evolution of brain structure captured in stereotyped cell count and cell type distributions
Artificial selection on brain size leads to matching changes in overall number of neurons
Sociality does not drive the evolution of large brains in eusocial African mole-rats