Birds have primate-like numbers of neurons in the forebrain

. 2016 Jun 28 ; 113 (26) : 7255-60. [epub] 20160613

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid27298365

Some birds achieve primate-like levels of cognition, even though their brains tend to be much smaller in absolute size. This poses a fundamental problem in comparative and computational neuroscience, because small brains are expected to have a lower information-processing capacity. Using the isotropic fractionator to determine numbers of neurons in specific brain regions, here we show that the brains of parrots and songbirds contain on average twice as many neurons as primate brains of the same mass, indicating that avian brains have higher neuron packing densities than mammalian brains. Additionally, corvids and parrots have much higher proportions of brain neurons located in the pallial telencephalon compared with primates or other mammals and birds. Thus, large-brained parrots and corvids have forebrain neuron counts equal to or greater than primates with much larger brains. We suggest that the large numbers of neurons concentrated in high densities in the telencephalon substantially contribute to the neural basis of avian intelligence.

Zobrazit více v PubMed

Emery NJ. Cognitive ornithology: The evolution of avian intelligence. Philos Trans R Soc Lond B Biol Sci. 2006;361(1465):23–43. PubMed PMC

Emery NJ, Clayton NS. The mentality of crows: Convergent evolution of intelligence in corvids and apes. Science. 2004;306(5703):1903–1907. PubMed

Clayton NS, Emery NJ. Avian models for human cognitive neuroscience: A proposal. Neuron. 2015;86(6):1330–1342. PubMed

Weir AA, Chappell J, Kacelnik A. Shaping of hooks in New Caledonian crows. Science. 2002;297(5583):981. PubMed

Auersperg AMI, Szabo B, von Bayern AMP, Kacelnik A. Spontaneous innovation in tool manufacture and use in a Goffin’s cockatoo. Curr Biol. 2012;22(21):R903–R904. PubMed

Huber L, Gajdon GK. Technical intelligence in animals: The kea model. Anim Cogn. 2006;9(4):295–305. PubMed

Taylor AH, Miller R, Gray RD. New Caledonian crows reason about hidden causal agents. Proc Natl Acad Sci USA. 2012;109(40):16389–16391. PubMed PMC

Prior H, Schwarz A, Güntürkün O. Mirror-induced behavior in the magpie (Pica pica): Evidence of self-recognition. PLoS Biol. 2008;6(8):e202. PubMed PMC

Raby CR, Alexis DM, Dickinson A, Clayton NS. Planning for the future by western scrub-jays. Nature. 2007;445(7130):919–921. PubMed

Emery NJ, Clayton NS. Effects of experience and social context on prospective caching strategies by scrub jays. Nature. 2001;414(6862):443–446. PubMed

Bugnyar T, Schwab C, Schloegl C, Kotrschal K, Heinrich B. Ravens judge competitors through experience with play caching. Curr Biol. 2007;17(20):1804–1808. PubMed

Jarvis ED. Learned birdsong and the neurobiology of human language. Ann N Y Acad Sci. 2004;1016:749–777. PubMed PMC

Pepperberg IM. The Alex Studies: Cognitive and Communicative Abilities of Grey Parrots. Harvard Univ Press; Cambridge, MA: 1999.

Jarvis ED, et al. Avian Brain Nomenclature Consortium Avian brains and a new understanding of vertebrate brain evolution. Nat Rev Neurosci. 2005;6(2):151–159. PubMed PMC

Jarvis ED, et al. Global view of the functional molecular organization of the avian cerebrum: Mirror images and functional columns. J Comp Neurol. 2013;521(16):3614–3665. PubMed PMC

Pfenning AR, et al. Convergent transcriptional specializations in the brains of humans and song-learning birds. Science. 2014;346(6215):1256846. PubMed PMC

Shanahan M, Bingman VP, Shimizu T, Wild M, Güntürkün O. Large-scale network organization in the avian forebrain: A connectivity matrix and theoretical analysis. Front Comput Neurosci. 2013;7:89. PubMed PMC

Calabrese A, Woolley SM. Coding principles of the canonical cortical microcircuit in the avian brain. Proc Natl Acad Sci USA. 2015;112(11):3517–3522. PubMed PMC

Kirsch JA, Güntürkün O, Rose J. Insight without cortex: Lessons from the avian brain. Conscious Cogn. 2008;17(2):475–483. PubMed

Güntürkün O. The avian “prefrontal cortex” and cognition. Curr Opin Neurobiol. 2005;15(6):686–693. PubMed

Veit L, Nieder A. Abstract rule neurons in the endbrain support intelligent behaviour in corvid songbirds. Nat Commun. 2013;4:2878. PubMed

Striedter GF. Principles of Brain Evolution. Sinauer Associates; Sunderland, MA: 2005.

Roth G, Dicke U. Evolution of the brain and intelligence. Trends Cogn Sci. 2005;9(5):250–257. PubMed

Herculano-Houzel S. Brains matter, bodies maybe not: The case for examining neuron numbers irrespective of body size. Ann N Y Acad Sci. 2011;1225:191–199. PubMed

Dicke U, Roth G. 2016. Neuronal factors determining high intelligence. Philos Trans R Soc Lond B Biol Sci 371(1685):20150180.

Deaner RO, Isler K, Burkart J, van Schaik C. Overall brain size, and not encephalization quotient, best predicts cognitive ability across non-human primates. Brain Behav Evol. 2007;70(2):115–124. PubMed

MacLean EL, et al. The evolution of self-control. Proc Natl Acad Sci USA. 2014;111(20):E2140–E2148. PubMed PMC

Stevens JR. 2014. Evolutionary pressures on primate intertemporal choice. Proc Biol Sci 281(1786):20140499.

Mlikovsky J. Brain size and forearmen magnum area in crows and allies (Aves: Corvidae) Acta Soc Zool Bohem. 2003;67(1-4):203–211.

Iwaniuk AN, Dean KM, Nelson JE. Interspecific allometry of the brain and brain regions in parrots (Psittaciformes): Comparisons with other birds and primates. Brain Behav Evol. 2005;65(1):40–59. PubMed

Herculano-Houzel S, Manger PR, Kaas JH. Brain scaling in mammalian evolution as a consequence of concerted and mosaic changes in numbers of neurons and average neuronal cell size. Front Neuroanat. 2014;8:77. PubMed PMC

Herculano-Houzel S, Mota B, Lent R. Cellular scaling rules for rodent brains. Proc Natl Acad Sci USA. 2006;103(32):12138–12143. PubMed PMC

Herculano-Houzel S, Collins CE, Wong P, Kaas JH. Cellular scaling rules for primate brains. Proc Natl Acad Sci USA. 2007;104(9):3562–3567. PubMed PMC

Sarko DK, Catania KC, Leitch DB, Kaas JH, Herculano-Houzel S. Cellular scaling rules of insectivore brains. Front Neuroanat. 2009;3:8. PubMed PMC

Neves K, et al. Cellular scaling rules for the brain of afrotherians. Front Neuroanat. 2014;8:5. PubMed PMC

Kazu RS, Maldonado J, Mota B, Manger PR, Herculano-Houzel S. Cellular scaling rules for the brain of Artiodactyla include a highly folded cortex with few neurons. Front Neuroanat. 2014;8:128. PubMed PMC

Gabi M, et al. Cellular scaling rules for the brains of an extended number of primate species. Brain Behav Evol. 2010;76(1):32–44. PubMed PMC

Azevedo FA, et al. Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol. 2009;513(5):532–541. PubMed

Herculano-Houzel S, et al. Updated neuronal scaling rules for the brains of Glires (rodents/lagomorphs) Brain Behav Evol. 2011;78(4):302–314. PubMed PMC

Herculano-Houzel S, Lent R. Isotropic fractionator: A simple, rapid method for the quantification of total cell and neuron numbers in the brain. J Neurosci. 2005;25(10):2518–2521. PubMed PMC

Reiner A, et al. Avian Brain Nomenclature Forum Revised nomenclature for avian telencephalon and some related brainstem nuclei. J Comp Neurol. 2004;473(3):377–414. PubMed PMC

Clark DA, Mitra PP, Wang SSH. Scalable architecture in mammalian brains. Nature. 2001;411(6834):189–193. PubMed

Iwaniuk AN, Hurd PL. The evolution of cerebrotypes in birds. Brain Behav Evol. 2005;65(4):215–230. PubMed

Reiner A, Medina L, Veenman CL. Structural and functional evolution of the basal ganglia in vertebrates. Brain Res Brain Res Rev. 1998;28(3):235–285. PubMed

Chakraborty M, et al. Core and shell song systems unique to the parrot brain. PLoS One. 2015;10(6):e0118496. PubMed PMC

Herculano-Houzel S. The glia/neuron ratio: How it varies uniformly across brain structures and species and what that means for brain physiology and evolution. Glia. 2014;62(9):1377–1391. PubMed

Herculano-Houzel S. The human brain in numbers: A linearly scaled-up primate brain. Front Hum Neurosci. 2009;3:31. PubMed PMC

Hackett SJ, et al. A phylogenomic study of birds reveals their evolutionary history. Science. 2008;320(5884):1763–1768. PubMed

Jetz W, Thomas GH, Joy JB, Hartmann K, Mooers AO. The global diversity of birds in space and time. Nature. 2012;491(7424):444–448. PubMed

Jarvis ED, et al. Whole-genome analyses resolve early branches in the tree of life of modern birds. Science. 2014;346(6215):1320–1331. PubMed PMC

Prum RO, et al. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature. 2015;526(7574):569–573. PubMed

Lui JH, Hansen DV, Kriegstein AR. Development and evolution of the human neocortex. Cell. 2011;146(1):18–36. PubMed PMC

Charvet CJ, Striedter GF. Developmental species differences in brain cell cycle rates between northern bobwhite quail (Colinus virginianus) and parakeets (Melopsittacus undulatus): Implications for mosaic brain evolution. Brain Behav Evol. 2008;72(4):295–306. PubMed

Charvet CJ, Striedter GF. Developmental origins of mosaic brain evolution: Morphometric analysis of the developing zebra finch brain. J Comp Neurol. 2009;514(2):203–213. PubMed

Charvet CJ, Striedter GF. Causes and consequences of expanded subventricular zones. Eur J Neurosci. 2011;34(6):988–993. PubMed

Charvet CJ, Striedter GF. Developmental modes and developmental mechanisms can channel brain evolution. Front Neuroanat. 2011;5:4. PubMed PMC

Feenders G, et al. Molecular mapping of movement-associated areas in the avian brain: A motor theory for vocal learning origin. PLoS One. 2008;3(3):e1768. PubMed PMC

Chakraborty M, Jarvis ED. 2015. Brain evolution by brain pathway duplication. Philos Trans R Soc Lond B Biol Sci 370(1684):20150056.

Taylor MP, Wedel MJ. Why sauropods had long necks; and why giraffes have short necks. PeerJ. 2013;1:e36. PubMed PMC

Peterson AT, Brisbin IL. Genetic endangerment of wild red junglefowl Gallus gallus? Bird Conserv Int. 1998;8(04):387–394.

Mullen RJ, Buck CR, Smith AM. NeuN, a neuronal specific nuclear protein in vertebrates. Development. 1992;116(1):201–211. PubMed

Mezey S, et al. Postnatal changes in the distribution and density of neuronal nuclei and doublecortin antigens in domestic chicks (Gallus domesticus) J Comp Neurol. 2012;520(1):100–116. PubMed

Bohonak AJ, van der Linde K. 2004 RMA: Software for reduced major axis regression, Java version. Available at www.kimvdlinde.com/professional/rma.html. Accessed January 5, 2015.

Nixdorf-Bergweiler B, Bischof H-J. 2007 A Stereotaxic Atlas of the Brain of the Zebra Finch, Taeniopygia guttata, with Special Emphasis on Telencephalic Visual and Song System Nuclei in Transverse and Sagittal Sections (National Library of Medicine, National Center for Biotechnology Information, Bethesda, MD). Available at www.ncbi.nlm.nih.gov/books/NBK2356/. Accessed March 3, 2016.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

A comparative study of mirror self-recognition in three corvid species

. 2023 Jan ; 26 (1) : 229-248. [epub] 20220929

Cannabinoid receptor 2 evolutionary gene loss makes parrots more susceptible to neuroinflammation

. 2022 Dec 14 ; 289 (1988) : 20221941. [epub] 20221207

Neuron numbers link innovativeness with both absolute and relative brain size in birds

. 2022 Sep ; 6 (9) : 1381-1389. [epub] 20220711

The evolution of brain neuron numbers in amniotes

. 2022 Mar 15 ; 119 (11) : e2121624119. [epub] 20220307

Brain size and neuron numbers drive differences in yawn duration across mammals and birds

. 2021 May 06 ; 4 (1) : 503. [epub] 20210506

Comparison of plasma and cerebrospinal fluid proteomes identifies gene products guiding adult neurogenesis and neural differentiation in birds

. 2021 Mar 05 ; 11 (1) : 5312. [epub] 20210305

Individual and age-related variation of cellular brain composition in a squamate reptile

. 2020 Sep ; 16 (9) : 20200280. [epub] 20200923

The evolution of brain structure captured in stereotyped cell count and cell type distributions

. 2020 Feb ; 60 () : 176-183. [epub] 20200114

Artificial selection on brain size leads to matching changes in overall number of neurons

. 2019 Sep ; 73 (9) : 2003-2012. [epub] 20190801

Toll-Like Receptor Evolution in Birds: Gene Duplication, Pseudogenization, and Diversifying Selection

. 2018 Sep 01 ; 35 (9) : 2170-2184.

Sociality does not drive the evolution of large brains in eusocial African mole-rats

. 2018 Jun 15 ; 8 (1) : 9203. [epub] 20180615

No evidence for self-recognition in a small passerine, the great tit (Parus major) judged from the mark/mirror test

. 2017 Nov ; 20 (6) : 1049-1057. [epub] 20170731

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...