Brain size and neuron numbers drive differences in yawn duration across mammals and birds
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33958700
PubMed Central
PMC8102614
DOI
10.1038/s42003-021-02019-y
PII: 10.1038/s42003-021-02019-y
Knihovny.cz E-zdroje
- MeSH
- mozek anatomie a histologie fyziologie MeSH
- neurony cytologie fyziologie MeSH
- ptáci anatomie a histologie fyziologie MeSH
- savci anatomie a histologie fyziologie MeSH
- velikost orgánu MeSH
- zívání * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Recent studies indicate that yawning evolved as a brain cooling mechanism. Given that larger brains have greater thermolytic needs and brain temperature is determined in part by heat production from neuronal activity, it was hypothesized that animals with larger brains and more neurons would yawn longer to produce comparable cooling effects. To test this, we performed the largest study on yawning ever conducted, analyzing 1291 yawns from 101 species (55 mammals; 46 birds). Phylogenetically controlled analyses revealed robust positive correlations between yawn duration and (1) brain mass, (2) total neuron number, and (3) cortical/pallial neuron number in both mammals and birds, which cannot be attributed solely to allometric scaling rules. These relationships were similar across clades, though mammals exhibited considerably longer yawns than birds of comparable brain and body mass. These findings provide further evidence suggesting that yawning is a thermoregulatory adaptation that has been conserved across amniote evolution.
Animal Behaviour and Cognition Department of Biology Utrecht University Utrecht The Netherlands
Department of Behavioral and Cognitive Biology University of Vienna Vienna Austria
Department of General Zoology University of Duisburg Essen Essen Germany
Department of Zoology Charles University Prague Czech Republic
Human Ecology Group Institute of Evolutionary Medicine University of Zurich Zurich Switzerland
Zobrazit více v PubMed
Barbizet J. Yawning. J. Neurol. Neurosurg. Psychiatry. 1958;21:203–209. doi: 10.1136/jnnp.21.3.203. PubMed DOI PMC
Baenninger R. Some comparative aspects of yawning in Betta splendens, Homo sapiens, Panthera leo, and Papio sphinx. J. Comp. Psychol. 1987;101:349. doi: 10.1037/0735-7036.101.4.349. DOI
de Vries JIP, Visser GHA, Prechtl HFR. The emergence of fetal behaviour. I. Qualitative aspects. Early Hum. Dev. 1982;7:301–322. doi: 10.1016/0378-3782(82)90033-0. PubMed DOI
Provine RR. Yawning as a stereotyped action pattern and releasing stimulus. Ethology. 1986;72:109–122. doi: 10.1111/j.1439-0310.1986.tb00611.x. DOI
Tesfaye Y, Lal S. Hazard of yawning. Can. Med. Assoc. J. 1990;142:15. PubMed PMC
Smith EO. Yawning: an evolutionary perspective. Hum. Evol. 1999;14:191–198. doi: 10.1007/BF02440156. DOI
Guggisberg AG, Mathis J, Schnider A, Hess CW. Why do we yawn? Neurosci. Biobehav. Rev. 2010;34:1267–1276. doi: 10.1016/j.neubiorev.2010.03.008. PubMed DOI
Gallup AC. Why do we yawn? Primitive versus derived features. Neurosci. Biobehav. Rev. 2011;35:765–769. doi: 10.1016/j.neubiorev.2010.09.009. PubMed DOI
Provine RR, Tate BC, Geldmacher LL. Yawning: no effect of 3–5% CO2, 100% O2, and exercise. Behav. Neural Biol. 1987;48:382–393. doi: 10.1016/S0163-1047(87)90944-7. PubMed DOI
Gallup AC, Gallup GG., Jr. Yawning as a brain cooling mechanism: nasal breathing and forehead cooling diminish the incidence of contagious yawning. Evol. Psychol. 2007;5:92–101. doi: 10.1177/147470490700500109. DOI
Gallup AC, Gallup GG., Jr. Yawning and thermoregulation. Physiol. Behav. 2008;95:10–16. doi: 10.1016/j.physbeh.2008.05.003. PubMed DOI
Gallup AC, Eldakar OT. The thermoregulatory theory of yawning: what we know from over 5 years of research. Front. Neurosci. 2013;6:188. doi: 10.3389/fnins.2012.00188. PubMed DOI PMC
Shoup-Knox ML, Gallup AC, Gallup G, McNay EC. Yawning and stretching predict brain temperature changes in rats: support for the thermoregulatory hypothesis. Front. Evol. Neurosci. 2010;2:108. doi: 10.3389/fnevo.2010.00108. PubMed DOI PMC
Gallup GG, Gallup AC. Excessive yawning and thermoregulation: two case histories of chronic, debilitating bouts of yawning. Sleep Breath. 2010;14:157–159. doi: 10.1007/s11325-009-0287-x. PubMed DOI
Eguibar JR, Uribe CA, Cortes C, Bautista A, Gallup AC. Yawning reduces facial temperature in the high-yawning subline of Sprague-Dawley rats. BMC Neurosci. 2017;18:3. doi: 10.1186/s12868-016-0330-3. PubMed DOI PMC
Ramirez V, Ryan CP, Eldakar OT, Gallup AC. Manipulating neck temperature alters contagious yawning in humans. Physiol. Behav. 2019;207:86–89. doi: 10.1016/j.physbeh.2019.04.016. PubMed DOI
Gallup AC, Miller RR, Clark AB. Changes in ambient temperature trigger yawning but not stretching in rats. Ethology. 2011;117:145–153. doi: 10.1111/j.1439-0310.2010.01854.x. PubMed DOI PMC
Gallup AC, Eldakar OT. Contagious yawning and seasonal climate variation. Front. Evolut. Neurosci. 2011;3:3. PubMed PMC
Massen JJM, Dusch K, Eldakar OT, Gallup AC. A thermal window for yawning in humans: yawning as a brain cooling mechanism. Physiol. Behav. 2014;130:145–148. doi: 10.1016/j.physbeh.2014.03.032. PubMed DOI
Eldakar OT, et al. Temperature-dependent variation in self-reported contagious yawning. Adapt. Hum. Behav. Physiol. 2015;1:460–466. doi: 10.1007/s40750-015-0024-6. DOI
Falk D. Brain evolution in Homo: The “radiator” theory. Behav. Brain Sci. 1990;13:333–381. doi: 10.1017/S0140525X00078973. DOI
Kiyatkin EA, Brown PL, Wise RA. Brain temperature fluctuation: a reflection of functional neural activation. Eur. J. Neurosci. 2002;16:164–168. doi: 10.1046/j.1460-9568.2002.02066.x. PubMed DOI
Baker MA. Brain cooling in endotherms in heat and exercise. Annu. Rev. Physiol. 1982;44:85–85. doi: 10.1146/annurev.ph.44.030182.000505. PubMed DOI
Wang H, et al. Brain temperature and its fundamental properties: a review for clinical neuroscientists. Front. Neurosci. 2014;8:307. PubMed PMC
Richie JM. Energetic aspects of nerve conduction: the relationships between heat production, electrical activity and metabolism. Prog. Biophys. Mol. Biol. 1973;26:147–187. doi: 10.1016/0079-6107(73)90019-9. PubMed DOI
Gallup AC, Church AM, Pelegrino AJ. Yawn duration predicts brain weight and cortical neuron number in mammals. Biol. Lett. 2016;12:20160545. doi: 10.1098/rsbl.2016.0545. PubMed DOI PMC
Gallup AC, Crowe B, Yanchus M. Yawn duration predicts brain volumes in wild cats (Felidae) Int. J. Comp. Psychol. 2017;30:1–5. doi: 10.46867/ijcp.2017.30.00.01. DOI
Gallup, A. C., Moscatello, L. & Massen, J. J. M. Brain weight predicts yawn duration across domesticated dog breeds. Curr. Zool. 66, 401–405 (2020). PubMed PMC
Kilgore DL, Bernstein MH, Hudson DM. Brain temperatures in birds. J. Comp. Physiol. 1976;110:209–215. doi: 10.1007/BF00689309. DOI
McKechnie AE, Wolf BO. The physiology of heat tolerance in small endotherms. Physiology. 2019;34:302–313. doi: 10.1152/physiol.00011.2019. PubMed DOI
Bernstein MH, Sandoval I, Curtis MB, Hudson DM. Brain temperature in pigeons: effects of anterior respiratory bypass. J. Comp. Physiol. 1979;129:115–118. doi: 10.1007/BF00798174. DOI
Porter WR, Witmer LM. Avian cephalic vascular anatomy, sites of thermal exchange, and the rete ophthalmicum. Anat. Rec. 2016;299:1461–1486. doi: 10.1002/ar.23375. PubMed DOI
Gallup AC, Miller ML, Clark AB. Yawning and thermoregulation in budgerigars, Melopsittacus undulatus. Anim. Behav. 2009;77:109–113. doi: 10.1016/j.anbehav.2008.09.014. DOI
Gallup AC, Miller ML, Clark AB. The direction and range of ambient temperature change influences yawning in budgerigars (Melopsittacus undulatus) J. Comp. Psychol. 2010;124:133. doi: 10.1037/a0018006. PubMed DOI
Gallup AC, et al. Thermal imaging reveals sizable shifts in facial temperature surrounding yawning in budgerigars (Melopsittacus undulatus) Temperature. 2017;4:429–435. doi: 10.1080/23328940.2017.1373896. PubMed DOI PMC
Herculano-Houzel S, Lent R. Isotropic fractionator: a simple, rapid method for the quantification of total cell and neuron numbers in the brain. J. Neurosci. 2005;25:2518–2521. doi: 10.1523/JNEUROSCI.4526-04.2005. PubMed DOI PMC
Revell LJ. Size‐correction and principal components for interspecific comparative studies. Evolution. 2009;63:3258–3268. doi: 10.1111/j.1558-5646.2009.00804.x. PubMed DOI
Prinzinger R, Preßmar A, Schleucher E. Body temperature in birds. Comp. Biochem. Phys. A. 1991;99:499–506. doi: 10.1016/0300-9629(91)90122-S. DOI
Jessen, C. Temperature Regulation in Humans and Other Mammals (Springer, 2001).
O’Brien HD. From anomalous arteries to selective brain cooling: parallel evolution of the artiodactyl carotid rete. Anat. Rec. 2020;303:308–317. doi: 10.1002/ar.23987. PubMed DOI
Tattersall GJ, Andrade DV, Abe AS. Heat exchange from the toucan bill reveals a controllable vascular thermal radiator. Science. 2009;325:468–470. doi: 10.1126/science.1175553. PubMed DOI
Olkowicz S, et al. Birds have primate-like numbers of neurons in the forebrain. Proc. Natl Acad. Sci. USA. 2016;113:7255–7260. doi: 10.1073/pnas.1517131113. PubMed DOI PMC
Iwaniuk AN, Dean KM, Nelson JE. Interspecific allometry of the brain and brain regions in parrots (Psittaciformes): Comparisons with other birds and primates. Brain Behav. Evol. 2005;65:40–59. doi: 10.1159/000081110. PubMed DOI
von Eugen, K., Ströckens, F., Backes, H., Endepols, H., & Güntürkün, O. Glucose Metabolism of the Avian Brain: an FDG-PET Study in Pigeons (Columba livia) with Estimated Arterial Input Function of Anesthetized and Awake State. Poster # 068.12/QQ22 Neuroscience Meeting Planner (Online) (Society for Neuroscience, 2018).
Herculano-Houzel S. Scaling of brain metabolism with a fixed energy budget per neuron: implications for neuronal activity, plasticity and evolution. PLoS ONE. 2011;6:e17514. doi: 10.1371/journal.pone.0017514. PubMed DOI PMC
Kverková K, et al. Sociality does not drive the evolution of large brains in eusocial African mole-rats. Sci. Rep. 2018;8:9203. doi: 10.1038/s41598-018-26062-8. PubMed DOI PMC
Buffenstein R, Yahav S. Is the naked mole-rat Hererocephalus glaber an endothermic yet poikilothermic mammal? J. Therm. Biol. 1991;16:227–232. doi: 10.1016/0306-4565(91)90030-6. DOI
Tucker R. The digging behavior and skin differentiations in Heterocephalus glaber. J. Morphol. 1981;168:51–71. doi: 10.1002/jmor.1051680107. PubMed DOI
McNab BK. The metabolism of fossorial rodents: a study of convergence. Ecology. 1966;47:712–733. doi: 10.2307/1934259. DOI
Stephan H. Methodische Studien über den quantitativen Vergleich architektonischer Struktureinheiten des Gehirns. Z. wiss. Zool. 1960;164:143–172.
Herculano-Houzel S, Mota B, Lent R. Cellular scaling rules for rodent brains. Proc. Natl Acad. Sci. USA. 2006;103:12138–12143. doi: 10.1073/pnas.0604911103. PubMed DOI PMC
Herculano-Houzel S, Collins CE, Wong P, Kaas JK. Cellular scaling rules for primate brains. Proc. Natl Acad. Sci. USA. 2007;104:3562–3567. doi: 10.1073/pnas.0611396104. PubMed DOI PMC
Herculano-Houzel S, et al. Updated neuronal scaling rules for the brains of Glires (rodents/lagomorphs) Brain Behav. Evol. 2011;78:302–314. doi: 10.1159/000330825. PubMed DOI PMC
Herculano-Houzel S, Catania K, Manger PR, Kaas JH. Mammalian brains are made of these: a dataset of the numbers and densities of neuronal and nonneuronal cells in the brain of glires, primates, scandentia, eulipotyphlans, afrotherians and artiodactyls, and their relationship with body mass. Brain Behav. Evol. 2015;86:145–163. doi: 10.1159/000437413. PubMed DOI
Dos Santos SE, et al. Cellular scaling rules for the brains of marsupials: not as “primitive” as expected. Brain Behav. Evol. 2017;89:48–63. doi: 10.1159/000452856. PubMed DOI
Kazu RS, Maldonado J, Mota B, Manger PR, Herculano-Houzel S. Cellular scaling rules for the brain of Artiodactyla include a highly folded cortex with few neurons. Front. Neuroanat. 2014;8:128. doi: 10.3389/fnana.2014.00128. PubMed DOI PMC
Collins CE, et al. Cortical cell and neuron density estimates in one chimpanzee hemisphere. Proc. Natl Acad. Sci. USA. 2016;113:740–745. doi: 10.1073/pnas.1524208113. PubMed DOI PMC
Jardim-Messeder D, et al. Dogs have the most neurons, though not the largest brain: trade-off between body mass and number of neurons in the cerebral cortex of large carnivoran species. Front. Neuroanat. 2017;11:118. doi: 10.3389/fnana.2017.00118. PubMed DOI PMC
Mullen RJ, Buck CR, Smith AM. NeuN, a neuronal specific nuclear-protein in vertebrates. Development. 1992;116:201–211. doi: 10.1242/dev.116.1.201. PubMed DOI
Mezey S, et al. Postnatal changes in the distribution and density of neuronal nuclei and doublecortin antigens in domestic chicks (Gallus domesticus) J. Comp. Neurol. 2012;520:100–116. doi: 10.1002/cne.22696. PubMed DOI
Rehkämper G, Kart E, Frahm HD, Werner CW. Discontinuous variability of brain composition among domestic chicken breeds. Brain Behav. Evol. 2003;61:59–69. doi: 10.1159/000069352. PubMed DOI
Horschler DJ, et al. Absolute brain size predicts dog breed differences in executive function. Anim. Cogn. 2019;22:187–198. doi: 10.1007/s10071-018-01234-1. PubMed DOI
Rogell B, Dowling DK, Husby A. Controlling for body size leads to inferential biases in the biological sciences. Evol. Lett. 2019;4:73–82. doi: 10.1002/evl3.151. PubMed DOI PMC
Gutierrez-Ibanez C, Iwaniuk AN, Wylie DR. Relative brain size is not correlated with display complexity in manakins: a reanalysis of Lindsay et al. (2015) Brain Behav. Evol. 2016;87:223–226. doi: 10.1159/000446312. PubMed DOI
Zuur AF, Ieno EN, Elphick CS. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 2010;1:3–14. doi: 10.1111/j.2041-210X.2009.00001.x. DOI
Jetz W, Thomas GH, Joy JB, Hartmann K, Mooers AO. The global diversity of birds in space and time. Nature. 2012;491:444–448. doi: 10.1038/nature11631. PubMed DOI
Kumar S, Stecher G, Suleski M, Hedges SB. TimeTree: a resource for timelines, timetrees, and divergence times. Mol. Boil. Evol. 2017;34:1812–1819. doi: 10.1093/molbev/msx116. PubMed DOI
Currie, T. E. & Meade, A. In Modern phylogenetic comparative methods and their application in evolutionary biology (ed. Garamszegi, L. Z.) 263–286 (Springer, 2014).
Hadfield JD, Nakagawa S. General quantitative genetic methods for comparative biology: phylogenies, taxonomies and multi‐trait models for continuous and categorical characters. J. Evol. Biol. 2010;23:494–508. doi: 10.1111/j.1420-9101.2009.01915.x. PubMed DOI
Gelman, A. et al. Bayesian Data Analysis (CRC Press, 2013).
McElreath, R. Statistical Rethinking: A Bayesian Course with Examples in R and Stan (CRC Press, 2016).
Lo S, Andrews S. To transform or not to transform: using generalized linear mixed models to analyse reaction time data. Front. Psychol. 2015;6:1171. doi: 10.3389/fpsyg.2015.01171. PubMed DOI PMC
Gelman A, Hwang J, Vehtari A. Understanding predictive information criteria for Bayesian models. Stat. Comput. 2014;24:997–1016. doi: 10.1007/s11222-013-9416-2. DOI
Lemoine NP. Moving beyond noninformative priors: why and how to choose weakly informative priors in Bayesian analyses. Oikos. 2019;128:912–928. doi: 10.1111/oik.05985. DOI
Bürkner PC. brms: an R package for Bayesian multilevel models using Stan. J. Stat. Softw. 2017;80:1–28. doi: 10.18637/jss.v080.i01. DOI
Carpenter B, et al. Stan: a probabilistic programming language. J. Stat. Softw. 2017;76:1–32. doi: 10.18637/jss.v076.i01. PubMed DOI PMC
McShane BB, Gal D, Gelman A, Robert C, Tackett JL. Abandon statistical significance. Am. Stat. 2019;73:235–245. doi: 10.1080/00031305.2018.1527253. DOI
Sawilowsky S. New effect size rules of thumb. J. Mod. Appl. Stat. Methods. 2009;8:467–474. doi: 10.22237/jmasm/1257035100. DOI
The evolution of brain neuron numbers in amniotes