Genome of the Komodo dragon reveals adaptations in the cardiovascular and chemosensory systems of monitor lizards
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
UM1 HL098179
NHLBI NIH HHS - United States
U01 HL131003
NHLBI NIH HHS - United States
T32 HL007731
NHLBI NIH HHS - United States
T32 AR007175
NIAMS NIH HHS - United States
R01 HG005946
NHGRI NIH HHS - United States
PubMed
31358948
PubMed Central
PMC6668926
DOI
10.1038/s41559-019-0945-8
PII: 10.1038/s41559-019-0945-8
Knihovny.cz E-zdroje
- MeSH
- aklimatizace MeSH
- chromozomy MeSH
- ještěři * MeSH
- kardiovaskulární systém * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
Monitor lizards are unique among ectothermic reptiles in that they have high aerobic capacity and distinctive cardiovascular physiology resembling that of endothermic mammals. Here, we sequence the genome of the Komodo dragon Varanus komodoensis, the largest extant monitor lizard, and generate a high-resolution de novo chromosome-assigned genome assembly for V. komodoensis using a hybrid approach of long-range sequencing and single-molecule optical mapping. Comparing the genome of V. komodoensis with those of related species, we find evidence of positive selection in pathways related to energy metabolism, cardiovascular homoeostasis, and haemostasis. We also show species-specific expansions of a chemoreceptor gene family related to pheromone and kairomone sensing in V. komodoensis and other lizard lineages. Together, these evolutionary signatures of adaptation reveal the genetic underpinnings of the unique Komodo dragon sensory and cardiovascular systems, and suggest that selective pressure altered haemostasis genes to help Komodo dragons evade the anticoagulant effects of their own saliva. The Komodo dragon genome is an important resource for understanding the biology of monitor lizards and reptiles worldwide.
B U Bioscience Wageningen University Wageningen The Netherlands
Cardiovascular Research Institute University of California San Francisco CA USA
Centre for Integrative Ecology Deakin University Waurn Ponds Victoria Australia
Chan Zuckerberg BioHub San Francisco CA USA
Department of Biology University of Florence Sesto Fiorentino Italy
Department of Comparative Biomedicine and Food Science University of Padova Legnaro Italy
Department of Dermatology University of California San Francisco CA USA
Department of Ecology Charles University Prague Czech Republic
Department of Epidemiology and Biostatistics University of California San Francisco CA USA
Department of Pediatrics University of California San Francisco CA USA
Gladstone Institutes San Francisco CA USA
Institute for Computational Health Sciences University of California San Francisco CA USA
Institute for Conservation Research San Diego Zoo Escondido CA USA
Institute for Human Genetics University of California San Francisco CA USA
Institute of Animal Physiology and Genetics The Czech Academy of Sciences Liběchov Czech Republic
Institute of Molecular and Cellular Biology SB RAS Novosibirsk Russia
Prague Zoological Garden Prague Czech Republic
School of Biological Sciences Georgia Institute of Technology Atlanta GA USA
Zobrazit více v PubMed
Chapman AD Numbers of Living Species in Australia and the World (Australian Biological Resources Study, 2009).
Collar DC, Schulte JA & Losos JB Evolution of extreme body size disparity in monitor lizards (Varanus). Evolution (N. Y). 65, 2664–2680 (2011). PubMed
Jensen B, Wang T, Christoffels VM & Moorman AFM Evolution and development of the building plan of the vertebrate heart. Biochim. Biophys. Acta - Mol. Cell Res 1833, 783–794 (2013). PubMed
Auffenberg W The Behavioral Ecology of the Komodo Monitor (University Presses of Florida, 1981).
Green B, King D, Braysher M & Saim A Thermoregulation, water turnover and energetics of free-living komodo dragons, Varanus komodoensis. Comp. Biochem. Physiol. Part A Physiol 99, 97–101 (1991).
Purwandana D et al. Ecological allometries and niche use dynamics across Komodo dragon ontogeny. Sci. Nat 103, 27 (2016). PubMed
Fry BG et al. A central role for venom in predation by Varanus komodoensis (Komodo Dragon) and the extinct giant Varanus (Megalania) priscus. Proc. Natl. Acad. Sci. U. S. A 106, 8969–8974 (2009). PubMed PMC
Koludarov I et al. Enter the Dragon: The Dynamic and Multifunctional Evolution of Anguimorpha Lizard Venoms. Toxins 9, (2017). PubMed PMC
Johnson Pokorná M et al. First Description of the Karyotype and Sex Chromosomes in the Komodo Dragon (Varanus komodoensis). Cytogenet. Genome Res 148, 284–291 (2016). PubMed
Iannucci A et al. Isolating Chromosomes of the Komodo Dragon: New Tools for Comparative Mapping and Sequence Assembly. Cytogenet. Genome Res 157, 42–50 (2019). PubMed
Gao J et al. Sequencing, de novo assembling, and annotating the genome of the endangered Chinese crocodile lizard Shinisaurus crocodilurus. Gigascience 6, 1–6 (2017). PubMed PMC
Alföldi J et al. The genome of the green anole lizard and a comparative analysis with birds and mammals. Nature 477, 587–591 (2011). PubMed PMC
Simpson JT Exploring Genome Characteristics and Sequence Quality Without a Reference (2013). PubMed PMC
Krishan A et al. DNA index, genome size, and electronic nuclear volume of vertebrates from the Miami Metro Zoo. Cytom. Part A 65A, 26–34 (2005). PubMed
Doležel J, Bartoš J, Voglmayr H & Greilhuber J Letter to the editor. Cytom. Part A 51A, 127–128 (2003). PubMed
Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV & Zdobnov EM BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015). PubMed
Rey R, Lukas-Croisier C, Lasala C & Bedecarrás P AMH/MIS: what we know already about the gene, the protein and its regulation. Mol. Cell. Endocrinol 211, 21–31 (2003). PubMed
Rovatsos M, Rehák I, Velenský P & Kratochvíl L Shared ancient sex chromosomes in varanids, beaded lizards and alligator lizards. Mol. Biol. Evol (2019). doi:10.1093/molbev/msz024 PubMed DOI
Welton LJ, Travers SL, Siler CD & Brown RM Integrative taxonomy and phylogeny-based species delimitation of Philippine water monitor lizards (Varanus salvator Complex) with descriptions of two new cryptic species. Zootaxa 3881, 201 (2014). PubMed
Zheng Y & Wiens JJ Combining phylogenomic and supermatrix approaches, and a time-calibrated phylogeny for squamate reptiles (lizards and snakes) based on 52 genes and 4162 species. Mol. Phylogenet. Evol 94, 537–547 (2016). PubMed
Douglas ME, Douglas MR, Schuett GW, Beck DD & Sullivan BK Conservation phylogenetics of helodermatid lizards using multiple molecular markers and a supertree approach. Mol. Phylogenet. Evol 55, 153–167 (2010). PubMed
Castoe TA et al. Dynamic Nucleotide Mutation Gradients and Control Region Usage in Squamate Reptile Mitochondrial Genomes. Cytogenet. Genome Res 127, 112–127 (2009). PubMed PMC
Townsend TM et al. Phylogeny of iguanian lizards inferred from 29 nuclear loci, and a comparison of concatenated and species-tree approaches for an ancient, rapid radiation. Mol. Phylogenet. Evol 61, 363–380 (2011). PubMed
Alfaro ME et al. Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates. Proc. Natl. Acad. Sci 106, 13410–13414 (2009). PubMed PMC
Sanders KL & Lee MSY Molecular evidence for a rapid late-Miocene radiation of Australasian venomous snakes (Elapidae, Colubroidea). Mol. Phylogenet. Evol 46, 1165–1173 (2008). PubMed
Okajima Y & Kumazawa Y Mitogenomic perspectives into iguanid phylogeny and biogeography: Gondwanan vicariance for the origin of Madagascan oplurines. Gene 441, 28–35 (2009). PubMed
Kumazawa Y Mitochondrial genomes from major lizard families suggest their phylogenetic relationships and ancient radiations. Gene 388, 19–26 (2007). PubMed
Hugall AF, Foster R & Lee MSY Calibration Choice, Rate Smoothing, and the Pattern of Tetrapod Diversification According to the Long Nuclear Gene RAG-1. Syst. Biol 56, 543–563 (2007). PubMed
Wiens JJ, Brandley MC & Reeder TW Why does a trait evolve multiple times within a clade? Repeated evolution of snakelike body form in squamate reptiles. Evolution 60, 123–41 (2006). PubMed
Pyron RA, Burbrink FT & Wiens JJ A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evol. Biol 13, 93 (2013). PubMed PMC
Zheng Y & Wiens JJ Do missing data influence the accuracy of divergence-time estimation with BEAST? Mol. Phylogenet. Evol 85, 41–49 (2015). PubMed
Kumar S, Stecher G, Suleski M & Hedges SB TimeTree: A Resource for Timelines, Timetrees, and Divergence Times. Mol. Biol. Evol 34, 1812–1819 (2017). PubMed
Hsiang AY et al. The origin of snakes: revealing the ecology, behavior, and evolutionary history of early snakes using genomics, phenomics, and the fossil record. BMC Evol. Biol 15, 87 (2015). PubMed PMC
Tolley KA, Townsend TM & Vences M Large-scale phylogeny of chameleons suggests African origins and Eocene diversification. Proc. R. Soc. B Biol. Sci 280, 20130184–20130184 (2013). PubMed PMC
Jones ME et al. Integration of molecules and new fossils supports a Triassic origin for Lepidosauria (lizards, snakes, and tuatara). BMC Evol. Biol 13, 208 (2013). PubMed PMC
Portik DM & Papenfuss TJ Monitors cross the Red Sea: The biogeographic history of Varanus yemenensis. Mol. Phylogenet. Evol 62, 561–565 (2012). PubMed
Pyron RA A Likelihood Method for Assessing Molecular Divergence Time Estimates and the Placement of Fossil Calibrations. Syst. Biol 59, 185–194 (2010). PubMed
Vidal N et al. Molecular evidence for an Asian origin of monitor lizards followed by Tertiary dispersals to Africa and Australasia. Biol. Lett 8, 853–855 (2012). PubMed PMC
Xiong Z et al. Draft genome of the leopard gecko, Eublepharis macularius. Gigascience 5, 47 (2016). PubMed PMC
Streicher JW & Wiens JJ Phylogenomic analyses of more than 4000 nuclear loci resolve the origin of snakes among lizard families. Biol. Lett 13, 20170393 (2017). PubMed PMC
Wiens JJ et al. Combining Phylogenomics and Fossils in Higher-Level Squamate Reptile Phylogeny: Molecular Data Change the Placement of Fossil Taxa. Syst. Biol 59, 674–688 (2010). PubMed
Fry BG et al. Early evolution of the venom system in lizards and snakes. Nature 439, 584–8 (2006). PubMed
Lee MSY Hidden support from unpromising data sets strongly unites snakes with anguimorph ‘lizards’. J. Evol. Biol 22, 1308–1316 (2009). PubMed
Silva L & Antunes A Vomeronasal Receptors in Vertebrates and the Evolution of Pheromone Detection. Annu. Rev. Anim. Biosci 5, 353–370 (2017). PubMed
Brykczynska U, Tzika AC, Rodriguez I & Milinkovitch MC Contrasted evolution of the vomeronasal receptor repertoires in mammals and squamate reptiles. Genome Biol. Evol 5, 389–401 (2013). PubMed PMC
Green RE et al. Three crocodilian genomes reveal ancestral patterns of evolution among archosaurs. Science (80-.). 346, 1254449–1254449 (2014). PubMed PMC
Zippel HP The ecology of vertebrate olfaction. Behav. Processes 7, 198–199 (2002).
Yang H, Shi P, Zhang Y & Zhang J Composition and evolution of the V2r vomeronasal receptor gene repertoire in mice and rats. Genomics 86, 306–315 (2005). PubMed
Fabregat A et al. The Reactome Pathway Knowledgebase. Nucleic Acids Res 46, D649–D655 (2018). PubMed PMC
Fabregat A et al. Reactome pathway analysis: a high-performance in-memory approach. BMC Bioinformatics 18, 142 (2017). PubMed PMC
Wu G & Haw R Functional Interaction Network Construction and Analysis for Disease Discovery. in Methods in molecular biology (Clifton, N.J.) 1558, 235–253 (2017). PubMed
Shultz AJ & Sackton T Immune genes are hotspots of shared positive selection across birds and mammals. Elife 8, (2019). PubMed PMC
Riquelme CA et al. Fatty Acids Identified in the Burmese Python Promote Beneficial Cardiac Growth. Science (80-.). 334, 528 LP – 531 (2011). PubMed PMC
Falkenberg M et al. Mitochondrial transcription factors B1 and B2 activate transcription of human mtDNA. Nat. Genet 31, 289–294 (2002). PubMed
Cotney J, McKay SE & Shadel GS Elucidation of separate, but collaborative functions of the rRNA methyltransferase-related human mitochondrial transcription factors B1 and B2 in mitochondrial biogenesis reveals new insight into maternally inherited deafness. Hum. Mol. Genet 18, 2670–2682 (2009). PubMed PMC
Cho Y, Hazen BC, Russell AP & Kralli A Peroxisome Proliferator-activated Receptor γ Coactivator 1 (PGC-1)- and Estrogen-related Receptor (ERR)-induced Regulator in Muscle 1 (PERM1) Is a Tissue-specific Regulator of Oxidative Capacity in Skeletal Muscle Cells. J. Biol. Chem 288, 25207–25218 (2013). PubMed PMC
Cho Y et al. Perm1 enhances mitochondrial biogenesis, oxidative capacity, and fatigue resistance in adult skeletal muscle. FASEB J 30, 674–687 (2016). PubMed PMC
Zhao S et al. Regulation of Cellular Metabolism by Protein Lysine Acetylation. Science (80-.). 327, 1000–1004 (2010). PubMed PMC
Brzezniak LK, Bijata M, Szczesny RJ & Stepien PP Involvement of human ELAC2 gene product in 3’ end processing of mitochondrial tRNAs. RNA Biol 8, 616–626 (2011). PubMed
Holzmann J et al. RNase P without RNA: Identification and Functional Reconstitution of the Human Mitochondrial tRNA Processing Enzyme. Cell 135, 462–474 (2008). PubMed
Lee K-W & Bogenhagen DF Assignment of 2′-O-Methyltransferases to Modification Sites on the Mammalian Mitochondrial Large Subunit 16 S Ribosomal RNA (rRNA). J. Biol. Chem 289, 24936–24942 (2014). PubMed PMC
Cingolani HE et al. The Positive Inotropic Effect of Angiotensin II. Hypertension 47, 727–734 (2006). PubMed
Forrester SJ et al. Angiotensin II Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology. Physiol. Rev 98, 1627–1738 (2018). PubMed PMC
Kim S & Iwao H Molecular and Cellular Mechanisms of Angiotensin II-Mediated Cardiovascular and Renal Diseases. Pharmacol. Rev 52, 11 LP – 34 (2000). PubMed
Symons JD & Stebbins CL Effects of angiotensin II receptor blockade during exercise: comparison of losartan and saralasin. J. Cardiovasc. Pharmacol 28, 223–31 (1996). PubMed
Stebbins CL & Symons JD Role of angiotensin II in hemodynamic responses to dynamic exercise in miniswine. J. Appl. Physiol 78, 185–90 (1995). PubMed
WILSON JX The Renin-Angiotensin System in Nonmammalian Vertebrates. Endocr. Rev 5, 45–61 (1984). PubMed
Fournier D, Luft FC, Bader M, Ganten D & Andrade-Navarro MA Emergence and evolution of the renin–angiotensin–aldosterone system. J. Mol. Med 90, 495–508 (2012). PubMed PMC
Mueller CA, Eme J, Tate KB & Crossley DA Chronic captopril treatment reveals the role of ANG II in cardiovascular function of embryonic American alligators (Alligator mississippiensis). J. Comp. Physiol. B 188, 657–669 (2018). PubMed
Antl M et al. IRAG mediates NO/cGMP-dependent inhibition of platelet aggregation and thrombus formation. Blood 109, 552–559 (2007). PubMed
Puetz J & Boudreaux MK Evaluation of the gene encoding calcium and diacylglycerol regulated guanine nucleotide exchange factor I (CalDAG-GEFI) in human patients with congenital qualitative platelet disorders. Platelets 23, 401–403 (2012). PubMed
Bezman NA et al. Requirements of SLP76 tyrosines in ITAM and integrin receptor signaling and in platelet function in vivo. J. Exp. Med 205, 1775–88 (2008). PubMed PMC
Israels S & McMillan-Ward E CD63 modulates spreading and tyrosine phosphorylation of platelets on immobilized fibrinogen. Thromb. Haemost 93, 311–318 (2005). PubMed
Cooper DN, Millar DS, Wacey A, Pemberton S & Tuddenham EG Inherited factor X deficiency: molecular genetics and pathophysiology. Thromb. Haemost 78, 161–172 (1997). PubMed
Takahashi N, Takahashi Y & Putnam FW Primary structure of blood coagulation factor XIIIa (fibrinoligase, transglutaminase) from human placenta. Proc. Natl. Acad. Sci 83, 8019 LP – 8023 (1986). PubMed PMC
Mosesson MW The roles of fibrinogen and fibrin in hemostasis and thrombosis. Semin. Hematol 29, 177–188 (1992). PubMed
Pyron R, Burbrink FT & Wiens JJ A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evol. Biol 13, 93 (2013). PubMed PMC
Pokorná M & Kratochvíl L Phylogeny of sex-determining mechanisms in squamate reptiles: Are sex chromosomes an evolutionary trap? Zool. J. Linn. Soc 156, 168–183 (2009).
Rovatsos M, Pokorna M, Altmanova M & Kratochvil L Cretaceous park of sex determination: sex chromosomes are conserved across iguanas. Biol. Lett 10, 20131093–20131093 (2014). PubMed PMC
Gamble T et al. Restriction Site-Associated DNA Sequencing (RAD-seq) Reveals an Extraordinary Number of Transitions among Gecko Sex-Determining Systems. Mol. Biol. Evol 32, 1296–1309 (2015). PubMed
Nielsen SV, Banks JL, Diaz RE, Trainor PA & Gamble T Dynamic sex chromosomes in Old World chameleons (Squamata: Chamaeleonidae). J. Evol. Biol 31, 484–490 (2018). PubMed
Rovatsos M, Altmanová M, Pokorná M & Kratochvíl L Conserved sex chromosomes across adaptively radiated anolis lizards. Evolution (N. Y). 68, 2079–2085 (2014). PubMed
Gamble T et al. The Discovery of XY Sex Chromosomes in a Boa and Python. Curr. Biol 27, 2148–2153.e4 (2017). PubMed
Emerson JJ Evolution: A Paradigm Shift in Snake Sex Chromosome Genetics. Curr. Biol 27, R800–R803 (2017). PubMed
Hattori RS et al. A Y-linked anti-Müllerian hormone duplication takes over a critical role in sex determination. Proc. Natl. Acad. Sci 109, 2955 LP – 2959 (2012). PubMed PMC
Cortez D et al. Origins and functional evolution of Y chromosomes across mammals. Nature 508, 488 (2014). PubMed
Bej DK, Miyoshi K, Hattori RS, Strüssmann CA & Yamamoto Y A Duplicated, Truncated amh Gene Is Involved in Male Sex Determination in an Old World Silverside. G3 Genes|Genomes|Genetics 7, 2489–2495 (2017). PubMed PMC
Ieda R et al. Identification of the sex-determining locus in grass puffer (Takifugu niphobles) provides evidence for sex-chromosome turnover in a subset of Takifugu species. PLoS One 13, e0190635 (2018). PubMed PMC
Halpern M Nasal chemical senses in reptiles: structure and function Pp 423–523 in Gans C, Crews D (eds) Biology of the Reptilia, Vol. 18, Brain. Horm. Behav Chicago/IL Univ. Chicago Press Google Sch; (1992).
Martin J & Lopez P Chemoreception, symmetry and mate choice in lizards. Proc. R. Soc. B Biol. Sci 267, 1265–1269 (2000). PubMed PMC
Baeckens S, Martín J, García-Roa R & van Damme R Sexual selection and the chemical signal design of lacertid lizards. Zool. J. Linn. Soc 183, 445–457 (2018).
van Damme R, Bauwens D, Thoen C, Vanderstighelen D & Verheyen RF Responses of Naive Lizards to Predator Chemical Cues. J. Herpetol 29, 38 (1995).
van Damme R & Castilla AM Chemosensory predator recognition in the lizard Podarcis hispanica: effects of predation pressure relaxation. J. Chem. Ecol 22, 13–22 (1996). PubMed
Cooper WE Correlated evolution of prey chemical discrimination with foraging, lingual morphology and vomeronasal chemoreceptor abundance in lizards. Behav. Ecol. Sociobiol 41, 257–265 (1997).
Cooper W Tandem evolution of diet and chemosensory responses in snakes. Amphibia-Reptilia 29, 393–398 (2008).
Hulbert AJ & Else PL Evolution of mammalian endothermic metabolism: mitochondrial activity and cell composition. Am. J. Physiol. Integr. Comp. Physiol 256, R63–R69 (1989). PubMed
Castoe TA et al. The Burmese python genome reveals the molecular basis for extreme adaptation in snakes. Proc. Natl. Acad. Sci. U. S. A 110, 20645–50 (2013). PubMed PMC
Duan J et al. Transcriptome analysis of the response of Burmese python to digestion. Gigascience 6, 1–18 (2017). PubMed PMC
Gleeson TT, Mitchell GS & Bennett AF Cardiovascular responses to graded activity in the lizards Varanus and Iguana. Am. J. Physiol. Integr. Comp. Physiol 239, R174–R179 (1980). PubMed
Agaba M et al. Giraffe genome sequence reveals clues to its unique morphology and physiology. Nat. Commun 7, 11519 (2016). PubMed PMC
Weisenfeld NI, Kumar V, Shah P, Church DM & Jaffe DB Direct determination of diploid genome sequences. Genome Res 27, 757–767 (2017). PubMed PMC
Kichigin IG et al. Evolutionary dynamics of Anolis sex chromosomes revealed by sequencing of flow sorting-derived microchromosome-specific DNA. Mol. Genet. Genomics 291, 1955–1966 (2016). PubMed
Makunin AI et al. Contrasting origin of B chromosomes in two cervids (Siberian roe deer and grey brocket deer) unravelled by chromosome-specific DNA sequencing. BMC Genomics 17, 618 (2016). PubMed PMC
Martin M Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17, 10 (2011).
Li H Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM (2013).
Quinlan AR & Hall IM BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–2 (2010). PubMed PMC
Quinlan AR, Pedersen BS & Dale RK Pybedtools: a flexible Python library for manipulating genomic datasets and annotations. Bioinformatics 27, 3423–3424 (2011). PubMed PMC
Kielbasa SM, Wan R, Sato K, Horton P & Frith M Adaptive seeds tame genomic sequence comparison. Genome Res (2011). doi:10.1101/gr.113985.110 PubMed DOI PMC
Kent WJ, Baertsch R, Hinrichs A, Miller W & Haussler D Evolution’s cauldron: Duplication, deletion, and rearrangement in the mouse and human genomes. Proc. Natl. Acad. Sci 100, 11484–11489 (2003). PubMed PMC
Smit A, Hubley R & Green P Repeatmasker Open-4.0 (2013). Available at: http://www.repeatmasker.org. (Accessed: 10th January 2015)
Cantarel BL et al. MAKER: an easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Res 18, 188–96 (2008). PubMed PMC
Stanke M & Morgenstern B AUGUSTUS: a web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Res 33, W465–7 (2005). PubMed PMC
Slater G & Birney E Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics 6, 31 (2005). PubMed PMC
Dobin A et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013). PubMed PMC
Haas BJ et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc 8, 1494–512 (2013). PubMed PMC
Jones P et al. InterProScan 5: genome-scale protein function classification. Bioinformatics 30, 1236–1240 (2014). PubMed PMC
Emms DM & Kelly S OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol 16, 157 (2015). PubMed PMC
Lowe TM & Eddy SR tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25, 955–64 (1997). PubMed PMC
Griffiths-Jones S, Bateman A, Marshall M, Khanna A & Eddy SR Rfam: an RNA family database. Nucleic Acids Res 31, 439–41 (2003). PubMed PMC
Nawrocki EP & Eddy SR Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 29, 2933–5 (2013). PubMed PMC
Löytynoja A Phylogeny-aware alignment with PRANK. in Methods in molecular biology (Clifton, N.J.) 1079, 155–170 (2014). PubMed
Nguyen LT, Schmidt HA, Von Haeseler A & Minh BQ IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol 32, 268–274 (2015). PubMed PMC
Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A & Jermiin LS ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017). PubMed PMC
Hoang DT, Chernomor O, von Haeseler A, Minh BQ & Vinh LS UFBoot2: Improving the Ultrafast Bootstrap Approximation. Mol. Biol. Evol 35, 518–522 (2018). PubMed PMC
Smith SA, Brown JW & Walker JF So many genes, so little time: A practical approach to divergence-time estimation in the genomic era. PLoS One 13, e0197433 (2018). PubMed PMC
Han MV, Thomas GWC, Lugo-Martinez J & Hahn MW Estimating Gene Gain and Loss Rates in the Presence of Error in Genome Assembly and Annotation Using CAFE 3. Mol. Biol. Evol 30, 1987–1997 (2013). PubMed
Mitchell AL et al. InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res (2018). doi:10.1093/nar/gky1100 PubMed DOI PMC
Altschul SF, Gish W, Miller W, Myers EW & Lipman DJ Basic local alignment search tool. J. Mol. Biol 215, 403–410 (1990). PubMed
Krogh A, Larsson B, von Heijne G & Sonnhammer EL. Predicting transmembrane protein topology with a hidden markov model: application to complete genomes11Edited by F. Cohen. J. Mol. Biol 305, 567–580 (2001). PubMed
Katoh K & Standley DM MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol 30, 772–780 (2013). PubMed PMC
Capella-Gutiérrez S, Silla-Martínez JM & Gabaldón T trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009). PubMed PMC
Suyama M, Torrents D & Bork P PAL2NAL: Robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res 34, (2006). PubMed PMC
Smith MD et al. Less is more: an adaptive branch-site random effects model for efficient detection of episodic diversifying selection. Mol. Biol. Evol 32, 1342–53 (2015). PubMed PMC
Pond SLK, Frost SDW & Muse SV HyPhy: hypothesis testing using phylogenies. Bioinformatics 21, 676–679 (2005). PubMed
Sex chromosome evolution among amniotes: is the origin of sex chromosomes non-random?
Cytogenetic Evidence for Sex Chromosomes and Karyotype Evolution in Anguimorphan Lizards