Satellite DNAs and the evolution of the multiple X1X2Y sex chromosomes in the wolf fish Hoplias malabaricus (Teleostei; Characiformes)
Language English Country Great Britain, England Media electronic
Document type Journal Article
Grant support
2022/00427-3
Fundação de Amparo à Pesquisa do Estado de São Paulo
2023/00955-2
Fundação de Amparo à Pesquisa do Estado de São Paulo
302928/2021-9
Conselho Nacional de Desenvolvimento Científico e Tecnológico
PubMed
39223262
PubMed Central
PMC11369246
DOI
10.1038/s41598-024-70920-7
PII: 10.1038/s41598-024-70920-7
Knihovny.cz E-resources
- Keywords
- FISH, Meiosis, Multiple sex chromosomes, Satellitome, Sex trivalent,
- MeSH
- Characiformes * genetics MeSH
- Y Chromosome genetics MeSH
- In Situ Hybridization, Fluorescence * MeSH
- Karyotype MeSH
- Meiosis genetics MeSH
- Evolution, Molecular MeSH
- Sex Chromosomes * genetics MeSH
- DNA, Satellite * genetics MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- DNA, Satellite * MeSH
Multiple sex chromosomes usually arise from chromosomal rearrangements which involve ancestral sex chromosomes. There is a fundamental condition to be met for their long-term fixation: the meiosis must function, leading to the stability of the emerged system, mainly concerning the segregation of the sex multivalent. Here, we sought to analyze the degree of differentiation and meiotic pairing properties in the selected fish multiple sex chromosome system present in the wolf-fish Hoplias malabaricus (HMA). This species complex encompasses seven known karyotype forms (karyomorphs) where the karyomorph C (HMA-C) exhibits a nascent XY sex chromosomes from which the multiple X1X2Y system evolved in karyomorph HMA-D via a Y-autosome fusion. We combined genomic and cytogenetic approaches to analyze the satellite DNA (satDNA) content in the genome of HMA-D karyomorph and to investigate its potential contribution to X1X2Y sex chromosome differentiation. We revealed 56 satDNA monomers of which the majority was AT-rich and with repeat units longer than 100 bp. Seven out of 18 satDNA families chosen for chromosomal mapping by fluorescence in situ hybridization (FISH) formed detectable accumulation in at least one of the three sex chromosomes (X1, X2 and neo-Y). Nine satDNA monomers showed only two hybridization signals limited to HMA-D autosomes, and the two remaining ones provided no visible FISH signals. Out of seven satDNAs located on the HMA-D sex chromosomes, five mapped also to XY chromosomes of HMA-C. We showed that after the autosome-Y fusion event, the neo-Y chromosome has not substantially accumulated or eliminated satDNA sequences except for minor changes in the centromere-proximal region. Finally, based on the obtained FISHpatterns, we speculate on the possible contribution of satDNA to sex trivalent pairing and segregation.
See more in PubMed
Charlesworth, D. When and how do sex-linked regions become sex chromosomes? PubMed DOI
Bergero, R. & Charlesworth, D. The evolution of restricted recombination in sex chromosomes. PubMed DOI
Blackmon, H. & Demuth, J. P. The fragile Y hypothesis: Y chromosome aneuploidy as a selective pressure in sex chromosome and meiotic mechanism evolution. PubMed DOI
Beaudry, F. E. G., Barrett, S. C. H. & Wright, S. I. Ancestral and neo-sex chromosomes contribute to population divergence in a dioecious plant. PubMed DOI
Smith, D. A. S. PubMed DOI PMC
Charlesworth, D. & Charlesworth, B. Sex differences in fitness and selection for centric fusions between sex-chromosomes and autosomes. PubMed DOI
Matsumoto, T. & Kitano, J. The intricate relationship between sexually antagonistic selection and the evolution of sex chromosome fusions. PubMed DOI
Pokorná, M., Altmanová, M. & Kratochvíl, L. Multiple sex chromosomes in the light of female meiotic drive in amniote vertebrates. PubMed DOI
Ma, W.-J. & Veltsos, P. The diversity and evolution of sex chromosomes in frogs. PubMed DOI PMC
Charlesworth, D. Some thoughts about the words we use for thinking about sex chromosome evolution. PubMed DOI PMC
Ferchaud, A.-L. PubMed DOI PMC
Sciurano, R. B., Rahn, M. I., Rey-Valzacchi, G., Coco, R. & Solari, A. J. The role of asynapsis in human spermatocyte failure. PubMed DOI
Wolf, K. W. How meiotic cells deal with non-exchange chromosomes. PubMed DOI
Nokkala, S., Kuznetsova, V. G., Maryanska-Nadachowska, A. & Nokkala, C. Holocentric chromosomes in meiosis. II. The modes of orientation and segregation of a trivalent. PubMed DOI
Noronha, R. C. R., Nagamachi, C. Y., O’Brien, P. C. M., Ferguson-Smith, M. A. & Pieczarka, J. C. Neo-XY body: An analysis of XY PubMed DOI
Castillo, E. R. D., Bidau, C. J. & Martí, D. A. Neo-sex chromosome diversity in Neotropical PubMed DOI
Poggio, M. G., Gaspe, M. S., Papeschi, A. G. & Bressa, M. J. Cytogenetic study in a mutant of PubMed DOI
Farooq, U., Lovleen, & Saggoo, M. I. S. Male meiosis and behaviour of sex chromosomes in different populations of DOI
Bertollo, L. A. C. & Mestriner, C. A. The X PubMed DOI
Charlesworth, D., Charlesworth, B. & Marais, G. Steps in the evolution of heteromorphic sex chromosomes. PubMed DOI
Ezaz, T. & Deakin, J. E. Repetitive sequence and sex chromosome evolution in vertebrates. DOI
Steinemann, S. & Steinemann, M. Y chromosomes: Born to be destroyed. PubMed DOI
Kent, T. V., Uzunović, J. & Wright, S. I. Coevolution between transposable elements and recombination. PubMed DOI PMC
Flynn, J. M., Hu, K. B. & Clark, A. G. Three recent sex chromosome-to-autosome fusions in a PubMed DOI PMC
Dobigny, G., Ozouf-Costaz, C., Bonillo, C. & Volobouev, V. Viability of X-autosome translocations in mammals: An epigenomic hypothesis from a rodent case-study. PubMed DOI
Oliveira da Silva, W. PubMed DOI PMC
Lohe, A. R. & Roberts, P. A. An unusual Y chromosome of PubMed DOI PMC
Garrido-Ramos, M. A. Satellite DNA: An evolving topic. PubMed DOI PMC
Šatović-Vukšić, E. & Plohl, M. Satellite DNAs—From localized to highly dispersed genome components. PubMed DOI PMC
López-Flores, I. & Garrido-Ramos, M. A. The repetitive DNA content of eukaryotic genomes. In PubMed
Shapiro, J. A. & von Sternberg, R. Why repetitive DNA is essential to genome function. PubMed DOI
Talbert, P. B. & Henikoff, S. The genetics and epigenetics of satellite centromeres. PubMed DOI PMC
Ruiz-Ruano, F. J., López-León, M. D., Cabrero, J. & Camacho, J. P. M. High-throughput analysis of the satellitome illuminates satellite DNA evolution. PubMed DOI PMC
Camacho, J. P. M. PubMed DOI PMC
Novák, P., Neumann, P. & Macas, J. Global analysis of repetitive DNA from unassembled sequence reads using RepeatExplorer2. PubMed DOI
Despot-Slade, E. PubMed DOI PMC
Palacios-Gimenez, O. M. PubMed DOI PMC
de Lima, L. G. & Ruiz-Ruano, F. J. In-depth satellitome analyses of 37 PubMed DOI PMC
Ávila Robledillo, L. PubMed DOI PMC
Bracewell, R., Chatla, K., Nalley, M. J. & Bachtrog, D. Dynamic turnover of centromeres drives karyotype evolution in PubMed DOI PMC
Nishihara, H., Stanyon, R., Tanabe, H. & Koga, A. Replacement of owl monkey centromere satellite by a newly evolved variant was a recent and rapid process. PubMed DOI
Cabral-de-Mello, D. C. PubMed DOI
Ferretti, A. B. S. M., Milani, D., Palacios-Gimenez, O. M., Ruiz-Ruano, F. J. & Cabral-de-Mello, D. C. High dynamism for neo-sex chromosomes: Satellite DNAs reveal complex evolution in a grasshopper. PubMed DOI PMC
Ruban, A., Schmutzer, T., Scholz, U. & Houben, A. How next-generation sequencing has aided our understanding of the sequence composition and origin of B chromosomes. PubMed DOI PMC
Crepaldi, C., Martí, E., Gonçalves, É. M., Martí, D. A. & Parise-Maltempi, P. P. Genomic differences between the sexes in a fish species seen through satellite DNAs. PubMed DOI PMC
Silva, D. M. Z. D. A. PubMed DOI PMC
Marta, A., Dedukh, D., Bartoš, O., Majtánová, Z. & Janko, K. Cytogenetic characterization of seven novel satDNA markers in two species of spined loaches ( PubMed DOI PMC
Bertollo, L. A. C., Born, G. G., Dergam, J. A., Fenocchio, A. S. & Moreira-Filho, O. A biodiversity approach in the neotropical Erythrinidae fish, PubMed DOI
Cioffi M. B., Yano, C. F., Sember, A. & Bertollo, L. A. C. Chromosomal evolution in lower vertebrates: sex chromosomes in neotropical fishes. PubMed DOI PMC
Cioffi, M. B., Franco, W., Ferreira, R. & Bertollo, L. A. C. Chromosomes as tools for discovering Biodiversity—The case of Erythrinidae fish family. In
Cioffi, M. B. & Bertollo, L. A. C. Initial steps in XY chromosome differentiation in PubMed DOI
Martins, C., Ferreira, I. A., Oliveira, C., Foresti, F. & Galetti, P. M. A tandemly repetitive centromeric DNA sequence of the fish PubMed DOI
dos Santos, R. Z. PubMed DOI PMC
da Silva, M. J., Gazoni, T. & Haddad, C. F. B. Analysis in PubMed DOI PMC
Peona, V., Kutschera, V. E., Blom, M. P. K., Irestedt, M. & Suh, A. Satellite DNA evolution in Corvoidea inferred from short and long reads. PubMed DOI
Lisachov, A., Rumyantsev, A., Prokopov, D., Ferguson-Smith, M. & Trifonov, V. Conservation of major satellite DNAs in snake heterochromatin. PubMed DOI PMC
Henikoff, S., Ahmad, K. & Malik, H. S. The centromere paradox: Stable inheritance with rapidly evolving DNA. PubMed DOI
Kitaoka, M., Smith, O. K., Straight, A. F. & Heald, R. Molecular conflicts disrupting centromere maintenance contribute to PubMed DOI PMC
Ferree, P. M. & Barbash, D. A. Species-specific heterochromatin prevents mitotic chromosome segregation to cause hybrid lethality in PubMed DOI PMC
O’Neill, M. J. & O’Neill, R. J. Sex chromosome repeats tip the balance towards speciation. PubMed DOI
Raskina, O., Barber, J. C., Nevo, E. & Belyayev, A. Repetitive DNA and chromosomal rearrangements: Speciation-related events in plant genomes. PubMed DOI
George, C. M. & Alani, E. Multiple cellular mechanisms prevent chromosomal rearrangements involving repetitive DNA. PubMed DOI PMC
Chen, J.-M., Cooper, D. N., Férec, C., Kehrer-Sawatzki, H. & Patrinos, G. P. Genomic rearrangements in inherited disease and cancer. PubMed DOI
Barra, V. & Fachinetti, D. The dark side of centromeres: Types, causes and consequences of structural abnormalities implicating centromeric DNA. PubMed DOI PMC
McKinley, K. L. & Cheeseman, I. M. The molecular basis for centromere identity and function. PubMed DOI PMC
Moreira-Filho, O., Bertollo, L. A. C. & Galetti, P. M. Distribution of sex chromosome mechanisms in neotropical fish and description of a ZZ/ZW system in DOI
Östergren, G. The mechanism of co-orientation in bivalents and multivalents: The theory of orientation by pulling. DOI
Bertollo, L. A. C., Cioffi, M. B. & Moreira-Filho, O. Direct chromosome preparation from Freshwater Teleost Fishes. In
Kligerman, A. D. & Bloom, S. E. Rapid chromosome preparations from solid tissues of fishes. DOI
Sambrook, J. & Russell, D. W.
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. PubMed DOI PMC
Schmieder, R. & Edwards, R. Quality control and preprocessing of metagenomic datasets. PubMed DOI PMC
Smit, A. F. A., Hubley, R. & Green, P. RepeatMasker Open (1996–2010).
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. PubMed DOI PMC
Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: Accelerated for clustering the next-generation sequencing data. PubMed DOI PMC
Edgar, R. C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. PubMed DOI PMC
Cioffi, M. B., Martins, C. & Bertollo, L. A. C. Comparative chromosome mapping of repetitive sequences. Implications for genomic evolution in the fish PubMed DOI PMC
Yano, C. F., Bertollo, L. A. C. & de Cioffi, M. B. Fish-FISH: Molecular cytogenetics in fish species. In
Levan, A., Fredga, K. & Sandberg, A. A. Nomenclature for centromeric position on chromosomes. DOI