• This record comes from PubMed

Satellite DNAs and the evolution of the multiple X1X2Y sex chromosomes in the wolf fish Hoplias malabaricus (Teleostei; Characiformes)

. 2024 Sep 02 ; 14 (1) : 20402. [epub] 20240902

Language English Country Great Britain, England Media electronic

Document type Journal Article

Grant support
2022/00427-3 Fundação de Amparo à Pesquisa do Estado de São Paulo
2023/00955-2 Fundação de Amparo à Pesquisa do Estado de São Paulo
302928/2021-9 Conselho Nacional de Desenvolvimento Científico e Tecnológico

Links

PubMed 39223262
PubMed Central PMC11369246
DOI 10.1038/s41598-024-70920-7
PII: 10.1038/s41598-024-70920-7
Knihovny.cz E-resources

Multiple sex chromosomes usually arise from chromosomal rearrangements which involve ancestral sex chromosomes. There is a fundamental condition to be met for their long-term fixation: the meiosis must function, leading to the stability of the emerged system, mainly concerning the segregation of the sex multivalent. Here, we sought to analyze the degree of differentiation and meiotic pairing properties in the selected fish multiple sex chromosome system present in the wolf-fish Hoplias malabaricus (HMA). This species complex encompasses seven known karyotype forms (karyomorphs) where the karyomorph C (HMA-C) exhibits a nascent XY sex chromosomes from which the multiple X1X2Y system evolved in karyomorph HMA-D via a Y-autosome fusion. We combined genomic and cytogenetic approaches to analyze the satellite DNA (satDNA) content in the genome of HMA-D karyomorph and to investigate its potential contribution to X1X2Y sex chromosome differentiation. We revealed 56 satDNA monomers of which the majority was AT-rich and with repeat units longer than 100 bp. Seven out of 18 satDNA families chosen for chromosomal mapping by fluorescence in situ hybridization (FISH) formed detectable accumulation in at least one of the three sex chromosomes (X1, X2 and neo-Y). Nine satDNA monomers showed only two hybridization signals limited to HMA-D autosomes, and the two remaining ones provided no visible FISH signals. Out of seven satDNAs located on the HMA-D sex chromosomes, five mapped also to XY chromosomes of HMA-C. We showed that after the autosome-Y fusion event, the neo-Y chromosome has not substantially accumulated or eliminated satDNA sequences except for minor changes in the centromere-proximal region. Finally, based on the obtained FISHpatterns, we speculate on the possible contribution of satDNA to sex trivalent pairing and segregation.

See more in PubMed

Pennell, M. W. PubMed DOI PMC

Sember, A. PubMed DOI PMC

Charlesworth, D. When and how do sex-linked regions become sex chromosomes? PubMed DOI

Bergero, R. & Charlesworth, D. The evolution of restricted recombination in sex chromosomes. PubMed DOI

Blackmon, H. & Demuth, J. P. The fragile Y hypothesis: Y chromosome aneuploidy as a selective pressure in sex chromosome and meiotic mechanism evolution. PubMed DOI

Kitano, J. PubMed DOI PMC

Beaudry, F. E. G., Barrett, S. C. H. & Wright, S. I. Ancestral and neo-sex chromosomes contribute to population divergence in a dioecious plant. PubMed DOI

Wang, S. PubMed DOI PMC

Smith, D. A. S. PubMed DOI PMC

Charlesworth, D. & Charlesworth, B. Sex differences in fitness and selection for centric fusions between sex-chromosomes and autosomes. PubMed DOI

Matsumoto, T. & Kitano, J. The intricate relationship between sexually antagonistic selection and the evolution of sex chromosome fusions. PubMed DOI

Mora, P. PubMed DOI PMC

Pokorná, M., Altmanová, M. & Kratochvíl, L. Multiple sex chromosomes in the light of female meiotic drive in amniote vertebrates. PubMed DOI

Ma, W.-J. & Veltsos, P. The diversity and evolution of sex chromosomes in frogs. PubMed DOI PMC

Charlesworth, D. Some thoughts about the words we use for thinking about sex chromosome evolution. PubMed DOI PMC

de Araújo, L. PubMed DOI

Marajó, L. PubMed DOI

Ferchaud, A.-L. PubMed DOI PMC

Sassi, F. PubMed DOI PMC

Sciurano, R. B., Rahn, M. I., Rey-Valzacchi, G., Coco, R. & Solari, A. J. The role of asynapsis in human spermatocyte failure. PubMed DOI

Wolf, K. W. How meiotic cells deal with non-exchange chromosomes. PubMed DOI

Nokkala, S., Kuznetsova, V. G., Maryanska-Nadachowska, A. & Nokkala, C. Holocentric chromosomes in meiosis. II. The modes of orientation and segregation of a trivalent. PubMed DOI

Noronha, R. C. R., Nagamachi, C. Y., O’Brien, P. C. M., Ferguson-Smith, M. A. & Pieczarka, J. C. Neo-XY body: An analysis of XY PubMed DOI

Castillo, E. R. D., Bidau, C. J. & Martí, D. A. Neo-sex chromosome diversity in Neotropical PubMed DOI

Poggio, M. G., Gaspe, M. S., Papeschi, A. G. & Bressa, M. J. Cytogenetic study in a mutant of PubMed DOI

Farooq, U., Lovleen, & Saggoo, M. I. S. Male meiosis and behaviour of sex chromosomes in different populations of DOI

Sember, A. PubMed DOI PMC

Bertollo, L. A. C. & Mestriner, C. A. The X PubMed DOI

da Silva, M. PubMed DOI

Charlesworth, D., Charlesworth, B. & Marais, G. Steps in the evolution of heteromorphic sex chromosomes. PubMed DOI

Ezaz, T. & Deakin, J. E. Repetitive sequence and sex chromosome evolution in vertebrates. DOI

Hobza, R. PubMed DOI PMC

Steinemann, S. & Steinemann, M. Y chromosomes: Born to be destroyed. PubMed DOI

Kent, T. V., Uzunović, J. & Wright, S. I. Coevolution between transposable elements and recombination. PubMed DOI PMC

Kratochvil, L. PubMed DOI PMC

Huang, Z. PubMed DOI PMC

Flynn, J. M., Hu, K. B. & Clark, A. G. Three recent sex chromosome-to-autosome fusions in a PubMed DOI PMC

Dobigny, G., Ozouf-Costaz, C., Bonillo, C. & Volobouev, V. Viability of X-autosome translocations in mammals: An epigenomic hypothesis from a rodent case-study. PubMed DOI

Oliveira da Silva, W. PubMed DOI PMC

Herpin, A. PubMed DOI PMC

Wang, L. PubMed DOI PMC

Lohe, A. R. & Roberts, P. A. An unusual Y chromosome of PubMed DOI PMC

Garrido-Ramos, M. A. Satellite DNA: An evolving topic. PubMed DOI PMC

Šatović-Vukšić, E. & Plohl, M. Satellite DNAs—From localized to highly dispersed genome components. PubMed DOI PMC

López-Flores, I. & Garrido-Ramos, M. A. The repetitive DNA content of eukaryotic genomes. In PubMed

Shapiro, J. A. & von Sternberg, R. Why repetitive DNA is essential to genome function. PubMed DOI

Louzada, S. PubMed DOI PMC

Talbert, P. B. & Henikoff, S. The genetics and epigenetics of satellite centromeres. PubMed DOI PMC

Ruiz-Ruano, F. J., López-León, M. D., Cabrero, J. & Camacho, J. P. M. High-throughput analysis of the satellitome illuminates satellite DNA evolution. PubMed DOI PMC

Camacho, J. P. M. PubMed DOI PMC

Novák, P., Neumann, P. & Macas, J. Global analysis of repetitive DNA from unassembled sequence reads using RepeatExplorer2. PubMed DOI

Despot-Slade, E. PubMed DOI PMC

Palacios-Gimenez, O. M. PubMed DOI PMC

de Lima, L. G. & Ruiz-Ruano, F. J. In-depth satellitome analyses of 37 PubMed DOI PMC

Schmidt, N. PubMed DOI

Belyayev, A. PubMed DOI PMC

Heitkam, T. PubMed DOI

Ávila Robledillo, L. PubMed DOI PMC

Bracewell, R., Chatla, K., Nalley, M. J. & Bachtrog, D. Dynamic turnover of centromeres drives karyotype evolution in PubMed DOI PMC

Nishihara, H., Stanyon, R., Tanabe, H. & Koga, A. Replacement of owl monkey centromere satellite by a newly evolved variant was a recent and rapid process. PubMed DOI

Cabral-de-Mello, D. C. PubMed DOI

Ferretti, A. B. S. M., Milani, D., Palacios-Gimenez, O. M., Ruiz-Ruano, F. J. & Cabral-de-Mello, D. C. High dynamism for neo-sex chromosomes: Satellite DNAs reveal complex evolution in a grasshopper. PubMed DOI PMC

Ruban, A., Schmutzer, T., Scholz, U. & Houben, A. How next-generation sequencing has aided our understanding of the sequence composition and origin of B chromosomes. PubMed DOI PMC

Crepaldi, C., Martí, E., Gonçalves, É. M., Martí, D. A. & Parise-Maltempi, P. P. Genomic differences between the sexes in a fish species seen through satellite DNAs. PubMed DOI PMC

Silva, D. M. Z. D. A. PubMed DOI PMC

Goes, C. A. G. PubMed DOI PMC

Kretschmer, R. PubMed DOI

Utsunomia, R. PubMed DOI PMC

Toma, G. A. PubMed DOI PMC

Marta, A., Dedukh, D., Bartoš, O., Majtánová, Z. & Janko, K. Cytogenetic characterization of seven novel satDNA markers in two species of spined loaches ( PubMed DOI PMC

Bertollo, L. A. C., Born, G. G., Dergam, J. A., Fenocchio, A. S. & Moreira-Filho, O. A biodiversity approach in the neotropical Erythrinidae fish, PubMed DOI

Cioffi M. B., Yano, C. F., Sember, A. & Bertollo, L. A. C. Chromosomal evolution in lower vertebrates: sex chromosomes in neotropical fishes. PubMed DOI PMC

Cioffi, M. B., Franco, W., Ferreira, R. & Bertollo, L. A. C. Chromosomes as tools for discovering Biodiversity—The case of Erythrinidae fish family. In

Cioffi, M. B. & Bertollo, L. A. C. Initial steps in XY chromosome differentiation in PubMed DOI

Sember, A. PubMed DOI PMC

Martins, C., Ferreira, I. A., Oliveira, C., Foresti, F. & Galetti, P. M. A tandemly repetitive centromeric DNA sequence of the fish PubMed DOI

dos Santos, R. Z. PubMed DOI PMC

Goes, C. A. G. PubMed DOI PMC

da Silva, M. J., Gazoni, T. & Haddad, C. F. B. Analysis in PubMed DOI PMC

Sena, R. S. PubMed DOI PMC

Vozdova, M. PubMed DOI PMC

Peona, V., Kutschera, V. E., Blom, M. P. K., Irestedt, M. & Suh, A. Satellite DNA evolution in Corvoidea inferred from short and long reads. PubMed DOI

Lisachov, A., Rumyantsev, A., Prokopov, D., Ferguson-Smith, M. & Trifonov, V. Conservation of major satellite DNAs in snake heterochromatin. PubMed DOI PMC

Melters, D. P. PubMed DOI PMC

Voleníková, A. PubMed DOI PMC

Henikoff, S., Ahmad, K. & Malik, H. S. The centromere paradox: Stable inheritance with rapidly evolving DNA. PubMed DOI

Kitaoka, M., Smith, O. K., Straight, A. F. & Heald, R. Molecular conflicts disrupting centromere maintenance contribute to PubMed DOI PMC

Ferree, P. M. & Barbash, D. A. Species-specific heterochromatin prevents mitotic chromosome segregation to cause hybrid lethality in PubMed DOI PMC

O’Neill, M. J. & O’Neill, R. J. Sex chromosome repeats tip the balance towards speciation. PubMed DOI

Utsunomia, R. PubMed DOI

Raskina, O., Barber, J. C., Nevo, E. & Belyayev, A. Repetitive DNA and chromosomal rearrangements: Speciation-related events in plant genomes. PubMed DOI

George, C. M. & Alani, E. Multiple cellular mechanisms prevent chromosomal rearrangements involving repetitive DNA. PubMed DOI PMC

Chen, J.-M., Cooper, D. N., Férec, C., Kehrer-Sawatzki, H. & Patrinos, G. P. Genomic rearrangements in inherited disease and cancer. PubMed DOI

Barra, V. & Fachinetti, D. The dark side of centromeres: Types, causes and consequences of structural abnormalities implicating centromeric DNA. PubMed DOI PMC

McKinley, K. L. & Cheeseman, I. M. The molecular basis for centromere identity and function. PubMed DOI PMC

Furman, B. L. PubMed DOI PMC

Moreira-Filho, O., Bertollo, L. A. C. & Galetti, P. M. Distribution of sex chromosome mechanisms in neotropical fish and description of a ZZ/ZW system in DOI

Östergren, G. The mechanism of co-orientation in bivalents and multivalents: The theory of orientation by pulling. DOI

Štundlová, J. PubMed DOI

Nanda, I. PubMed DOI PMC

Bertollo, L. A. C., Cioffi, M. B. & Moreira-Filho, O. Direct chromosome preparation from Freshwater Teleost Fishes. In

Kligerman, A. D. & Bloom, S. E. Rapid chromosome preparations from solid tissues of fishes. DOI

Sambrook, J. & Russell, D. W.

Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. PubMed DOI PMC

Schmieder, R. & Edwards, R. Quality control and preprocessing of metagenomic datasets. PubMed DOI PMC

Smit, A. F. A., Hubley, R. & Green, P. RepeatMasker Open (1996–2010).

Nascimento, M. PubMed DOI

Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. PubMed DOI PMC

Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: Accelerated for clustering the next-generation sequencing data. PubMed DOI PMC

Edgar, R. C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. PubMed DOI PMC

Cioffi, M. B., Martins, C. & Bertollo, L. A. C. Comparative chromosome mapping of repetitive sequences. Implications for genomic evolution in the fish PubMed DOI PMC

Yano, C. F., Bertollo, L. A. C. & de Cioffi, M. B. Fish-FISH: Molecular cytogenetics in fish species. In

Levan, A., Fredga, K. & Sandberg, A. A. Nomenclature for centromeric position on chromosomes. DOI

Find record

Citation metrics

Logged in users only

Archiving options

Loading data ...