• This record comes from PubMed

A new approach to analyze the dynamic strength of eggs

. 2016 Oct ; 42 (4) : 525-537. [epub] 20160608

Language English Country Netherlands Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 27278904
PubMed Central PMC5059593
DOI 10.1007/s10867-016-9420-9
PII: 10.1007/s10867-016-9420-9
Knihovny.cz E-resources

The mechanical behavior of eggshell was determined in terms of average rupture force and corresponding deformation. For the experiment, we selected goose eggs (Anser anser f. domestica). Samples of eggs were compressed along their x-axis and z-axis. The effect of the loading orientation can be described in terms of the eggshell contour curvature. Two different experimental methods were used: compression between two plates (loading rates up to 5 mm/s) and the Hopkinson split pressure bar technique. This second method enables achieving loading rates up to about 17 m/s. The response of goose eggs to this high loading rate was characterized also by simultaneous measurement of the eggshell surface displacements using a laser vibrometer and by the measurement of both circumferential and meridian strains.

See more in PubMed

Altuntaş E, Şekeroğlu A. Effect of egg shape index on mechanical properties of chicken eggs. J. Food Eng. 2008;85(4):606–612. doi: 10.1016/j.jfoodeng.2007.08.022. DOI

Carter TC. The hen’s egg: Shell forces at impact and quasi-static compression. Br. Poult. Sci. 1976;17(2):199–214. doi: 10.1080/00071667608416267. DOI

Marsh AP, Prakash M, Semercigil SE, Turan OF. An investigation and modelling of energy dissipation through sloshing in an egg-shaped shell. J. Sound Vib. 2011;330(26): 6287–6295. doi: 10.1016/j.jsv.2011.06.007. DOI

So G, Semercigil SE. A note on a natural sloshing absorber for vibration control. J. Sound Vib. 2004;269:1119–1127. doi: 10.1016/S0022-460X(03)00388-2. DOI

Voisey PW, Hunt JR. Effect of compression speed on the behaviour of eggshells. J. Agric. Eng. Res. 1969;14(1):40–46. doi: 10.1016/0021-8634(69)90065-1. DOI

Lichovnikova M, Zeman L. Effect of housing system on the calcium requirement of laying hens and on eggshell quality. Czech J. Animal Sci. 2008;53:162–168.

Machal L. The relationship of shortening and strength of eggshell to some egg quality indicators and egg production in hens of different initial laying lines. Arch. Anim. Breed. 2002;3:287–296.

Lichovnikova M, Zeman L, Jandasek J. The effect of feeding untreated rapeseed and iodine supplement on egg quality. Czech J. Animal Sci. 2008;53:77–82.

Nedomova S, Severa L, Buchar J. Influence of hen egg shape on eggshell compressive strength. Int. Agrophys. 2009;23:249–256.

Severa L, Nemecek J, Nedomova S, Buchar J. Determination of micromechanical properties of a hen’s eggshell by means of nanoindentation. J. Food Eng. 2010;101(2):146–151. doi: 10.1016/j.jfoodeng.2010.06.013. DOI

Voisey PW, Hamilton JR. Factors affecting the non-destructive and destructive methods of measuring egg shell strength by the quasi-static compression test 1. Br. Poult. Sci. 1976;17:103–124. doi: 10.1080/00071667608416254. DOI

Buchar J, Nedomova S, Trnka J, Strnkova J. Behaviour of Japanese quail eggs under mechanical compression. Int. J. Food Prop. 2015;18(5):1110–1118. doi: 10.1080/10942912.2013.862634. DOI

Nedomova S, Kumbar V, Trnka J, Buchar J. Effect of the loading rate on compressive properties of goose eggs. J. Biol. Phys. 2016;42(2): 223–233. doi: 10.1007/s10867-015-9403-2. PubMed DOI PMC

Nedomova, S., Trnka, J., Dvorakova, P., Buchar, J.: Hen’s eggshell strength under impact loading. J. Food Eng. 94(3–4), 350–357 (2009). doi:10.1016/j.jfoodeng.2009.03.028

Gray, G.T.: Classic split-Hopkinson pressure bar testing. In ASM Handbook 8: Mechanical Testing an Evaluation, eds. Kuhn H, Medlin D. ASM International. Materials Park, pp. 462–476. Ohio (2000)

Nedomova S, Buchar J. Goose eggshell geometry. Res. Agric. Eng. 2014;60:100–106.

Follansbee PS, Frantz C. Wave propagation in the split Hopkinson pressure bar. J. Eng. Mater. Technol. (ASME) 1983;105(1):61–66. doi: 10.1115/1.3225620. DOI

Gorham D, Wu X. An empirical method of dispersion correction in the compressive Hopkinson bar test. J. Phys. 1997;7(C3):223–228.

Curry R, Cloete T, Govender R. Implementation of viscoelastic Hopkinson bars. EPJ Web of Conferences. 2012;26:01044. doi: 10.1051/epjconf/20122601044. DOI

Butt, H.S.U., Xue, P.: Determination of the wave propagation coefficient of viscoelastic SHPB: Significance for characterization of cellular materials. Int. J. Impact Eng. 74, 83–91 (2014). doi:10.1016/j.ijimpeng.2013.11.010

Zhao H, Gary G, Klepaczko JR. On the use of a viscoelastic split Hopkinson pressure bar. Int. J. Impact Eng. 1997;19(4):319–330. doi: 10.1016/S0734-743X(96)00038-3. DOI

Gama BA, Lopatnikov SL, Gillespie JW. Hopkinson bar experimental technique: a critical review. Appl. Mech. Rev. 2004;57(4):223–250. doi: 10.1115/1.1704626. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...