Cytogenetics Meets Genomics: Cytotaxonomy and Genomic Relationships among Color Variants of the Asian Arowana Scleropages formosus

. 2023 May 19 ; 24 (10) : . [epub] 20230519

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37240350

Grantová podpora
2018/14677-6 São Paulo Research Foundation
2021/13180-3 São Paulo Research Foundation
2020/11772-8 São Paulo Research Foundation
302928/2021-9 National Council for Scientific and Technological Development

Scleropages formosus (Osteoglossiformes, Teleostei) represents one of the most valued ornamental fishes, yet it is critically endangered due to overexploitation and habitat destruction. This species encompasses three major color groups that naturally occur in allopatric populations, but the evolutionary and taxonomic relationships of S. formosus color varieties remain uncertain. Here, we utilized a range of molecular cytogenetic techniques to characterize the karyotypes of five S. formosus color phenotypes, which correspond to naturally occurring variants: the red ones (Super Red); the golden ones (Golden Crossback and Highback Golden); the green ones (Asian Green and Yellow Tail Silver). Additionally, we describe the satellitome of S. formosus (Highback Golden) by applying a high-throughput sequencing technology. All color phenotypes possessed the same karyotype structure 2n = 50 (8m/sm + 42st/a) and distribution of SatDNAs, but different chromosomal locations of rDNAs, which were involved in a chromosome size polymorphism. Our results show indications of population genetic structure and microstructure differences in karyotypes of the color phenotypes. However, the findings do not clearly back up the hypothesis that there are discrete lineages or evolutionary units among the color phenotypes of S. formosus, but another case of interspecific chromosome stasis cannot be excluded.

Zobrazit více v PubMed

Hilton E.J., Lavoué S. A review of the systematic biology of fossil and living bony-tongue fishes, Osteoglossomorpha (Actinopterygii: Teleostei) Neotrop. Ichthyol. 2018;16:1–35. doi: 10.1590/1982-0224-20180031. DOI

Nelson J.S., Grande T.C., Wilson M.V.H. Fishes of the World. 5th ed. Wiley; Hoboken, NJ, USA: 2016.

Fricke R., Eschmeyer W.N., van der Laan R. Eschemeyer’s Catalog of Fishes: Genera, Species, References. 2023. [(accessed on 10 March 2023)]. Available online: http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp.

Pusey B.J., Fisher C., Maclaine J. On the nature of Scleropages leichardti Günther, 1864 (Pisces: Osteoglossidae) Zootaxa. 2016;4173:75. doi: 10.11646/zootaxa.4173.1.7. PubMed DOI

Roberts T.R. Scleropages inscriptus, a new fish species from the Tananthayi or Tenasserim River basin, Malay Peninsula of Myanmar (Osteoglossidae: Osteoglossiformes) Aqua Int. J. Ichthyol. 2012;18:113–118.

Medipally S.R., Yusoff F.M., Sharifhuddin N., Shariff M. Sustainable aquaculture of Asian arowana—A review. J. Environ. Biol. 2016;37:829–838. PubMed

Yue G.H., Li Y., Lim L.C., Orban L. Monitoring the genetic diversity of three Asian arowana (Scleropages formosus) captive stocks using AFLP and microsatellites. Aquaculture. 2004;237:89–102. doi: 10.1016/j.aquaculture.2004.04.003. DOI

Larson H., Vidthayanon C. Scleropages formosus. The IUCN Red List of Threatened Species. 2019. pp. 1–10. [(accessed on 15 January 2023)]. Available online: https://www.iucnredlist.org/

Mohd-Shamsudin M.I., Fard M.Z., Mather P.B., Suleiman Z., Hassan R., Othman R.Y., Bhassu S. Molecular characterization of relatedness among colour variants of Asian Arowana (Scleropages formosus) Gene. 2011;490:47–53. doi: 10.1016/j.gene.2011.08.025. PubMed DOI

Yue G.H., Chang A., Yuzer A., Suwanto A. Current Knowledge on the Biology and Aquaculture of the Endangered Asian Arowana. Rev. Fish. Sci. Aquac. 2019;28:193–210. doi: 10.1080/23308249.2019.1697641. DOI

Lavoué S. Testing a time hypothesis in the biogeography of the arowana genus Scleropages (Osteoglossidae) J. Biogeogr. 2015;42:2427–2439. doi: 10.1111/jbi.12585. DOI

Alshari N.F.M.A., Lavoué S., Sulaiman M.A.M., Khaironizam M.Z., Nor S.A.M., Aziz F. Pleistocene paleodrainages explain the phylogeographic structure of Malaysian populations of Asian arowana better than their chromatic variation. Endanger Species Res. 2021;46:205–214. doi: 10.3354/esr01152. DOI

Kumazawa Y., Nishida M. Molecular phylogeny of osteoglossoids: A new model for Gondwanian origin and plate tectonic transportation of the Asian arowana. Mol. Biol. Evol. 2000;17:1869–1878. doi: 10.1093/oxfordjournals.molbev.a026288. PubMed DOI

Pouyaud L., Sudarto T.G., Teugels G. The different colour varieties of the asian arowana Scleropages formosus (Osteoglossidae) are distinct species: Morphologic and genetic evidences. Cybium. 2003;27:287–305.

Kottelat M., Widjanarti E. The fishes of Danau Sentarum National Park and the Kapuas Lakes Area, Kalimantan Barat, Indonesia. Raffles Bull. Zool. Suppl. 2005;13:139–173.

Kottelat M. The fishes of the inland waters of Southeast Asia: A catalogue and core bibliography of the fishes known to occur in freshwaters, mangroves and estuaries. Raffles Bull. Zool. 2013;27:1–663.

Mu X.D., Wang X., Song H., Yang Y., Luo D., Gu D., Xu M., Liu C., Luo J., Hu Y. Mitochondrial DNA as effective molecular markers for the genetic variation and phylogeny of the family Osteoglossidae. Gene. 2012;511:320–325. doi: 10.1016/j.gene.2012.09.087. PubMed DOI

Mu X., Wang X., Song H., Yang Y., Luo D., Gu D., Xu M., Liu C., Luo J., Hu Y. Genetic diversity and phylogeny of the family Osteoglossidae by the nuclear 18S ribosomal RNA and implications for its conservation. Biochem. Syst. Ecol. 2013;51:280–287. doi: 10.1016/j.bse.2013.09.010. DOI

Barby F., Ráb P., Lavoué S., Ezaz T., Bertollo L.A.C., Kilian A., Maruyama S.R., Oliveira E.A., Artoni R.F., Santos M.H., et al. From Chromosomes to Genome: Insights into the Evolutionary Relationships and Biogeography of Old World Knifefishes (Notopteridae; Osteoglossiformes) Genes. 2018;9:306. doi: 10.3390/genes9060306. PubMed DOI PMC

Barby F.F., Ráb P., Lavoué S., Ezaz T., Bertollo L.A.C., Kilian A., Maruyama S.R., Oliveira E.A., Artoni R.F., Santos M.H., et al. Emerging patterns of genome organization in Notopteridae species (Teleostei, Osteoglossiformes) as revealed by Zoo-FISH and Comparative Genomic Hybridization (CGH) Sci. Rep. 2019;9:1112. doi: 10.1038/s41598-019-38617-4. PubMed DOI PMC

Cioffi M.B., Ráb P., Ezaz T., Bertollo L.A.C., Lavoué S., Oliveira E.A., Sember A., Molina W.F., Souza F.H.S., Majtánová Z., et al. Deciphering the Evolutionary History of Arowana Fishes (Teleostei, Osteoglossiformes, Osteoglossidae): Insight from Comparative Cytogenomics. Int. J. Mol. Sci. 2019;20:4296. doi: 10.3390/ijms20174296. PubMed DOI PMC

De Oliveira E.A., Bertollo L.A.C., Ráb P., Ezaz T., Yano C.F., Hatanaka T., Jedege O.I., Tanomtong A., Liehr T., Sember A., et al. Cytogenetics, genomics and biodiversity of the South American and African Arapaimidae fish family (Teleostei, Osteoglossiformes) PLoS ONE. 2019;14:e0214225. doi: 10.1371/journal.pone.0214225. PubMed DOI PMC

Majtánová Z., Symonová R., Arias-Rodriguez L., Sallan L., Ráb P. “Holostei versus Halecostomi” Problem: Insight from Cytogenetics of Ancient Nonteleost Actinopterygian Fish, Bowfin Amia calva. J. Exp. Zool. Part B Mol. Dev. Evol. 2017;328:620–628. doi: 10.1002/jez.b.22720. PubMed DOI

Souza F.H.S., Perez M.F., Bertollo L.A.C., Oliveira E.A., Lavoué S., Gestich C.C., Ráb P., Ezaz T., Liehr T., Viana O.F., et al. Interspecific Genetic Differences and Historical Demography in South American Arowanas (Osteoglossiformes, Osteoglossidae, Osteoglossum) Genes. 2019;10:693. doi: 10.3390/genes10090693. PubMed DOI PMC

Symonová R., Howell W. Vertebrate Genome Evolution in the Light of Fish Cytogenomics and rDNAomics. Genes. 2018;9:96. doi: 10.3390/genes9020096. PubMed DOI PMC

Garrido-Ramos M.A. Satellite DNA: An Evolving Topic. Genes. 2017;8:230. doi: 10.3390/genes8090230. PubMed DOI PMC

Novák P., Robledillo L.A., Koblízkova A., Vrbová I., Neumann P., Macas J. TAREAN: A computational tool for identification and characterization of satellite DNA from unassembled short reads. Nucleic Acids Res. 2017;45:e111. doi: 10.1093/nar/gkx257. PubMed DOI PMC

Ruiz-Ruano F.J., López-León M.D., Cabrero J., Camacho J.P.M. High-throughput analysis of the satellitome illuminates satellite DNA evolution. Sci. Rep. 2016;6:28333. doi: 10.1038/srep28333. PubMed DOI PMC

Peona V., Kutschera V.E., Blom M.P.K., Irestedt M., Suh A. Satellite DNA evolution in Corvoidea inferred from short and long reads. Mol. Ecol. 2022;32:1–18. doi: 10.1111/mec.16484. PubMed DOI

Sena R.S., Heringer P., Valeri M.P., Pereira V.S., Kuhn G.C.S., Svartman M. Identification and characterization of satellite DNAs in two-toed sloths of the genus Choloepus (Megalonychidae, Xenarthra) Sci. Rep. 2020;10:19202. doi: 10.1038/s41598-020-76199-8. PubMed DOI PMC

Ruiz-Ruano F.J., Cabrero J., López-León M.D., Camacho J.P.M. Satellite DNA content illuminates the ancestry of a supernumerary (B) chromosome. Chromosoma. 2017;126:487–500. doi: 10.1007/s00412-016-0611-8. PubMed DOI

Goes C.A.G., Santos R.Z., Aguiar W.R.C., Alves D.C.V., Silva D.M.Z.A., Foresti F., Oliveira C., Utsunomia R., Porto-Foresti F. Revealing the Satellite DNA History in Psalidodon and Astyanax Characid Fish by Comparative Satellitomics. Front. Genet. 2022:13. doi: 10.3389/fgene.2022.884072. PubMed DOI PMC

Kretschmer R., Goes C.A.G., Bertollo L.A.C., Ezaz T., Porto-Foresti F., Toma G.A., Utsunomia R., Cioffi M.B. Satellitome analysis illuminates the evolution of ZW sex chromosomes of Triportheidae fishes (Teleostei: Characiformes) Chromosoma. 2022;131:29–45. doi: 10.1007/s00412-022-00768-1. PubMed DOI

Silva D.M.Z.A., Utsunomia R., Ruiz-Ruano F.J., Daniel S.N., Porto-OFresti F., Hashimoto D.T., Oliveira C., Camacho J.P.M., Foresti F. High-throughput analysis unveils a highly shared satellite DNA library among three species of fish genus Astyanax. Sci. Rep. 2017;7:12726. doi: 10.1038/s41598-017-12939-7. PubMed DOI PMC

Arai R. Fish Karyotypes: A Check List. Springer Science & Business Media; Berlin/Heidelberg, Germany: 2011.

Bian C., Hu Y., Ravi V., Kuznetsov I.S., Shen X., Mu X., Sun Y., You X., Li J., Li X., et al. The Asian arowana (Scleropages formosus) genome provides new insights into the evolution of an early lineage of teleosts. Sci. Rep. 2016;6:24501. doi: 10.1038/srep24501. PubMed DOI PMC

Shen X.Y., Kwan H.Y., Thevasagayam N.M., Prakki S.R.S., Kuznetsova I.S., Ngoh S.Y., Lim Z., Feng F., Chang A., Orbán L. The first transcriptome and genetic linkage map for Asian arowana. Mol. Ecol. Resour. 2014;14:622–635. doi: 10.1111/1755-0998.12212. PubMed DOI

Urushido T. Karyotype of three species of fishes in the order Osteoglossiformes. Chromosom. Inf. Serv. 1975;18:20–22.

Ellegren H. Evolutionary stasis: The stable chromosomes of birds. Trends Ecol. Evol. 2010;25:283–291. doi: 10.1016/j.tree.2009.12.004. PubMed DOI

Mandáková T., Heenan P.B., Lysak M.A. Island species radiation and karyotypic stasis in Pachycladon allopolyploids. BMC Evol. Biol. 2010;10:367. doi: 10.1186/1471-2148-10-367. PubMed DOI PMC

Molina W.F. Chromosomal changes and stasis in marine fish groups. In: Pisano E., Ozouf-Costaz C., Foresti F., Kapoor B., editors. Fish Cytogenetics. 1st ed. Science Publishers; Cambridge, UK: 2007. pp. 69–110.

Sadílek D., Nguyen P., Koç H., Kovařík F., Yağmur E.A., Yağmur F. Molecular cytogenetics of Androctonus scorpions: An oasis of calm in the turbulent karyotype evolution of the diverse family Buthidae. Biol. J. Linn. Soc. 2015;115:69–76. doi: 10.1111/bij.12488. DOI

Charlesworth B., Lande R., Slatkin M. A Neo-Darwinian Commentary on Macroevolution. Evolution. 1982;36:474–498. PubMed

Hansen T.F. Stabilizing selection and the Comparative Analysis of Adaptation. Evolution. 1997;51:1341–1351. doi: 10.2307/2411186. PubMed DOI

Motta-Neto C.C., Cioffi M.B., Costa G.W.W.F., Amorim K.D.J., Bertollo L.A.C., Artoni R.F., Molina W.F. Overview on Karyotype Stasis in Atlantic Grunts (Eupercaria, Haemulidae) and the Evolutionary Extensions for Other Marine Fish Groups. Front. Mar. Sci. 2019;6:628. doi: 10.3389/fmars.2019.00628. DOI

Sochorová J., Garcia S., Gálvez F., Symonová R., Kovařík A. Evolutionary trends in animal ribosomal DNA loci: Introduction to a new online database. Chromosoma. 2018;127:141–150. doi: 10.1007/s00412-017-0651-8. PubMed DOI PMC

Cioffi M.B., Franco W., Ferreira R., Bertollo L.A.C. Chromosomes as tools for discovering biodiversity—The case of erythrinidae fish family. In: Tirunilai P., editor. Recent Trends in Cytogenet Studies; Methodology and Applcations. InTech; Rijeka, Croatia: 2012. pp. 125–146.

Deon G.A., Glugoski L., Vicari M.R., Nogaroto V., Sassi F.M.C., Cioffi M.B., Liehr T., Bertollo L.A.C., Moreira-Filho O. Highly Rearranged Karyotypes and Multiple Sex Chromosome Systems in Armored Catfishes from the Genus Harttia (Teleostei, Siluriformes) Genes. 2020;11:1366. doi: 10.3390/genes11111366. PubMed DOI PMC

Ferreira M., Garcia C., Matoso D.A., Jesus I.S., Cioffi M.B., Bertollo L.A.C., Zuanon J., Feldberg E. The Bunocephalus coracoideus Species Complex (Siluriformes, Aspredinidae). Signs of a Speciation Process through Chromosomal, Genetic and Ecological Diversity. Front. Genet. 2017;8:120. doi: 10.3389/fgene.2017.00120. PubMed DOI PMC

Pazza R., Kavalco K.F., Bertollo L.A.C. Chromosome polymorphism in Astyanax fasciatus (Teleostei, Characidae). 1. Karyotype analysis, Ag-NORs and mapping of the 18S and 5S ribosomal genes in sympatric karyotypes and their possible hybrid forms. Cytogenet. Genome Res. 2006;112:313–319. doi: 10.1159/000089886. PubMed DOI

Degrandi T.M., Gunski R.J., Garnero A.V., Oliveira E.H.C., Kretschmer R., Souza M.S., Barcellos S.A., Hass I. The distribution of 45S rDNA sites in bird chromosomes suggests multiple evolutionary histories. Genet. Mol. Biol. 2020;43:e20180331. doi: 10.1590/1678-4685-gmb-2018-0331. PubMed DOI PMC

Yano C.F., Merlo M.A., Portela-Bens S., Cioffi M.B., Bertollo L.A.C., Santos-Júnior C.D., Rebordinos L. Evolutionary Dynamics of Multigene Families in Triportheus (Characiformes, Triportheidae): A Transposon Mediated Mechanism? Front. Mar. Sci. 2020;7:6. doi: 10.3389/fmars.2020.00006. DOI

Gunski R.J., Kretschmer R., Souza M.S., Furo I.O., Barcellos S.A., Costa A.L., Cioffi M.B., Oliveira E.H.C., Garnero A.D.V. Evolution of Bird Sex Chromosomes Narrated by Repetitive Sequences: Unusual W Chromosome Enlargement in Gallinula melanops (Aves: Gruiformes: Rallidae) Cytogenet. Genome Res. 2019;158:152–159. doi: 10.1159/000501381. PubMed DOI

Salvadori S., Deiana A.M., Deidda F., Lobina C., Mulas A., Coluccia E. XX/XY sex chromosome system and chromosome markers in the snake eel Ophisurus serpens (Anguilliformes: Ophichtidae) Mar. Biol. Res. 2018;14:158–164. doi: 10.1080/17451000.2017.1406665. DOI

Dover G. Molecular drive: A cohesive mode of species evolution. Nature. 1982;299:111–117. doi: 10.1038/299111a0. PubMed DOI

Goffová I., Fajkus J. The rDNA Loci—Intersections of Replication, Transcription, and Repair Pathways. Int. J. Mol. Sci. 2021;22:1302. doi: 10.3390/ijms22031302. PubMed DOI PMC

Cioffi M.B., Martins C., Bertollo L.A.C. Chromosome spreading of associated transposable elements and ribosomal DNA in the fish Erythrinus erythrinus. Implications for genome change and karyoevolution in fish. BMC Evol. Biol. 2010;10:1–9. doi: 10.1186/1471-2148-10-271. PubMed DOI PMC

Symonová R., Majtánová Z., Sember A., Staaks G.B.O., Bohlen J., Freyhof J., Rábová M., Ráb P. Genome differentiation in a species pair of coregonine fishes: An extremely rapid speciation driven by stress-activated retrotransposons mediating extensive ribosomal DNA multiplications. BMC Evol. Biol. 2013;13:42. doi: 10.1186/1471-2148-13-42. PubMed DOI PMC

Collares-Pereira M.J., Ráb P. NOR polymorphism in the Iberian species Chondrostoma lusitanicum (Pisces: Cyprinidae)—Re-examination by FISH. Genetica. 1999;105:301–303. doi: 10.1023/A:1003885922023. PubMed DOI

Ghigliotti L., Near T.J., Ferrando S., Vacchi M., Pisano E. Cytogenetic diversity in the Antarctic plunderfishes (Notothenioidei: Artedidraconidae) Antarct. Sci. 2010;22:805–814. doi: 10.1017/S0954102010000660. DOI

Sassi F.M.C., Oliveira E.A., Bertollo L.A.C., Nirchio M., Hatanaka T., Marinho M.M.F., Moreira-Filho O., Aroutiounian R., Liehr T., Al-Rikabi A.B.H., et al. Chromosomal Evolution and Evolutionary Relationships of Lebiasina Species (Characiformes, Lebiasinidae) Int. J. Mol. Sci. 2019;20:2944. doi: 10.3390/ijms20122944. PubMed DOI PMC

Gibbons J.G., Branco A.T., Godinho S.A., Yu S., Lemos B. Concerted copy number variation balances ribosomal DNA dosage in human and mouse genomes. Proc. Natl. Acad. Sci. USA. 2015;112:2485–2490. doi: 10.1073/pnas.1416878112. PubMed DOI PMC

Lavrinienko A., Jernfors T., Koskimäki J.J., Pirttilä A.M., Watts P.C. Does Intraspecific Variation in rDNA Copy Number Affect Analysis of Microbial Communities? Trends Microbiol. 2021;29:19–27. doi: 10.1016/j.tim.2020.05.019. PubMed DOI

Utsunomia R., Silva D.M.Z.A., Ruiz-Ruano F.J., Goes C.A.G., Melo S., Ramos L.P., Oliveira C., Porto-Foresti F., Foresti F., Hashimoto D.T. Satellitome landscape analysis of Megaleporinus macrocephalus (Teleostei, Anostomidae) reveals intense accumulation of satellite sequences on the heteromorphic sex chromosome. Sci. Rep. 2019;9:5856. doi: 10.1038/s41598-019-42383-8. PubMed DOI PMC

Ahmad S.F., Singchat W., Jehangir M., Suntronpong A., Pnathum T., Malaivijitnond S., Srikulnath K. Dark Matter of Primate Genomes: Satellite DNA Repeats and Their Evolutionary Dynamics. Cells. 2020;9:2714. doi: 10.3390/cells9122714. PubMed DOI PMC

Dos Santos R.Z., Calegari R.M., Silva D.M.Z.A., Ruiz-Ruano F.J., Melo S., Oliveira C., Foresti F., Uliano-Silva M., Porto-Foresti F., Utsunomia R. A Long-Term Conserved Satellite DNA That Remains Unexpanded in Several Genomes of Characiformes Fish Is Actively Transcribed. Genome Biol. Evol. 2021;13:evab002. doi: 10.1093/gbe/evab002. PubMed DOI PMC

Tajima F. Simple methods for testing the molecular evolutionary clock hypothesis. Genetics. 1993;135:599–607. doi: 10.1093/genetics/135.2.599. PubMed DOI PMC

Robles F., Herrán R., Ludwig A., Rejón C.R., Rejón M.R., Garrido-Ramos M.A. Evolution of ancient satellite DNAs in sturgeon genomes. Gene. 2004;338:133–142. doi: 10.1016/j.gene.2004.06.001. PubMed DOI

Alfaro M.E., Santini F., Brock C., Harmon L.J. Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates. Proc. Natl. Acad. Sci. USA. 2009;106:13410–13414. doi: 10.1073/pnas.0811087106. PubMed DOI PMC

Austin C.M., Tan M.H., Croft L.J., Hammer M.P., Gan H.M. Whole Genome Sequencing of the Asian Arowana (Scleropages formosus) Provides Insights into the Evolution of Ray-Finned Fishes. Genome Biol. Evol. 2015;7:2885–2895. doi: 10.1093/gbe/evv186. PubMed DOI PMC

Charlesworth B., Sniegowski P., Stephan W. The evolutionary dynamics of repetitive DNA in eukaryotes. Nature. 1994;371:215–220. doi: 10.1038/371215a0. PubMed DOI

Henikoff S., Ahmad K., Malik H.S. The Centromere Paradox: Stable Inheritance with Rapidly Evolving DNA. Science. 2001;293:1098–1102. doi: 10.1126/science.1062939. PubMed DOI

O’Neill R.J., Eldridge M.D.B., Metcalfe C.J. Centromere Dynamics and Chromosome Evolution in Marsupials. J. Hered. 2004;95:375–381. doi: 10.1093/jhered/esh063. PubMed DOI

Melters D.P., Bradnam K.R., Young H.A., Telis N., May M.R., Rybu J.G., Sebra R., Peluso P., Eid J., Rank D., et al. Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution. Genome Biol. 2013;14:R10. doi: 10.1186/gb-2013-14-1-r10. PubMed DOI PMC

Plohl M., Meštrović N., Mravinac B. Centromere identity from the DNA point of view. Chromosoma. 2014;123:313–325. doi: 10.1007/s00412-014-0462-0. PubMed DOI PMC

Talbert P.B., Henikoff S. The genetics and epigenetics of satellite centromeres. Genome Res. 2022;32:608–615. doi: 10.1101/gr.275351.121. PubMed DOI PMC

Völker M., Ráb P. Direct chromosome preparation from regenerating fish fin tissue. In: Ozouf-Costaz C., Pisan E., Foresti F., Toledo L.F.A., editors. Fish Cytogenetic Techniques. CRC Press; Boca Raton, FL, USA: 2015. pp. 37–41.

Sumner A.T. A simple technique for demonstrating centromeric heterochromatin. Exp. Cell Res. 1972;75:304–306. doi: 10.1016/0014-4827(72)90558-7. PubMed DOI

Sambrook J., Russell D.W. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press; New York, NY, USA: 2001.

Bolger A.M., Lohse M., Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC

Schmieder R., Edwards R. Quality control and preprocessing of metagenomic datasets. Bioinformatics. 2011;27:863–864. doi: 10.1093/bioinformatics/btr026. PubMed DOI PMC

Smit A.F.A., Hubley R., Green P. RepeatMasker. [(accessed on 15 January 2023)]. Available online: http://repeatmasker.org.

Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. Basic local alignment search tool. J. Mol. Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI

Martins C., Ferreira I.A., Oliveira C., Foresti F., Galetti P.M. A tandemly repetitive centromeric DNA sequence of the fish Hoplias malabaricus (Characiformes: Erythrinidae) is derived from 5S rDNA. Genetica. 2006;127:133. doi: 10.1007/s10709-005-2674-y. PubMed DOI

Cioffi M.B., Martins C., Centofante L., Jacobina U., Bertollo L.A.C. Chromosomal Variability among Allopatric Populations of Erythrinidae Fish Hoplias malabaricus: Mapping of Three Classes of Repetitive DNAs. Cytogenet. Genome Res. 2009;125:132–141. doi: 10.1159/000227838. PubMed DOI

Pendás A.M., Móran P., Freije J.P., Garcia-Vásquez E. Chromosomal location and nucleotide sequence of two tandem repeats of the Atlantic salmon 5S rDNA. Cytogenet. Cell Genet. 1994;67:31–36. doi: 10.1159/000133792. PubMed DOI

Yano C.F., Bertollo L.A.C., Cioffi M.B. Fish-FISH: Molecular cytogenetics in fish species. In: Liehr T., editor. Fluorescence In Situ Hybridization (FISH) Springer; Berlin/Heidelberg, Germany: 2017. pp. 429–443.

Yang F., Trifonov V., Ng B., Kosyakova N., Carter N.P. Generation of paint probes by flow-sorted and microdissected chromosomes. In: Liehr T., editor. Fluorescence In Situ Hybridization (FISH)—Application Guide. Springer; Berlin/Heidelberg, Germany: 2009. pp. 35–52.

Zwick M.S., Hanson R.E., Islam-Faridi M.N., Stelly D.M., Wing R.A., Price H.J., McKnight T.D. A rapid procedure for the isolation of C 0 t-1 DNA from plants. Genome. 1997;40:138–142. doi: 10.1139/g97-020. PubMed DOI

Symonová R., Sember A., Majtánová Z., Ráb P. Characterization of fish genomes by GISH and CGH. In: Ozouf-Costaz C., Pisano E., Foresti F., Almeida Toledo L.F., editors. Fish Cytogenetic Techniques (Chondrichthyans and Teleosts) CRC Press; Boca Raton, FL, USA: 2015. pp. 118–131.

Levan A., Fredga K., Sandberg A.A. Nomenclature for centromeric position on chromosomes. Hereditas. 1964;52:201–220. doi: 10.1111/j.1601-5223.1964.tb01953.x. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace