Neo-sex Chromosomes in the Monarch Butterfly, Danaus plexippus
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
PubMed
28839116
PubMed Central
PMC5633379
DOI
10.1534/g3.117.300187
PII: g3.117.300187
Knihovny.cz E-zdroje
- Klíčová slova
- Lepidoptera, chromosomal fusion, evolution, genomics, sex chromosomes,
- MeSH
- genetická vazba MeSH
- motýli genetika MeSH
- pohlavní chromozomy * MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
We report the discovery of a neo-sex chromosome in the monarch butterfly, Danaus plexippus, and several of its close relatives. Z-linked scaffolds in the D. plexippus genome assembly were identified via sex-specific differences in Illumina sequencing coverage. Additionally, a majority of the D. plexippus genome assembly was assigned to chromosomes based on counts of one-to-one orthologs relative to the butterfly Melitaea cinxia (with replication using two other lepidopteran species), in which genome scaffolds have been mapped to linkage groups. Sequencing coverage-based assessments of Z linkage combined with homology-based chromosomal assignments provided strong evidence for a Z-autosome fusion in the Danaus lineage, involving the autosome homologous to chromosome 21 in M. cinxia Coverage analysis also identified three notable assembly errors resulting in chimeric Z-autosome scaffolds. Cytogenetic analysis further revealed a large W chromosome that is partially euchromatic, consistent with being a neo-W chromosome. The discovery of a neo-Z and the provisional assignment of chromosome linkage for >90% of D. plexippus genes lays the foundation for novel insights concerning sex chromosome evolution in this female-heterogametic model species for functional and evolutionary genomics.
Zobrazit více v PubMed
Ahola V., Lehtonen R., Somervuo P., Salmela L., Koskinen P., et al. , 2014. The Glanville fritillary genome retains an ancient karyotype and reveals selective chromosomal fusions in Lepidoptera. Nat. Commun. 5: 1–9. PubMed PMC
Bachtrog D., 2013. Y-chromosome evolution: emerging insights into processes of Y-chromosome degeneration. Nat. Rev. Genet. 14: 113–124. PubMed PMC
Bachtrog D., Jensen J. D., Zhang Z., 2009. Accelerated adaptive evolution on a newly formed X chromosome. PLoS Biol. 7: e82. PubMed PMC
Baker R. H., Wilkinson G. S., 2010. Comparative genomic hybridization (CGH) reveals a neo-X chromosome and biased gene movement in stalk-eyed flies (genus Teleopsis). PLoS Genet. 6: e1001121. PubMed PMC
Brower A. V. Z., Wahlberg N., Ogawa J. R., Boppré M., Vane-Wright R. I., 2010. Phylogenetic relationships among genera of danaine butterflies (Lepidoptera: Nymphalidae) as implied by morphology and DNA sequences. Syst. Biodivers. 8: 75–89.
Brown E. J., Bachtrog D., 2014. The chromatin landscape of Drosophila: comparisons between species, sexes, and chromosomes. Genome Res. 24: 1125–1137. PubMed PMC
Brown K. S., Von Schoultz B., Suomalainen E., 2004. Chromosome evolution in Neotropical Danainae and Ithomiinae (Lepidoptera). Hereditas 141: 216–236. PubMed
Buntrock L., Marec F., Krueger S., Traut W., 2012. Organ growth without cell division: somatic polyploidy in a moth, Ephestia kuehniella. Genome 55: 755–763. PubMed
Carvalho A. B., Clark A. G., 2005. Y chromosome of D. pseudoobscura is not homologous to the ancestral Drosophila Y. Science 307: 108–110. PubMed
Carvalho A. B., Vicoso B., Russo C. A. M., Swenor B., Clark A. G., 2015. Birth of a new gene on the Y chromosome of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 112: 12450–12455. PubMed PMC
Challis, R. J., S. Kumar, K. K. Dasmahapatra, C. D. Jiggins, and M. Blaxter, 2016 Lepbase: the Lepidopteran genome database. bioRxiv 56994. Available at: http://www.biorxiv.org/content/early/2016/06/06/056994.
Chang C., Larracuente A. M., 2017. Genomic changes following the reversal of a Y chromosome to an autosome in Drosophila pseudoobscura. Evolution (N. Y.) 71: 1285–1296. PubMed PMC
Charlesworth D., 2015. Plant contributions to our understanding of sex chromosome evolution. New Phytol. 208: 52–65. PubMed
Counterman B. A., Ortíz-Barrientos D., Noor M. A. F., 2004. Using comparative genomic data to test for fast-X evolution. Evolution 58: 656–660. PubMed
Davey J. W., Chouteau M., Barker S. L., Maroja L., Baxter S. W., et al. , 2016. Major improvements to the Heliconius melpomene genome assembly used to confirm 10 chromosome fusion events in 6 million years of butterfly evolution. G3 6: 695–708. PubMed PMC
Doležel J., Bartoš J., Voglmayr H., Greilhuber J., 2003. Nuclear DNA content and genome size of trout and human. Cytometry A 51: 127–128; author reply 129. PubMed
Ellegren H., 2011. Sex-chromosome evolution: recent progress and the influence of male and female heterogamety. Genetics 12: 157–166. PubMed
Flores S. V., Evans A. L., McAllister B. F., 2008. Independent origins of new sex-linked chromosomes in the melanica and robusta species groups of Drosophila. BMC Evol. Biol. 8: 33. PubMed PMC
Fuková I., Nguyen P., Marec F., 2005. Codling moth cytogenetics: karyotype, chromosomal location of rDNA, and molecular differentiation of sex chromosomes. Genome 48: 1083–1092. PubMed
Fuková I., Traut W., Vítková M., Nguyen P., Kubíčková S., et al. , 2007. Probing the W chromosome of the codling moth, Cydia pomonella, with sequences from microdissected sex chromatin. Chromosoma 116: 135–145. PubMed
Gregory T. R., Hebert P. D. N., 2003. Genome size variation in lepidopteran insects. Can. J. Zool. 81: 1399–1405.
Hough J., Hollister J. D., Wang W., Barrett S. C. H., Wright S. I., 2014. Genetic degeneration of old and young Y chromosomes in the flowering plant Rumex hastatulus. Proc. Natl. Acad. Sci. USA 2014: 1–6. PubMed PMC
Kallioniemi A., Kallioniemi O. P., Sudar D., Rutovitz D., Gray J. W., et al. , 1992. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 258: 818–821. PubMed
Kanost M. R., Arrese E. L., Cao X., Chen Y.-R., Chellapilla S., et al. , 2016. Multifaceted biological insights from a draft genome sequence of the tobacco hornworm moth, Manduca sexta. Insect Biochem. Mol. Biol. 76: 118–147. PubMed PMC
Kapuscinski J., 1979. DAPI: a DNA-specific fluorescent probe. Biotech. Histochem. 70: 220–233. PubMed
Kawahara A. Y., Breinholt J. W., 2014. Phylogenomics provides strong evidence for relationships of butterflies and moths. Proc. Biol. Sci. 281: 20140970. PubMed PMC
Kitano J., Ross J. A., Mori S., Kume M., Jones F. C., et al. , 2009. A role for a neo-sex chromosome in stickleback speciation. Nature 461: 1079–1083. PubMed PMC
Kurtz S., Phillippy A., Delcher A. L., Smoot M., Shumway M., et al. , 2004. Versatile and open software for comparing large genomes. Genome Biol. 5: R12. PubMed PMC
Langmead B., Salzberg S. L., 2012. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9: 357–359. PubMed PMC
Lechner M., Findeiß S., Steiner L., Marz M., Stadler P. F., et al. , 2011. Proteinortho: detection of (Co-)orthologs in large-scale analysis. BMC Bioinformatics 12: 124. PubMed PMC
Lunter G., Goodson M., 2011. Stampy: a statistical algorithm for sensitive and fast mapping of Illumina sequence reads. Genome Res. 21: 936–939. PubMed PMC
Lushai G., Smith D. A. S., Goulson D., Allen J. A., Maclean N., 2003. Mitochondrial DNA clocks and the phylogeny of Danaus butterflies. Int. J. Trop. Insect Sci. 23: 309–315.
Lynch M., Walsh B., 2007. The Origins of Genome Architecture. Sinauer Associates, Sunderland, MA.
Maeki K., Ae S., 1968. Studies of the chromosomes of Formosan rhopalocera : 1. Papilionidae and Hesperiidae. Kontyu: Jpn. J. Entomol. 36: 116–123.
Mahajan S., Bachtrog D., 2015. Partial dosage compensation in Strepsiptera, a sister group of beetles. Genome Biol. Evol. 7: 591–600. PubMed PMC
Marec F., Sahara K., Traut W., 2009. Rise and fall of the W chromosome in Lepidoptera, pp. 49–64 in Molecular Biology and Genetics of the Lepidoptera, edited by Goldsmith M. R., Marec F. CRC Press, Boca Raton, FL.
Markert M. J., Zhang Y., Enuameh M. S., Reppert S. M., Wolfe S. A., et al. , 2016. Genomic access to monarch migration using TALEN and CRISPR/Cas9-mediated targeted mutagenesis. G3 6: 905–915. PubMed PMC
Martin S. H., Dasmahapatra K. K., Nadeau N. J., Salazar C., Walters J. R., et al. , 2013. Genome-wide evidence for speciation with gene flow in Heliconius butterflies. Genome Res. 23: 1817–1828. PubMed PMC
Mediouni J., Fuková I., Frydrychová R., Dhouibi M. H., Marec F., 2004. Karyotype, sex chromatin and sex chromosome differentiation in the carob moth, Ectomyelois ceratoniae (Lepidoptera: Pyralidae). Caryologia 57: 184–194.
Merlin C., Beaver L. E., Taylor O. R., Wolfe S. A., Reppert S. M., 2013. Efficient targeted mutagenesis in the monarch butterfly using zinc-finger nucleases. Genome Res. 23: 159–168. PubMed PMC
Murata C., Kuroki Y., Imoto I., Tsukahara M., Ikejiri N., et al. , 2015. Initiation of recombination suppression and PAR formation during the early stages of neo-sex chromosome differentiation in the Okinawa spiny rat, Tokudaia muenninki. BMC Evol. Biol. 15: 234. PubMed PMC
Nageswara-Rao N., Murty A. S., 1975. Chromosome number of Danaus plexippus (Lepidoptera: Danaidae). Curr. Sci. 44: 629–630.
Nanda I., Schlegelmilch K., Haaf T., Schartl M., Schmid M., 2008. Synteny conservation of the Z chromosome in 14 avian species (11 families) supports a role for Z dosage in avian sex determination. Cytogenet. Genome Res. 122: 150–156. PubMed
Nguyen P., Sýkorová M., Šíchová J., Kůta V., Dalíková M., et al. , 2013. Neo-sex chromosomes and adaptive potential in tortricid pests. Proc. Natl. Acad. Sci. USA 110: 6931–6936. PubMed PMC
Nozawa M., Fukuda N., Ikeo K., Gojobori T., 2014. Tissue- and stage-dependent dosage compensation on the Neo-X chromosome in Drosophila pseudoobscura. Mol. Biol. Evol. 31: 614–624. PubMed
Oberhauser K. S., Solensky M. J., 2004. The Monarch Butterfly: Biology and Conservation. Cornell University Press, Ithaca, NY.
Pala I., Hasselquist D., Bensch S., Hansson B., 2012a. Patterns of molecular evolution of an avian neo-sex chromosome. Mol. Biol. Evol. 29: 3741–3754. PubMed
Pala I., Naurin S., Stervander M., Hasselquist D., Bensch S., et al. , 2012b. Evidence of a neo-sex chromosome in birds. Heredity 108: 264–272. PubMed PMC
Palacios-Gimenez O. M., Marti D. A., Cabral-de-Mello D. C., 2015. Neo-sex chromosomes of Ronderosia bergi: insight into the evolution of sex chromosomes in grasshoppers. Chromosoma 124: 353–365. PubMed
Papadopulos A. S. T., Chester M., Ridout K., Filatov D. A., 2015. Rapid Y degeneration and dosage compensation in plant sex chromosomes. Proc. Natl. Acad. Sci. USA 112: 13021–13026. PubMed PMC
Parsch J., Ellegren H., 2013. The evolutionary causes and consequences of sex-biased gene expression. Nat. Rev. Genet. 14: 83–87. PubMed
Pennell M. W., Kirkpatrick M., Otto S. P., Vamosi J. C., Peichel C. L., et al. , 2015. Y fuse? Sex chromosome fusions in fishes and reptiles. PLoS Genet. 11: e1005237. PubMed PMC
Price, M., 2017 Monarch miscalculation: has a scientific error about the butterflies persisted for more than 40 years? Available at: http://doi.org/10.1126/science.aal0818. Accessed: June 15, 2017. DOI
Pringle E. G., Baxter S. W., Webster C. L., Papanicolaou A., Lee S. F., et al. , 2007. Synteny and chromosome evolution in the Lepidoptera: evidence from mapping in Heliconius melpomene. Genetics 177: 417–426. PubMed PMC
Quinlan A. R., Hall I. M., 2010. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26: 841–842. PubMed PMC
R Developement Core Team , 2015. R: a language and environment for statistical computing. R Found. Stat. Comput. 1: 409.
Sahara K., Marec F., Eickhoff U., Traut W., 2003. Moth sex chromatin probed by comparative genomic hybridization (CGH). Genome 46: 339–342. PubMed
Schartl M., Schmid M., Nanda I., 2016. Dynamics of vertebrate sex chromosome evolution: from equal size to giants and dwarfs. Chromosoma 125: 553–571. PubMed
Šíchová J., Nguyen P., Dalíková M., Marec F., 2013. Chromosomal evolution in tortricid moths: conserved karyotypes with diverged features. PLoS One 8: e64520. PubMed PMC
Šíchová J., Voleníková A., Dincă V., Nguyen P., Vila R., et al. , 2015. Dynamic karyotype evolution and unique sex determination systems in Leptidea wood white butterflies. BMC Evol. Biol. 15: 89. PubMed PMC
Smith D. A. S., Gordon I. J., Traut W., Herren J., Collins S., et al. , 2016. A neo-W chromosome in a tropical butterfly links colour pattern, male-killing, and speciation. Proc. R. Soc. B 283: 20160821. PubMed PMC
Soltis P. S., Soltis D. E., 2012. Polyploidy and Genome Evolution. Springer, Berlin.
Stanojcic S., Gimenez S., Permal E., Cousserans F., Quesneville H., et al. , 2011. Correlation of LNCR rasiRNAs expression with heterochromatin formation during development of the holocentric insect Spodoptera frugiperda. PLoS One 6: e24746. PubMed PMC
The Heliconius Genome Consortium , 2012. Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature 487: 94–98. PubMed PMC
The International Silkworm Genome Consortium , 2008. The genome of a lepidopteran model insect, the silkworm Bombyx mori. Insect Biochem. Mol. Biol. 38: 1036–1045. PubMed
Tomaszkiewicz M., Medvedev P., Makova K. D., 2017. Y and W chromosome assemblies: approaches and discoveries. Trends Genet. 33: 266–282. PubMed
Traut W., Marec F., 1996. Sex chromatin in Lepidoptera. Q. Rev. Biol. 71: 239–256. PubMed
Traut W., Weith A., Traut G., 1986. Structural mutants of the W chromosome in Ephestia (Insecta, Lepidoptera). Genetica 70: 69–79.
Traut W., Sahara K., Marec F., 2007. Sex chromosomes and sex determination in Lepidoptera. Sex Dev. 1: 332–346. PubMed
Urquhart F. A., 1976. Found at last: The Monarch’s Winter Home. Natl. Geogr. Mag. 150: 161–173.
Van’t Hof A. E., Nguyen P., Dalíková M., Edmonds N., Marec F., et al. , 2013. Linkage map of the peppered moth, Biston betularia (Lepidoptera, Geometridae): a model of industrial melanism. Heredity (Edinb) 110: 283–295. PubMed PMC
Vicoso B., Charlesworth B., 2006. Evolution on the X chromosome: unusual patterns and processes. Nat. Rev. Genet. 7: 645–653. PubMed
Vicoso B., Emerson J. J., Zektser Y., Mahajan S., Bachtrog D., 2013. Comparative sex chromosome genomics in snakes: differentiation, evolutionary strata, and lack of global dosage compensation. PLoS Biol. 11: e1001643. PubMed PMC
Wahlberg N., Leneveu J., Kodandaramaiah U., Peña C., Nylin S., et al. , 2009. Nymphalid butterflies diversify following near demise at the Cretaceous/Tertiary boundary. Proc. Biol. Sci. 276: 4295–4302. PubMed PMC
Wheeler B. S., Blau J. A., Willard H. F., Scott K. C., 2009. The impact of local genome sequence on defining heterochromatin domains. PLoS Genet. 5: e1000453. PubMed PMC
White M. A., Kitano J., Peichel C. L., 2015. Purifying selection maintains dosage-sensitive genes during degeneration of the threespine stickleback Y chromosome. Mol. Biol. Evol. 32: 1981–1995. PubMed PMC
Yoshida K., Makino T., Yamaguchi K., Shigenobu S., Hasebe M., et al. , 2014. Sex chromosome turnover contributes to genomic divergence between incipient stickleback species. PLoS Genet. 10: e1004223. PubMed PMC
Yoshido A., Sahara K., Marec F., Matsuda Y., 2011. Step-by-step evolution of neo-sex chromosomes in geographical populations of wild silkmoths, Samia cynthia ssp. Heredity (Edinb) 106: 614–624. PubMed PMC
Zhan S., Reppert S. M., 2013. MonarchBase: the monarch butterfly genome database. Nucleic Acids Res. 41: D758–D763. PubMed PMC
Zhan S., Merlin C., Boore J. L., Reppert S. M., 2011. The monarch butterfly genome yields insights into long-distance migration. Cell 147: 1171–1185. PubMed PMC
Zhan S., Zhang W., Niitepõld K., Hsu J., Haeger J. F., et al. , 2014. The genetics of monarch butterfly migration and warning colouration. Nature 514: 317–321. PubMed PMC
Zhou Q., Bachtrog D., 2012. Chromosome-wide gene silencing initiates Y degeneration in Drosophila. Curr. Biol. 22: 522–525. PubMed
Zhou Q., Wang J., Huang L., Nie W., Wang J., et al. , 2008. Neo-sex chromosomes in the black muntjac recapitulate incipient evolution of mammalian sex chromosomes. Genome Biol. 9: R98. PubMed PMC
Zhou Q., Ellison C. E., Kaiser V. B., Alekseyenko A. A., Gorchakov A. A., et al. , 2013. The epigenome of evolving Drosophila neo-sex chromosomes: dosage compensation and heterochromatin formation. PLoS Biol. 11: e1001711. PubMed PMC
Sex-biased gene content is associated with sex chromosome turnover in Danaini butterflies
Sex Chromosome Turnover in Moths of the Diverse Superfamily Gelechioidea