A W chromosome-derived feminizing piRNA in pyralid moths demonstrates convergent evolution for primary sex determination signals in Lepidoptera
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
641456
H2020 Marie Skłodowska-Curie Actions
20-13784S
Czech Science Foundation
PubMed
41035010
PubMed Central
PMC12487030
DOI
10.1186/s12915-025-02392-8
PII: 10.1186/s12915-025-02392-8
Knihovny.cz E-zdroje
- Klíčová slova
- Ephestia kuehniella, Masculinizer, Plodia interpunctella, Feminizing piRNA, Lepidoptera, Sex chromosomes, Sex determination, Small RNA-seq,
- MeSH
- biologická evoluce * MeSH
- malá interferující RNA * genetika MeSH
- molekulární evoluce * MeSH
- můry * genetika MeSH
- Piwi-interagující RNA MeSH
- pohlavní chromozomy * genetika MeSH
- procesy určující pohlaví * genetika MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- malá interferující RNA * MeSH
- Piwi-interagující RNA MeSH
BACKGROUND: The primary signals of sex determination in insects are diverse and evolve erratically. This also appears to be the case with moths and butterflies. In the silkworm Bombyx mori, female development is triggered by a W chromosome-derived Feminizer (Fem) piRNA that degrades the mRNA of the Z-linked Masculinizer (Masc) gene, which controls male development. We investigated whether this mechanism is conserved in another group of Lepidoptera. RESULTS: We identified a putative feminizing piRNA and many partial copies of the EkMasc gene on the W chromosome of Ephestia kuehniella. The piRNA is generated by a repetitive W-linked sequence named E. kuehniella Moth-overruler-of-masculinization (EkMom). EkMom piRNA shows high similarity to a region of Z-linked EkMasc and is expressed at the onset of female development, but has no relationship to the B. mori Fem piRNA. We then mapped small RNA-seq data from embryos of the related Plodia interpunctella to the PiMasc gene and identified a single small RNA, a PiMom piRNA, able to target PiMasc and with high sequence identity to the EkMom piRNA. Both the PiMom and EkMom repeats are present in high copy number and form a single cluster on the W chromosome. In both species, the Mom piRNA is responsible for Masc mRNA cleavage, clearly demonstrating that the Mom piRNA triggers female development. CONCLUSIONS: Our study provides multiple lines of evidence that Mom piRNA is the primary sex-determining signal in two pyralid moths and highlights a possible pathway for the origin of feminizing piRNAs in Lepidoptera. The similarity in female sex determination between the phylogenetically distant species suggests convergent evolution of feminizing piRNAs in Lepidoptera.
Department of Ecology and Evolutionary Biology University of Kansas Lawrence KS 66045 USA
Faculty of Science University of South Bohemia 370 05 České Budějovice Czech Republic
Laboratory of Entomology Wageningen University and Research 6700 AA Wageningen The Netherlands
Present Address European Molecular Biology Laboratory 69117 Heidelberg Germany
Zobrazit více v PubMed
Nöthiger R, Steinmann-Zwicky M. A single principle for sex determination in insects. Cold Spring Harb Symp Quant Biol. 1985;50:615–21. 10.1101/sqb.1985.050.01.074. PubMed DOI
Wilkins AS. Moving up the hierarchy: a hypothesis on the evolution of a genetic sex determination pathway. BioEssays. 1995;17:71–7. 10.1002/bies.950170113. PubMed DOI
Sánchez L. Sex-determining mechanisms in insects. Int J Dev Biol. 2008;52:837–56. 10.1387/ijdb.072396ls. PubMed DOI
Baker BS, Wolfner MF. A molecular analysis of PubMed DOI
Saccone G. A history of the genetic and molecular identification of genes and their functions controlling insect sex determination. Insect Biochem Mol Biol. 2022;151:103873. 10.1016/j.ibmb.2022.103873. PubMed DOI
Salz HK, Erickson JW. Sex determination in PubMed DOI PMC
Beye M, Hasselmann M, Fondrk MK, Page RE, Omholt SW. The gene PubMed DOI
Hall AB, Basu S, Jiang X, Qi Y, Timoshevskiy VA, Biedler JK, et al. A male-determining factor in the mosquito PubMed DOI PMC
Criscione F, Qi Y, Tu Z. GUY1 confers complete female lethality and is a strong candidate for a male-determining factor in Anopheles stephensi. eLife. 2016;5:e19281. 10.7554/eLife.19281.001. PubMed DOI PMC
Krzywinska E, Dennison NJ, Lycett GJ, Krzywinski J. A maleness gene in the malaria mosquito PubMed DOI
Sharma A, Heinze SD, Wu Y, Kohlbrenner T, Morilla I, Brunner C, et al. Male sex in houseflies is determined by PubMed DOI
Zou Y, Geuverink E, Beukeboom LW, Verhulst EC, van de Zande L. A chimeric gene paternally instructs female sex determination in the haplodiploid wasp PubMed DOI
Liu P, Yang W, Kong L, Zhao S, Xie Z, Zhao Y, et al. A DBHS family member regulates male determination in the filariasis vector PubMed DOI PMC
Meccariello A, Salvemini M, Primo P, Hall B, Koskinioti P, Dalíková M, et al. PubMed DOI
Traut W, Sahara K, Marec F. Sex chromosomes and sex determination in Lepidoptera. Sex Dev. 2007;1:332–46. 10.1159/000111765. PubMed DOI
Sahara K, Yoshido A, Traut W. Sex chromosome evolution in moths and butterflies. Chromosoma Res. 2012;20:83–94. 10.1007/s10577-011-9262-z. PubMed DOI
Hejníčková M, Koutecký P, Potocký P, Provazníková I, Voleníková A, Dalíková M, et al. Absence of W chromosome in Psychidae moths and implications for the theory of sex chromosome evolution in Lepidoptera. Genes. 2019;10(12):1016. 10.3390/genes10121016. PubMed DOI PMC
Yoshido A, Šíchová J, Pospíšilová K, Nguyen P, Šafář J, Provazník J, et al. Evolution of multiple sex-chromosomes associated with dynamic genome reshuffling in PubMed DOI PMC
Hashimoto H. The role of the W chromosome for sex determination in the silkworm. Bombyx mori Jap J Genet. 1933;8:245–7. 10.1266/jjg.8.245. DOI
Tazima Y. The genetics of the silkworm. London: Academic Press; 1964.
Abe H, Mita K, Yasukochi Y, Oshiki T, Shimada T. Retrotransposable elements on the W chromosome of the silkworm, PubMed DOI
Katsuma S, Kiuchi T, Kawamoto M, Fujimoto T, Sahara K. Unique sex determination system in the silkworm, PubMed DOI PMC
Kiuchi T, Koga H, Kawamoto M, Shoji K, Sakai H, Arai Y, et al. A single female-specific piRNA is the primary determiner of sex in the silkworm. Nature. 2014;509:633–6. 10.1038/nature13315. PubMed DOI
Sakai H, Sakaguchi H, Aoki F, Suzuki MG. Functional analysis of sex-determination genes by gene silencing with LNA–DNA gapmers in the silkworm, PubMed DOI
Kaneda T, Matsuda-Imai N, Kosako H, Shoji K, Suzuki MG, Suzuki Y, et al. The masc–PSI complex directly induces male-type PubMed DOI PMC
Tomihara K, Kawamoto M, Suzuki Y, Katsuma S, Kiuchi T. Masculinizer-induced dosage compensation is achieved by transcriptional downregulation of both copies of Z-linked genes in the silkworm. PubMed DOI PMC
Katsuma S, Kawamoto M, Kiuchi T. Guardian small RNAs and sex determination. RNA Biol. 2014;11:1238–42. 10.1080/15476286.2014.996060. PubMed DOI PMC
Czech B, Hannon GJ. One loop to rule them all: the ping-pong cycle and piRNA-guided silencing. Trends Biochem Sci. 2016;41:324–37. 10.1016/j.tibs.2015.12.008. PubMed DOI PMC
Kristensen NP, Skalski AW. Phylogeny and palaeontology. Handbook of Zoology, Vol. IV, Arthropoda: Insecta, Part 35, Lepidoptera, Moths and Butterflies, Vol. 1: Evolution, Systematics, and Biogeography. Edited by: Kristensen NP. Berlin & New York: Walter de Gruyter, 1999. p. 7–25. 10.1515/9783110804744.
Fukui T, Kawamoto M, Shoji K, Kiuchi T, Sugano S, Shimada T, et al. The endosymbiotic bacterium PubMed DOI PMC
Lee J, Kiuchi T, Kawamoto M, Shimada T, Katsuma S. Identification and functional analysis of a PubMed DOI
Wang YH, Chen XE, Yang Y, Xu J, Fang GQ, Niu CY, et al. The PubMed DOI
Harvey-Samuel T, Norman VC, Carter R, Lovett E, Alphey L. Identification and characterization of a PubMed DOI PMC
Deng Z, Zhang Y, Li Y, Huang K, Chen X, Zhang M, et al. Identification and characterization of the masculinizing function of the PubMed DOI PMC
Visser S, Voleníková A, Nguyen P, Verhulst EC, Marec F. A conserved role of the duplicated PubMed DOI PMC
Pospíšilová K, Van ’t Hof AE, Yoshido A, Kružíková R, Visser S, Zrzavá M, Bobryshava K, Dalíková M, Marec F. PubMed
Li X, Liu H, Bi H, Wang Y, Xu J, Zhang S, et al. PubMed DOI
Moronuki Y, Kasahara R, Naka H, Suzuki MG. Identification and functional analysis of sex-determining genes in the spongy moth, PubMed DOI
Van’t Hof AE, Whiteford S, Yung CJ, Yoshido A, Zrzavá M, de Jong MA, et al. Zygosity-based sex determination in a butterfly drives hypervariability of PubMed DOI PMC
Lee J, Fujimoto T, Yamaguchi K, Shigenobu S, Sahara K, Toyoda A, et al. W chromosome sequences of two bombycid moths provide an insight into the origin of PubMed DOI
Fukui T, Shoji K, Kiuchi T, Suzuki Y, Katsuma S. PubMed DOI
Yoshido A, Marec F, Sahara K. The fate of W chromosomes in hybrids between wild silkmoths, PubMed DOI PMC
Yoshido A, Marec F. Deviations in the Z:A ratio disrupt sexual development in the eri silkmoth, PubMed
Dalíková M, Zrzavá M, Hladová I, Nguyen P, Šonský I, Flegrová M, et al. New insights into the evolution of the W chromosome in Lepidoptera. J Hered. 2017;108:709–19. 10.1093/jhered/esx063. PubMed DOI
Hejníčková M, Dalíková M, Potocký P, Tammaru T, Trehubenko M, Kubíčková S, et al. Degenerated, undifferentiated, rearranged, lost: high variability of sex chromosomes in Geometridae (Lepidoptera) identified by sex chromatin. Cells. 2021;10:2230. 10.3390/cells10092230. PubMed DOI PMC
Harvey-Samuel T, Xu X, Anderson MAE, Carabajal Paladino LZ, Purusothaman D, Norman VC, et al. Silencing RNAs expressed from W-linked PubMed DOI PMC
Robinson R. Lepidoptera Genetics. 1st ed. Oxford: Pergamon Press; 1971.
Traut W, Vogel H, Glockner G, Hartmann E, Heckel DG. High-throughput sequencing of a single chromosome: a moth W chromosome. Chromosom Res. 2013;21:491–505. 10.1007/s10577-013-9376-6. PubMed DOI
Dalíková M, Zrzavá M, Kubíčková S, Marec F. W-enriched satellite sequence in the Indian meal moth, PubMed DOI
Vítková M, Fuková I, Kubíčková S, Marec F. Molecular divergence of the W chromosomes in pyralid moths (Lepidoptera). Chromosoma Res. 2007;15:917–30. 10.1007/s10577-007-1173-7. PubMed DOI
Marec F. Synaptonemal complexes in insects. Int J Insect Morphol Embryol. 1996;25:205–33. 10.1016/0020-7322(96)00009-8. DOI
Zrzavá M, Hladová I, Dalíková M, Šíchová J, Õunap E, Kubíčková S, et al. Sex chromosomes of the iconic moth PubMed DOI PMC
Gotter AL, Levine JD, Reppert SM. Sex-linked PubMed DOI
Van’t Hof AE, Nguyen P, Dalíková M, Edmonds N, Marec F, Saccheri IJ. Linkage map of the peppered moth, PubMed PMC
Smith DA, Gordon IJ, Traut W, Herren J, Collins S, Martins DJ, et al. A neo-W chromosome in a tropical butterfly links colour pattern, male-killing, and speciation. Proc Biol Sci. 2016;283:20160821. 10.1098/rspb.2016.0821. PubMed DOI PMC
Mongue AJ, Nguyen P, Voleníková A, Walters JR. Neo-sex chromosomes in the monarch butterfly, PubMed DOI PMC
Deng Z, Zhang Y, Zhang M, Huang J, Li C, Ni X, et al. Characterization of the first W-specific protein-coding gene for sex identification in PubMed DOI PMC
Charlesworth B, Charlesworth D. The degeneration of Y chromosomes. Philos Trans R Soc Lond B Biol Sci. 2000;355:1563–72. 10.1098/rstb.2000.0717. PubMed DOI PMC
Skaletsky H, Kuroda-Kawaguchi T, Minx PJ, Cordum HS, Hillier L, Brown LG, Repping S, Pyntikova T, Ali J, Bieri T, Chinwalla A, Delehaunty A, Delehaunty K, Du H, Ginger G, Fulton L, Fulton R, Graves T, Hou SF, Latrielle P, Leonard S, Mardis E, Maupin R, McPherson J, Miner T, Nash W, Nguyen C, Ozersky P, Pepin K, Rock S, Rohlfing T, Scott K, Schultz B, Strong C, Tin-Wollam A, Yang SP, Waterston RH, Wilson RK, Rozen S, Page DC. The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature. 2003;423:825–37. 10.1038/nature01722. PubMed DOI
Bachtrog D. A dynamic view of sex chromosome evolution. Curr Opin Genet Dev. 2006;16:578–85. 10.1016/j.gde.2006.10.007. PubMed DOI
Hori T, Asakawa S, Itoh Y, Shimizu N, Mizuno S. PubMed DOI PMC
Backström N, Ceplitis H, Berlin S, Ellegren H. Gene conversion drives the evolution of PubMed DOI
Chen JM, Cooper DN, Chuzhanova N, Férec C, Patrinos GP. Gene conversion: mechanisms, evolution and human disease. Nat Rev Genet. 2007;8:762–75. 10.1038/nrg2193. PubMed DOI
Bachtrog D. Y-chromosome evolution: emerging insights into processes of Y-chromosome degeneration. Nat Rev Genet. 2013;14:113–24. 10.1038/nrg3366. PubMed DOI PMC
Hamm DC, Harrison MM. Regulatory principles governing the maternal-to-zygotic transition: insights from PubMed DOI PMC
Zhang M, Xu P, Pang H, Chen T, Zhang G. Expression analysis of mRNA decay of maternal genes during PubMed DOI PMC
Wang W, Yoshikawa M, Han BW, Izumi N, Tomari Y, Weng Z, et al. The initial uridine of primary piRNAs does not create the tenth adenine that is the hallmark of secondary piRNAs. Mol Cell. 2014;56:708–16. 10.1016/j.molcel.2014.10.016. PubMed DOI PMC
Klattenhoff C, Theurkauf W. Biogenesis and germline functions of piRNAs. Development. 2008;135:3–9. 10.1242/dev.006486. PubMed DOI
Ghildiyal M, Zamore PD. Small silencing RNAs: an expanding universe. Nat Rev Genet. 2009;10:94–108. 10.1038/nrg2504. PubMed DOI PMC
Kawaoka S, Kadota K, Arai Y, Suzuki Y, Fujii T, Abe H, et al. The silkworm W chromosome is a source of female-enriched piRNAs. RNA. 2011;17:2144–51. 10.1261/rna.027565.111. PubMed DOI PMC
Yoshido A, Marec F, Sahara K. Resolution of sex chromosome constitution by genomic PubMed DOI
Yoshido A, Yamada Y, Sahara K. The W chromosome detection in several lepidopteran species by genomic in situ hybridization (GISH). J Insect Biotechnol Sericol. 2006;75:147–51. 10.11416/jibs.75.147. DOI
Sakai H, Sumitani M, Chikami Y, Yahata K, Uchino K, Kiuchi T, et al. Transgenic expression of the piRNA-resistant PubMed DOI PMC
Marec F. Genetic control of pest Lepidoptera: induction of sex-linked recessive lethal mutations in DOI
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–9. 10.1093/bioinformatics/bts199. PubMed DOI PMC
R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2018.
Wickham H. Ggplot2: elegant graphics for data analysis. New York: Springer-Verlag; 2016.
Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, et al. Primer3—new capabilities and interfaces. Nucleic Acids Res. 2012;40:e115. 10.1093/nar/gks596. PubMed DOI PMC
Challis RJ, Kumar S, Dasmahapatra KK, Jiggins CD, Blaxter M. Lepbase: the Lepidopteran genome database. bioRxiv. 2016. 10.1101/056994.
Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30:3059–66. 10.1093/nar/gkf436. PubMed DOI PMC
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80. 10.1093/molbev/mst010. PubMed DOI PMC
Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 2001;17:754–5. 10.1093/bioinformatics/17.8.754. PubMed DOI
Buntrock L, Marec F, Krueger S, Traut W. Organ growth without cell division: somatic polyploidy in a moth, PubMed DOI
Mediouni J, Fuková I, Frydrychová R, Dhouibi MH, Marec F. Karyotype, sex chromatin and sex chromosome differentiation in the carob moth, DOI
Šíchová J, Nguyen P, Dalíková M, Marec F. Chromosomal evolution in tortricid moths: conserved karyotypes with diverged features. PLoS One. 2013;8:e64520. 10.1371/journal.pone.0064520. PubMed DOI PMC
Ferguson KB, Visser S, Dalíková M, Provazníková I, Urbaneja A, Pérez-Hedo M, et al. Jekyll or hyde? The genome (and more) of PubMed DOI PMC
Kato A, Albert PS, Vega JM, Birchler JA. Sensitive fluorescence in situ hybridization signal detection in maize using directly labeled probes produced by high concentration DNA polymerase nick translation. Biotech Histochem. 2006;81:71–8. 10.1080/10520290600643677. PubMed DOI
Traut W, Sahara K, Otto TD, Marec F. Molecular differentiation of sex chromosomes probed by comparative genomic hybridization. Chromosoma. 1999;108:173–80. 10.1007/s004120050366. PubMed DOI
Carabajal Paladino LZ, Nguyen P, Šíchová J, Marec F. Mapping of single-copy genes by TSA-FISH in the codling moth, PubMed DOI PMC
Frydrychová R, Marec F. Repeated losses of TTAGG telomere repeats in evolution of beetles (Coleoptera). Genetica. 2002;115:179–87. 10.1023/A:1020175912128. PubMed DOI
Watanabe T, Tomizawa S, Mitsuya K, Totoki Y, Yamamoto Y, Kuramochi-Miyagawa S, et al. Role for piRNAs and noncoding RNA in de novo DNA methylation of the imprinted mouse PubMed DOI PMC
Suzuki MG, Suzuki K, Aoki F, Ajimura M. Effect of RNAi-mediated knockdown of the PubMed DOI
Ephestia kuehniella small RNAseq. BioProject. 2024. https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA1107079. Accessed 15 August 2025.