Evolution of multiple sex-chromosomes associated with dynamic genome reshuffling in Leptidea wood-white butterflies
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
14-22765S
Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
17-13713S
Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
20-13784S
Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
17-17211S
Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
20-20650Y
Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
PubMed
32518391
PubMed Central
PMC7426936
DOI
10.1038/s41437-020-0325-9
PII: 10.1038/s41437-020-0325-9
Knihovny.cz E-zdroje
- MeSH
- molekulární evoluce * MeSH
- motýli * genetika MeSH
- pohlavní chromozomy * MeSH
- syntenie * MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Sex-chromosome systems tend to be highly conserved and knowledge about their evolution typically comes from macroevolutionary inference. Rapidly evolving complex sex-chromosome systems represent a rare opportunity to study the mechanisms of sex-chromosome evolution at unprecedented resolution. Three cryptic species of wood-white butterflies-Leptidea juvernica, L. sinapis and L. reali-have each a unique set of multiple sex-chromosomes with 3-4 W and 3-4 Z chromosomes. Using a transcriptome-based microarray for comparative genomic hybridisation (CGH) and a library of bacterial artificial chromosome (BAC) clones, both developed in L. juvernica, we identified Z-linked Leptidea orthologs of Bombyx mori genes and mapped them by fluorescence in situ hybridisation (FISH) with BAC probes on multiple Z chromosomes. In all three species, we determined synteny blocks of autosomal origin and reconstructed the evolution of multiple sex-chromosomes. In addition, we identified W homologues of Z-linked orthologs and characterised their molecular differentiation. Our results suggest that the multiple sex-chromosome system evolved in a common ancestor as a result of dynamic genome reshuffling through repeated rearrangements between the sex chromosomes and autosomes, including translocations, fusions and fissions. Thus, the initial formation of neo-sex chromosomes could not have played a role in reproductive isolation between these Leptidea species. However, the subsequent species-specific fissions of several neo-sex chromosomes could have contributed to their reproductive isolation. Then, significantly increased numbers of Z-linked genes and independent neo-W chromosome degeneration could accelerate the accumulation of genetic incompatibilities between populations and promote their divergence resulting in speciation.
Genomics Core Facility European Molecular Biology Laboratory Heidelberg Germany
Institut de Biologia Evolutiva Pg Marítim de la Barceloneta 37 08003 Barcelona Spain
Zobrazit více v PubMed
Abe H, Mita K, Yasukochi Y, Oshiki T, Shimada T. Retrotransposable elements on the W chromosome of the silkworm, Bombyx mori. Cytogenet Genome Res. 2005;110:144–151. PubMed
Ahola V, Lehtonen R, Somervuo P, Salmela L, Koskinen P, Rastas P, et al. The Glanville fritillary genome retains an ancient karyotype and reveals selective chromosomal fusions in Lepidoptera. Nat Commun. 2014;5:4737. PubMed PMC
Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc
Bachtrog D. Sex chromosome evolution: molecular aspects of Y chromosome degeneration in Drosophila. Genome Res. 2005;15:1393–1401. PubMed PMC
Bachtrog D. Y-chromosome evolution: emerging insights into processes of Y-chromosome degeneration. Nat Rev Genet. 2013;14:113–124. PubMed PMC
Bachtrog D, Mahajan S, Bracewell R. Massive gene amplification on a recently formed Drosophila Y chromosome. Nat Ecol Evol. 2019;3:1587–1597. PubMed PMC
Bachtrog D, Mank JE, Peichel CL, Kirkpatrick M, Otto SP, Ashman T, et al. Sex determination: why so many ways of doing it? PLoS Biol. 2014;12:e1001899. PubMed PMC
Baker RH, Wilkinson GS. Comparative genomic hybridization (CGH) reveals a neo-X chromosome and biased gene movement in stalk-eyed flies (genus Teleopsis) PLoS Genet. 2010;6:e1001121. PubMed PMC
Beldade P, Saenko SV, Pul N, Long AD. A gene-based linkage map for Bicyclus anynana butterflies allows for a comprehensive analysis of synteny with the lepidopteran reference genome. PLoS Genet. 2009;5:e1000366. PubMed PMC
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. PubMed PMC
Campbell P, Good JM, Dean MD, Tucker PK, Nachman MW. The contribution of the Y chromosome to hybrid male sterility in house mice. Genetics. 2012;191:1271–1281. PubMed PMC
Carabajal Paladino LZ, Provazníková I, Berger M, Bass C, Aratchige NS, López SN, et al. Sex chromosome turnover in moths of the diverse superfamily Gelechioidea. Genome Biol Evol. 2019;11:1307–1319. PubMed PMC
Charlesworth D, Charlesworth B, Marais G. Steps in the evolution of heteromorphic sex chromosomes. Heredity. 2005;95:118–128. PubMed
Dalíková M, Zrzavá M, Hladová I, Nguyen P, Šonský I, Flegrová M, et al. New insights into the evolution of the W chromosome in Lepidoptera. J Hered. 2017;108:709–719. PubMed
Dalíková M, Zrzavá M, Kubíčková S, Marec F. W-enriched satellite sequence in the Indian meal moth, Plodia interpunctella (Lepidoptera, Pyralidae) Chromosome Res. 2017;25:241–252. PubMed
Dincă V, Lukhtanov VA, Talavera G, Vila R. Unexpected layers of cryptic diversity in wood white Leptidea butterflies. Nat Commun. 2011;2:324. PubMed
Dincă V, Wiklund C, Lukhtanov VA, Kodandaramaiah U, Norén K, Dapporto L, et al. Reproductive isolation and patterns of genetic differentiation in a cryptic butterfly species complex. J Evol Biol. 2013;26:2095–2106. PubMed PMC
Dopman EB, Perez L, Bogdanowicz SM, Harrison RG. Consequences of reproductive barriers for genealogical discordance in the European corn borer. Proc Natl Acad Sci USA. 2005;102:14706–14711. PubMed PMC
Ebersberger I, Strauss S, von Haeseler A. HaMStR: profile hidden Markov model based search for orthologs in ESTs. BMC Evol Biol. 2009;9:157. PubMed PMC
Filatov DA. The two “rules of speciation” in species with young sex chromosomes. Mol Ecol. 2018;27:3799–3810. PubMed
Fraïsse C, Picard MAL, Vicoso B. The deep conservation of the Lepidoptera Z chromosome suggests a non-canonical origin of the W. Nat Commun. 2017;8:1486. PubMed PMC
Friberg M, Vongvanich N, Borg-Karlson A-K, Kemp DJ, Merilaita S, Wiklund C. Female mate choice determines reproductive isolation between sympatric butterflies. Behav Ecol Sociobiol. 2008;62:873–886.
Fuková I, Traut W, Vítková M, Nguyen P, Kubíčková S, Marec F. Probing the W chromosome of the codling moth, Cydia pomonella, with sequences from microdissected sex chromatin. Chromosoma. 2007;116:135–145. PubMed
Gilbert D. Gene-omes built from mRNA seq not genome DNA. 7th Annual Arthropod Genomics Symposium. Notre Dame. F1000Research. 2013;5:1695. doi: 10.7490/f1000research.1112594.1. DOI
Gotter AL, Levine JD, Reppert SM. Sex-linked period genes in the silkmoth, Antheraea pernyi: implications for circadian clock regulation and the evolution of sex chromosomes. Neuron. 1999;24:953–965. PubMed
Graves JAM. Did sex chromosome turnover promote divergence of the major mammal groups? Bioessays. 2016;38:734–743. PubMed PMC
Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc. 2013;8:1494–1512. PubMed PMC
Hill J, Rastas P, Hornett EA, Neethiraj R, Clark N, Morehouse N, et al. Unprecedented reorganization of holocentric chromosomes provides insights into the enigma of lepidopteran chromosome evolution. Sci Adv. 2019;5:eaau3648. PubMed PMC
Kitano J, Peichel CL. Turnover of sex chromosomes and speciation in fishes. Environ Biol Fishes. 2012;94:549–558. PubMed PMC
Kitano J, Ross JA, Mori S, Kume M, Jones FC, Chan YF, et al. A role for a neo-sex chromosome in stickleback speciation. Nature. 2009;461:1079–1083. PubMed PMC
Kiuchi T, Koga H, Kawamoto M, Shoji K, Sakai H, Arai Y, et al. A single female-specific piRNA is the primary determiner of sex in the silkworm. Nature. 2014;509:633–636. PubMed
Kost S, Heckel DG, Yoshido A, Marec F, Groot AT. A Z-linked sterility locus causes sexual abstinence in hybrid females and facilitates speciation in Spodoptera frugiperda. Evolution. 2016;70:1418–1427. PubMed
Lukhtanov VA, Dincă V, Friberg M, Šíchová J, Olofsson M, Vila R, et al. Versatility of multivalent orientation, inverted meiosis, and rescued fitness in holocentric chromosomal hybrids. Proc Natl Acad Sci USA. 2018;115:9610–9619. PubMed PMC
Lukhtanov VA, Dincă V, Talavera G, Vila R. Unprecedented within-species chromosome number cline in the Wood White butterfly Leptidea sinapis and its significance for karyotype evolution and speciation. BMC Evol Biol. 2011;11:109. PubMed PMC
Mank JE, Hosken DJ, Wedell N. Conflict on the sex chromosomes: cause, effect, and complexity. Cold Spring Harb Perspect Biol. 2014;6:a017715. PubMed PMC
Mank JE, Vicoso B, Berlin S, Charlesworth B. Effective population size and the faster-X effect: empirical results and their interpretation. Evolution. 2010;64:663–674. PubMed
Marec F, Sahara K, Traut W. Rise and fall of the W chromosome in Lepidoptera. In: Goldsmith MR, Marec F, editors. Molecular biology and genetics of the Lepidoptera. Boca Raton, FL, USA: CRC Press; 2010. pp. 49–63.
Moghadam HK, Pointer MA, Wright AE, Berlin S, Mank JE. W chromosome expression responds to female-specific selection. Proc Natl Acad Sci USA. 2012;109:8207–8211. PubMed PMC
Mongue AJ, Nguyen P, Voleníková A, Walters JR. Neo-sex chromosomes in the monarch butterfly, Danaus plexippus. G3. 2017;7:3281–3294. PubMed PMC
Naisbit RE, Jiggins CD, Linares M, Salazar C, Mallet J. Hybrid sterility, Haldane’s rule and speciation in Heliconius cydno and H. melpomene. Genetics. 2002;161:1517–1526. PubMed PMC
Nguyen P, Sýkorová M, Šíchová J, Kůta V, Dalíková M, Čapková Frydrychová R, et al. Neo-sex chromosomes and adaptive potential in tortricid pests. Proc Natl Acad Sci USA. 2013;110:6931–6936. PubMed PMC
Pennell MW, Kirkpatrick M, Otto SP, Vamosi JC, Peichel CL, Valenzuela N, et al. Y fuse? Sex chromosome fusions in fishes and reptiles. PLoS Genet. 2015;11:e1005237. PubMed PMC
Pfaffl MW. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res. 2001;29:e45. PubMed PMC
Picq S, Lumley L, Šíchová J, Laroche J, Pouliot E, Brunet BMT, et al. Insights into the structure of the spruce budworm (Choristoneura fumiferana) genome, as revealed by molecular cytogenetic analyses and a high-density linkage map. G3. 2018;8:2539–2549. PubMed PMC
Presgraves DC. Patterns of postzygotic isolation in Lepidoptera. Evolution. 2002;56:1168–1183. PubMed
Presgraves DC. Sex chromosomes and speciation in Drosophila. Trends Genet. 2008;24:336–343. PubMed PMC
Pringle EG, Baxter SW, Webster CL, Papanicolaou A, Lee SF, Jiggins CD. Synteny and chromosome evolution in the Lepidoptera: evidence from mapping in Heliconius melpomene. Genetics. 2007;177:417–426. PubMed PMC
Qvarnström A, Bailey RI. Speciation through evolution of sex-linked genes. Heredity. 2009;102:4–15. PubMed
Rens W, Grützner F, O’Brien PCM, Fairclough H, Graves JAM, Ferguson-Smith MA. Resolution and evolution of the duck-billed platypus karyotype with an X1Y1X2Y2X3Y3X4Y4X5Y5 male sex chromosome constitution. Proc Natl Acad Sci USA. 2004;101:16257–16261. PubMed PMC
Šafář J, Šimková H, Kubaláková M, Číhalíková J, Suchánková P, Bartoš J, et al. Development of chromosome-specific BAC resources for genomics of bread wheat. Cytogenet Genome Res. 2010;129:211–223. PubMed
Sahara K, Yoshido A, Traut W. Sex chromosome evolution in moths and butterflies. Chromosome Res. 2012;20:83–94. PubMed
Šíchová J, Ohno M, Dincă V, Watanabe M, Sahara K, Marec F. Fissions, fusions, and translocations shaped the karyotype and multiple sex chromosome constitution of the northeast-Asian wood white butterfly, Leptidea amurensis. Biol J Linn Soc. 2016;118:457–471.
Šíchová J, Voleníková A, Dincă V, Nguyen P, Vila R, Sahara K, et al. Dynamic karyotype evolution and unique sex determination systems in Leptidea wood white butterflies. BMC Evol Biol. 2015;15:89. PubMed PMC
Smith DAS, Gordon IJ, Traut W, Herren J, Collins S, Martins DJ, et al. A neo-W chromosome in a tropical butterfly links colour pattern, male-killing, and speciation. Proc Biol Sci. 2016;283:20160821. PubMed PMC
Sperling FAH. Sex-linked genes and species differences in Lepidoptera. Can Entomol. 1994;126:807–818.
Sweigart AL. Simple Y-autosomal incompatibilities cause hybrid male sterility in reciprocal cross between Drosophila virilis and D. americana. Genetics. 2010;184:779–787. PubMed PMC
Talla V, Johansson A, Dincă V, Vila R, Friberg M, Wiklund C, et al. Lack of gene flow: narrow and dispersed differentiation islands in a triplet of Leptidea butterfly species. Mol Ecol. 2019;28:3756–3770. PubMed
Talla V, Soler L, Kawakami T, Dincă V, Vila R, Friberg M, et al. Dissecting the effects of selection and mutation on genetic diversity in three wood white (Leptidea) butterfly species. Genome Biol Evol. 2019;11:2875–2886. PubMed PMC
Talla V, Suh A, Kalsoom F, Dincă V, Vila R, Friberg M, et al. Rapid increase in genome size as a consequence of transposable element hyperactivity in wood-white (Leptidea) butterflies. Genome Biol Evol. 2017;9:2491–2505. PubMed PMC
Traut W, Ahola V, Smith DAS, Gordon IJ, ffrench-Constant RH. Karyotypes versus genomes: the nymphalid butterflies Melitaea cinxia, Danaus plexippus, and D. chrysippus. Cytogenet Genome Res. 2017;153:46–53. PubMed
Traut W, Sahara K, Marec F. Sex chromosomes and sex determination in Lepidoptera. Sex Dev. 2007;1:332–346. PubMed
Turelli M, Begun DJ. Haldane’s rule and X-chromosome size in Drosophila. Genetics. 1997;147:1799–1815. PubMed PMC
Van’t Hof AE, Nguyen P, Dalíková M, Edmonds N, Marec F, Saccheri IJ. Linkage map of the peppered moth, Biston betularia (Lepidoptera, Geometridae): a model of industrial melanism. Heredity. 2013;110:283–295. PubMed PMC
Wadsworth CB, Li X, Dopman EB. A recombination suppressor contributes to ecological speciation in OSTRINIA moths. Heredity. 2015;114:593–600. PubMed PMC
Wright AE, Dean R, Zimmer F, Mank JE. How to make a sex chromosome. Nat Commun. 2016;7:12087. PubMed PMC
Yasukochi Y. PCR-based screening for bacterial artificial chromosome libraries. Methods Mol Biol. 2002;192:401–410. PubMed
Yasukochi Y, Ohno M, Shibata F, Jouraku A, Nakano R, Ishikawa Y, et al. A FISH-based chromosome map for the European corn borer yields insights into ancient chromosomal fusions in the silkworm. Heredity. 2016;116:75–83. PubMed PMC
Yasukochi Y, Tanaka-Okuyama M, Shibata F, Yoshido A, Marec F, Wu C, et al. Extensive conserved synteny of genes between the karyotypes of Manduca sexta and Bombyx mori revealed by BAC-FISH mapping. PLoS One. 2009;4:e7465. PubMed PMC
Yoshido A, Marec F, Sahara K. The fate of W chromosomes in hybrids between wild silkmoths, Samia cynthia ssp.: no role in sex determination and reproduction. Heredity. 2016;116:424–433. PubMed PMC
Yoshido A, Sahara K, Marec F, Matsuda Y. Step-by-step evolution of neo-sex chromosomes in geographical populations of wild silkmoths, Samia cynthia ssp. Heredity. 2011;106:614–624. PubMed PMC
Yoshido A, Sahara K, Yasukochi Y. Silk moths (Lepidoptera) In: Sharakhov IV, editor. Protocols for cytogenetic mapping of arthropod genomes. Boca Raton, FL, USA: CRC Press; 2015. pp. 219–256.
Yoshido A, Yasukochi Y, Sahara K. Samia cynthia versus Bombyx mori: comparative gene mapping between a species with a low-number karyotype and the model species of Lepidoptera. Insect Biochem Mol Biol. 2011;41:370–377. PubMed
Xie Y, Wu G, Tang J, Luo R, Patterson J, Liu S, et al. SOAPdenovo-Trans: de novo transcriptome assembly with short RNA-Seq reads. Bioinformatics. 2014;30:1660–1666. PubMed
Sex-biased gene content is associated with sex chromosome turnover in Danaini butterflies
Zygosity-based sex determination in a butterfly drives hypervariability of Masculinizer
Large-scale comparative analysis of cytogenetic markers across Lepidoptera
The Role of Satellite DNAs in Genome Architecture and Sex Chromosome Evolution in Crambidae Moths
figshare
10.6084/m9.figshare.11889771