The p53 mRNA exhibits riboswitch-like features under DNA damage conditions
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
41079615
PubMed Central
PMC12510224
DOI
10.1016/j.isci.2025.113555
PII: S2589-0042(25)01816-4
Knihovny.cz E-zdroje
- Klíčová slova
- Molecular biology, Structural biology,
- Publikační typ
- časopisecké články MeSH
RNA riboswitch structures control prokaryotic gene expression in response to changes in the cellular environment, but how this concept has evolved in mammalian cells is yet little known. Here, we describe the riboswitch-like features of the p53 mRNA that controls p53 synthesis following DNA damage. The conserved BOX-I stem-loop in the 5' coding sequence acts as an aptamer that controls the folding of a compact downstream MDM2-binding p53 mRNA structure. MDM2 brings the p53 mRNA to the ribosome and promotes p53 synthesis. High-throughput in-cell RNA structural probing and in vitro RNA-RNA and RNA-protein interactions show how the cancer-associated synonymous mutation in codon 22 (CASM22) of the BOX-I aptamer stabilizes the p53 mRNA structure and prevents the formation of the MDM2-binding platform. However, the CASM22 does not affect p53 mRNA folding during the unfolded protein response, demonstrating the specificity by which the CASM22 targets the p53 DNA damage response.
Biochemistry and Molecular Biology Department University of Valencia Valencia Spain
Department of Medical Biosciences Umeå University Building 6M 901 85 Umeå Sweden
Inserm UMRS 1342 Institut de Recherche St Louis Université Paris Cité 75010 Paris France
RECAMO Masaryk Memorial Cancer Institute Zluty kopec 7 65653 Brno Czech Republic
Zobrazit více v PubMed
Sanchez de Groot N., Armaos A., Graña-Montes R., Alriquet M., Calloni G., Vabulas R.M., Tartaglia G.G. RNA structure drives interaction with proteins. Nat. Commun. 2019;10:3246. doi: 10.1038/s41467-019-10923-5. PubMed DOI PMC
Breaker R.R. Riboswitches and Translation Control. Cold Spring Harb. Perspect. Biol. 2018;10 doi: 10.1101/cshperspect.a032797. PubMed DOI PMC
Li S., Breaker R.R. Eukaryotic TPP riboswitch regulation of alternative splicing involving long-distance base pairing. Nucleic Acids Res. 2013;41:3022–3031. doi: 10.1093/nar/gkt057. PubMed DOI PMC
Ganser L.R., Kelly M.L., Herschlag D., Al-Hashimi H.M. The roles of structural dynamics in the cellular functions of RNAs. Nat. Rev. Mol. Cell Biol. 2019;20:474–489. doi: 10.1038/s41580-019-0136-0. PubMed DOI PMC
Lewis C.J.T., Pan T., Kalsotra A. RNA modifications and structures cooperate to guide RNA-protein interactions. Nat. Rev. Mol. Cell Biol. 2017;18:202–210. doi: 10.1038/nrm.2016.163. PubMed DOI PMC
Höfler S., Duss O. Interconnections between m6A RNA modification, RNA structure, and protein-RNA complex assembly. Life Sci. Alliance. 2024;7 doi: 10.26508/lsa.202302240. PubMed DOI PMC
Kappel K., Zhang K., Su Z., Watkins A.M., Kladwang W., Li S., Pintilie G., Topkar V.V., Rangan R., Zheludev I.N., et al. Accelerated cryo-EM-guided determination of three-dimensional RNA-only structures. Nat. Methods. 2020;17:699–707. doi: 10.1038/s41592-020-0878-9. PubMed DOI PMC
Weeks K.M. SHAPE Directed Discovery of New Functions in Large RNAs. Acc. Chem. Res. 2021;54:2502–2517. doi: 10.1021/acs.accounts.1c00118. PubMed DOI PMC
Levine A.J. p53: 800 million years of evolution and 40 years of discovery. Nat. Rev. Cancer. 2020;20:471–480. doi: 10.1038/s41568-020-0262-1. PubMed DOI
Haupt Y., Maya R., Kazaz A., Oren M. Mdm2 promotes the rapid degradation of p53. Nature. 1997;387:296–299. doi: 10.1038/387296a0. PubMed DOI
Candeias M.M., Malbert-Colas L., Powell D.J., Daskalogianni C., Maslon M.M., Naski N., Bourougaa K., Calvo F., Fåhraeus R. P53 mRNA controls p53 activity by managing Mdm2 functions. Nat. Cell Biol. 2008;10:1098–1105. doi: 10.1038/ncb1770. PubMed DOI
Gajjar M., Candeias M.M., Malbert-Colas L., Mazars A., Fujita J., Olivares-Illana V., Fåhraeus R. The p53 mRNA-Mdm2 interaction controls Mdm2 nuclear trafficking and is required for p53 activation following DNA damage. Cancer Cell. 2012;21:25–35. doi: 10.1016/j.ccr.2011.11.016. PubMed DOI
Malbert-Colas L., Ponnuswamy A., Olivares-Illana V., Tournillon A.S., Naski N., Fåhraeus R. HDMX folds the nascent p53 mRNA following activation by the ATM kinase. Mol. Cell. 2014;54:500–511. doi: 10.1016/j.molcel.2014.02.035. PubMed DOI
Medina-Medina I., García-Beltrán P., de la Mora-de la Mora I., Oria-Hernández J., Millot G., Fahraeus R., Reyes-Vivas H., Sampedro J.G., Olivares-Illana V. Allosteric Interactions by p53 mRNA Govern HDM2 E3 Ubiquitin Ligase Specificity under Different Conditions. Mol. Cell Biol. 2016;36:2195–2205. doi: 10.1128/MCB.00113-16. PubMed DOI PMC
Haronikova L., Olivares-Illana V., Wang L., Karakostis K., Chen S., Fåhraeus R. The p53 mRNA: an integral part of the cellular stress response. Nucleic Acids Res. 2019;47:3257–3271. doi: 10.1093/nar/gkz124. PubMed DOI PMC
Takagi M., Absalon M.J., McLure K.G., Kastan M.B. Regulation of p53 translation and induction after DNA damage by ribosomal protein L26 and nucleolin. Cell. 2005;123:49–63. doi: 10.1016/j.cell.2005.07.034. PubMed DOI
Vadivel Gnanasundram S., Bonczek O., Wang L., Chen S., Fahraeus R. p53 mRNA Metabolism Links with the DNA Damage Response. Genes. 2021;12 doi: 10.3390/genes12091446. PubMed DOI PMC
Harding H.P., Zhang Y., Ron D. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature. 1999;397:271–274. doi: 10.1038/16729. PubMed DOI
Bourougaa K., Naski N., Boularan C., Mlynarczyk C., Candeias M.M., Marullo S., Fåhraeus R. Endoplasmic reticulum stress induces G2 cell-cycle arrest via mRNA translation of the p53 isoform p53/47. Mol. Cell. 2010;38:78–88. doi: 10.1016/j.molcel.2010.01.041. PubMed DOI
Fusee L., Salomao N., Ponnuswamy A., Wang L., Lopez I., Chen S., Gu X., Polyzoidis S., Vadivel Gnanasundram S., Fahraeus R. The p53 endoplasmic reticulum stress-response pathway evolved in humans but not in mice via PERK-regulated p53 mRNA structures. Cell Death Differ. 2023;30:1072. doi: 10.1038/s41418-023-01127-y. PubMed DOI PMC
Supek F., Miñana B., Valcárcel J., Gabaldón T., Lehner B. Synonymous mutations frequently act as driver mutations in human cancers. Cell. 2014;156:1324–1335. doi: 10.1016/j.cell.2014.01.051. PubMed DOI
Sauna Z.E., Kimchi-Sarfaty C. Understanding the contribution of synonymous mutations to human disease. Nat. Rev. Genet. 2011;12:683–691. doi: 10.1038/nrg3051. PubMed DOI
Sharma Y., Miladi M., Dukare S., Boulay K., Caudron-Herger M., Groß M., Backofen R., Diederichs S. A pan-cancer analysis of synonymous mutations. Nat. Commun. 2019;10:2569. doi: 10.1038/s41467-019-10489-2. PubMed DOI PMC
Smola M.J., Weeks K.M. In-cell RNA structure probing with SHAPE-MaP. Nat. Protoc. 2018;13:1181–1195. doi: 10.1038/nprot.2018.010. PubMed DOI PMC
Gruber A.R., Lorenz R., Bernhart S.H., Neuböck R., Hofacker I.L. The Vienna RNA websuite. Nucleic Acids Res. 2008;36:W70–W74. doi: 10.1093/nar/gkn188. PubMed DOI PMC
Sarzynska J., Popenda M., Antczak M., Szachniuk M. RNA tertiary structure prediction using RNAComposer in CASP15. Proteins. 2023;91:1790–1799. doi: 10.1002/prot.26578. PubMed DOI
Biesiada M., Purzycka K.J., Szachniuk M., Blazewicz J., Adamiak R.W. Automated RNA 3D Structure Prediction with RNAComposer. Methods Mol. Biol. 2016;1490:199–215. doi: 10.1007/978-1-4939-6433-8_13. PubMed DOI
Karakostis K., Vadivel Gnanasundram S., López I., Thermou A., Wang L., Nylander K., Olivares-Illana V., Fåhraeus R. A single synonymous mutation determines the phosphorylation and stability of the nascent protein. J. Mol. Cell Biol. 2019;11:187–199. doi: 10.1093/jmcb/mjy049. PubMed DOI PMC
Nudler E., Mironov A.S. The riboswitch control of bacterial metabolism. Trends Biochem. Sci. 2004;29:11–17. doi: 10.1016/j.tibs.2003.11.004. PubMed DOI
Roth A., Breaker R.R. The structural and functional diversity of metabolite-binding riboswitches. Annu. Rev. Biochem. 2009;78:305–334. doi: 10.1146/annurev.biochem.78.070507.135656. PubMed DOI PMC
Breaker R.R. Riboswitches and the RNA world. Cold Spring Harb. Perspect. Biol. 2012;4 doi: 10.1101/cshperspect.a003566. PubMed DOI PMC
de Jesus V., Qureshi N.S., Warhaut S., Bains J.K., Dietz M.S., Heilemann M., Schwalbe H., Fürtig B. Switching at the ribosome: riboswitches need rProteins as modulators to regulate translation. Nat. Commun. 2021;12:4723. doi: 10.1038/s41467-021-25024-5. PubMed DOI PMC
Maier B., Gluba W., Bernier B., Turner T., Mohammad K., Guise T., Sutherland A., Thorner M., Scrable H. Modulation of mammalian life span by the short isoform of p53. Genes Dev. 2004;18:306–319. doi: 10.1101/gad.1162404. PubMed DOI PMC
Ungewitter E., Scrable H. Delta40p53 controls the switch from pluripotency to differentiation by regulating IGF signaling in ESCs. Genes Dev. 2010;24:2408–2419. doi: 10.1101/gad.1987810. PubMed DOI PMC
Hernández Borrero L.J., El-Deiry W.S. Tumor suppressor p53: Biology, signaling pathways, and therapeutic targeting. Biochim. Biophys. Acta. Rev. Cancer. 2021;1876 doi: 10.1016/j.bbcan.2021.188556. PubMed DOI PMC
Ma H., Jia X., Zhang K., Su Z. Cryo-EM advances in RNA structure determination. Signal Transduct. Target. Ther. 2022;7:58. doi: 10.1038/s41392-022-00916-0. PubMed DOI PMC
Karakostis K., Ponnuswamy A., Fusée L.T.S., Bailly X., Laguerre L., Worall E., Vojtesek B., Nylander K., Fåhraeus R. p53 mRNA and p53 Protein Structures Have Evolved Independently to Interact with MDM2. Mol. Biol. Evol. 2016;33:1280–1292. doi: 10.1093/molbev/msw012. PubMed DOI
Deisenroth C., Franklin D.A., Zhang Y. The Evolution of the Ribosomal Protein-MDM2-p53 Pathway. Cold Spring Harb. Perspect. Med. 2016;6 doi: 10.1101/cshperspect.a026138. PubMed DOI PMC
Karakostis K., Malbert-Colas L., Thermou A., Vojtesek B., Fåhraeus R. The DNA damage sensor ATM kinase interacts with the p53 mRNA and guides the DNA damage response pathway. Mol. Cancer. 2024;23:21. doi: 10.1186/s12943-024-01933-z. PubMed DOI PMC
Xue B., Brown C.J., Dunker A.K., Uversky V.N. Intrinsically disordered regions of p53 family are highly diversified in evolution. Biochim. Biophys. Acta. 2013;1834:725–738. doi: 10.1016/j.bbapap.2013.01.012. PubMed DOI PMC
Dai C., Gu W. p53 post-translational modification: deregulated in tumorigenesis. Trends Mol. Med. 2010;16:528–536. doi: 10.1016/j.molmed.2010.09.002. PubMed DOI PMC