A single synonymous mutation determines the phosphorylation and stability of the nascent protein
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
PubMed
30252118
PubMed Central
PMC6734142
DOI
10.1093/jmcb/mjy049
PII: 5106402
Knihovny.cz E-zdroje
- Klíčová slova
- ATM kinase, MDM2, cell signaling, intrinsically disordered proteins, p53 messenger RNA, synonymous mutations,
- MeSH
- ATM protein genetika metabolismus MeSH
- buňky A549 MeSH
- ELISA MeSH
- fosforylace genetika fyziologie MeSH
- lidé MeSH
- malá interferující RNA metabolismus MeSH
- messenger RNA metabolismus MeSH
- mutace genetika MeSH
- nádorové buněčné linie MeSH
- nádorový supresorový protein p53 genetika metabolismus MeSH
- polyribozomy metabolismus MeSH
- protoonkogenní proteiny c-mdm2 genetika metabolismus MeSH
- stabilita proteinů MeSH
- vnitřně neuspořádané proteiny genetika metabolismus MeSH
- western blotting MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ATM protein MeSH
- malá interferující RNA MeSH
- messenger RNA MeSH
- nádorový supresorový protein p53 MeSH
- protoonkogenní proteiny c-mdm2 MeSH
- TP53 protein, human MeSH Prohlížeč
- vnitřně neuspořádané proteiny MeSH
p53 is an intrinsically disordered protein with a large number of post-translational modifications and interacting partners. The hierarchical order and subcellular location of these events are still poorly understood. The activation of p53 during the DNA damage response (DDR) requires a switch in the activity of the E3 ubiquitin ligase MDM2 from a negative to a positive regulator of p53. This is mediated by the ATM kinase that regulates the binding of MDM2 to the p53 mRNA facilitating an increase in p53 synthesis. Here we show that the binding of MDM2 to the p53 mRNA brings ATM to the p53 polysome where it phosphorylates the nascent p53 at serine 15 and prevents MDM2-mediated degradation of p53. A single synonymous mutation in p53 codon 22 (L22L) prevents the phosphorylation of the nascent p53 protein and the stabilization of p53 following genotoxic stress. The ATM trafficking from the nucleus to the p53 polysome is mediated by MDM2, which requires its interaction with the ribosomal proteins RPL5 and RPL11. These results show how the ATM kinase phosphorylates the p53 protein while it is being synthesized and offer a novel mechanism whereby a single synonymous mutation controls the stability and activity of the encoded protein.
Department of Medical Biosciences Umeå University Umeå Sweden
Instituto de Física Universidad Autónoma de San Luis Potosí SLP México
RECAMO Masaryk Memorial Cancer Institute Zluty kopec 7 Brno Czech Republic
Zobrazit více v PubMed
Banin S., Moyal L., Shieh S., et al. . (1998). Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science 281, 1674–1677. PubMed
Bursac S., Brdovcak M.C., Donati G., et al. . (2014). Activation of the tumor suppressor p53 upon impairment of ribosome biogenesis. Biochim. Biophys. Acta 1842, 817–830. PubMed
Candeias M.M., Malbert-Colas L., Powell D.J., et al. . (2008). P53 mRNA controls p53 activity by managing Mdm2 functions. Nat. Cell Biol. 10, 1098–1105. PubMed
Canman C.E., Lim D.S., Cimprich K.A., et al. . (1998). Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science 281, 1677–1679. PubMed
Chen L., Gilkes D.M., Pan Y., et al. . (2005). ATM and Chk2-dependent phosphorylation of MDMX contribute to p53 activation after DNA damage. EMBO J. 24, 3411–3422. PubMed PMC
Chene P. (2003). Inhibiting the p53-MDM2 interaction: an important target for cancer therapy. Nat. Rev. Cancer 3, 102–109. PubMed
Cheng Q., and Chen J. (2010). Mechanism of p53 stabilization by ATM after DNA damage. Cell Cycle 9, 472–478. PubMed PMC
Cheok C.F., Verma C.S., Baselga J., et al. . (2011). Translating p53 into the clinic. Nat. Rev. Clin. Oncol. 8, 25–37. PubMed
Coffill C.R., Lee A.P., Siau J.W., et al. . (2016). The p53–Mdm2 interaction and the E3 ligase activity of Mdm2/Mdm4 are conserved from lampreys to humans. Genes Dev. 30, 281–292. PubMed PMC
Donati G., Peddigari S., Mercer C.A., et al. . (2013). 5S ribosomal RNA is an essential component of a nascent ribosomal precursor complex that regulates the Hdm2-p53 checkpoint. Cell Rep. 4, 87–98. PubMed PMC
Fahraeus R., Marin M., and Olivares-Illana V. (2016). Whisper mutations: cryptic messages within the genetic code. Oncogene 35, 3753–3759. PubMed
Gajjar M., Candeias M.M., Malbert-Colas L., et al. . (2012). The p53 mRNA–Mdm2 interaction controls Mdm2 nuclear trafficking and is required for p53 activation following DNA damage. Cancer Cell 21, 25–35. PubMed
Gandin V., Sikstrom K., Alain T., et al. . (2014). Polysome fractionation and analysis of mammalian translatomes on a genome-wide scale. J. Vis. Exp. 87, e51455. PubMed PMC
Gannon H.S., Woda B.A., and Jones S.N. (2012). ATM phosphorylation of Mdm2 Ser394 regulates the amplitude and duration of the DNA damage response in mice. Cancer Cell 21, 668–679. PubMed PMC
Gartner J.J., Parker S.C., Prickett T.D., et al. . (2013). Whole-genome sequencing identifies a recurrent functional synonymous mutation in melanoma. Proc. Natl Acad. Sci. USA 110, 13481–13486. PubMed PMC
Grover R., Candeias M.M., Fahraeus R., et al. . (2009). p53 and little brother p53/47: linking IRES activities with protein functions. Oncogene 28, 2766–2772. PubMed
Gullberg M., Goransson C., and Fredriksson S. (2011). Duolink-‘In-cell Co-IP’ for visualization of protein interactions in situ. Nat. Methods. 8, 982.
Guo H., Ingolia N.T., Weissman J.S., et al. . (2010). Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466, 835–840. PubMed PMC
Haupt Y., Maya R., Kazaz A., et al. . (1997). Mdm2 promotes the rapid degradation of p53. Nature 387, 296–299. PubMed
Hickson I., Zhao Y., Richardson C.J., et al. . (2004). Identification and characterization of a novel and specific inhibitor of the ataxia-telangiectasia mutated kinase ATM. Cancer Res. 64, 9152–9159. PubMed
Hosp F., Vossfeldt H., Heinig M., et al. . (2015). Quantitative interaction proteomics of neurodegenerative disease proteins. Cell Rep. 11, 1134–1146. PubMed PMC
Joerger A.C., and Fersht A.R. (2010). The tumor suppressor p53: from structures to drug discovery. Cold Spring Harb. Perspect. Biol. 2, a000919. PubMed PMC
Kannan S., Lane D.P., and Verma C.S. (2016). Long range recognition and selection in IDPs: the interactions of the C-terminus of p53. Sci. Rep. 6, 23750. PubMed PMC
Karakostis K., Ponnuswamy A., Fusee L.T., et al. . (2016). p53 mRNA and p53 protein structures have evolved independently to interact with MDM2. Mol. Biol. Evol. 33, 1280–1292. PubMed
Kimchi-Sarfaty C., Oh J.M., Kim I.W., et al. . (2007). A ‘silent’ polymorphism in the MDR1 gene changes substrate specificity. Science 315, 525–528. PubMed
Komatsu K., Matsuura S., Tauchi H., et al. . (1996). The gene for Nijmegen breakage syndrome (V2) is not located on chromosome 11. Am. J. Hum. Genet. 58, 885–888. PubMed PMC
Koos B., Andersson L., Clausson C.M., et al. . (2014). Analysis of protein interactions in situ by proximity ligation assays. Curr. Top. Microbiol. Immunol. 377, 111–126. PubMed
Kubbutat M.H., Jones S.N., and Vousden K.H. (1997). Regulation of p53 stability by Mdm2. Nature 387, 299–303. PubMed
Kubbutat M.H., Ludwig R.L., Levine A.J., et al. . (1999). Analysis of the degradation function of Mdm2. Cell Growth Differ. 10, 87–92. PubMed
Lambert P.F., Kashanchi F., Radonovich M.F., et al. . (1998). Phosphorylation of p53 serine 15 increases interaction with CBP. J. Biol. Chem. 273, 33048–33053. PubMed
Lee H.J., Lan L., Peng G., et al. . (2015). Tyrosine 370 phosphorylation of ATM positively regulates DNA damage response. Cell Res. 25, 225–236. PubMed PMC
Lindstrom M.S., Deisenroth C., and Zhang Y. (2007. a). Putting a finger on growth surveillance: insight into MDM2 zinc finger-ribosomal protein interactions. Cell Cycle 6, 434–437. PubMed
Lindstrom M.S., Jin A., Deisenroth C., et al. . (2007. b). Cancer-associated mutations in the MDM2 zinc finger domain disrupt ribosomal protein interaction and attenuate MDM2-induced p53 degradation. Mol. Cell. Biol. 27, 1056–1068. PubMed PMC
Lopez I., Tournillon A.S., Prado Martins R., et al. . (2017). p53-mediated suppression of BiP triggers BIK-induced apoptosis during prolonged endoplasmic reticulum stress. Cell Death Differ. 24, 1717–1729. PubMed PMC
Loughery J., Cox M., Smith L.M., et al. . (2014). Critical role for p53-serine 15 phosphorylation in stimulating transactivation at p53-responsive promoters. Nucleic Acids Res. 42, 7666–7680. PubMed PMC
MacLaine N.J., and Hupp T.R. (2011). How phosphorylation controls p53. Cell Cycle 10, 916–921. PubMed
Malbert-Colas L., Ponnuswamy A., Olivares-Illana V., et al. . (2014). HDMX folds the nascent p53 mRNA following activation by the ATM kinase. Mol. Cell 54, 500–511. PubMed
Marechal A., and Zou L. (2013). DNA damage sensing by the ATM and ATR kinases. Cold Spring Harbor Perspect. Biol. 5, a012716. PubMed PMC
Marine J.C., Dyer M.A., and Jochemsen A.G. (2007). MDMX: from bench to bedside. J. Cell Sci. 120, 371–378. PubMed
Marine J.C., and Lozano G. (2010). Mdm2-mediated ubiquitylation: p53 and beyond. Cell Death Differ. 17, 93–102. PubMed
Matsuura S., Weemaes C., Smeets D., et al. . (1997). Genetic mapping using microcell-mediated chromosome transfer suggests a locus for Nijmegen breakage syndrome at chromosome 8q21-24. Am. J. Hum. Genet. 60, 1487–1494. PubMed PMC
Maya R., Balass M., Kim S.T., et al. . (2001). ATM-dependent phosphorylation of Mdm2 on serine 395: role in p53 activation by DNA damage. Genes Dev. 15, 1067–1077. PubMed PMC
Medina-Medina I., Garcia-Beltran P., de la Mora-de la Mora I., et al. . (2016). Allosteric interactions by p53 mRNA govern HDM2 E3 ubiquitin ligase specificity under different conditions. Mol. Cell. Biol. 36, 2195–2205. PubMed PMC
Meek D.W. (2009). Tumour suppression by p53: a role for the DNA damage response? Nat. Rev. Cancer 9, 714–723. PubMed
Meek D.W., and Anderson C.W. (2009). Posttranslational modification of p53: cooperative integrators of function. Cold Spring Harbor Perspect. Biol. 1, a000950. PubMed PMC
Morgan S.E., and Kastan M.B. (1997). p53 and ATM: cell cycle, cell death, and cancer. Adv. Cancer Res. 71, 1–25. PubMed
Naski N., Gajjar M., Bourougaa K., et al. . (2009). The p53 mRNA–Mdm2 interaction. Cell Cycle 8, 31–34. PubMed
Ofir-Rosenfeld Y., Boggs K., Michael D., et al. . (2008). Mdm2 regulates p53 mRNA translation through inhibitory interactions with ribosomal protein L26. Mol. Cell 32, 180–189. PubMed PMC
Pant V., Xiong S., Jackson J.G., et al. . (2013). The p53-Mdm2 feedback loop protects against DNA damage by inhibiting p53 activity but is dispensable for p53 stability, development, and longevity. Genes Dev. 27, 1857–1867. PubMed PMC
Pereg Y., Shkedy D., de Graaf P., et al. . (2005). Phosphorylation of Hdmx mediates its Hdm2- and ATM-dependent degradation in response to DNA damage. Proc. Natl Acad. Sci. USA 102, 5056–5061. PubMed PMC
Ren J., Wen L., Gao X., et al. . (2009). DOG 1.0: illustrator of protein domain structures. Cell Res. 19, 271–273. PubMed
Saito S., Yamaguchi H., Higashimoto Y., et al. . (2003). Phosphorylation site interdependence of human p53 post-translational modifications in response to stress. J. Biol. Chem. 278, 37536–37544. PubMed
Sauna Z.E., and Kimchi-Sarfaty C. (2011). Understanding the contribution of synonymous mutations to human disease. Nat. Rev. Genet. 12, 683–691. PubMed
Schwanhausser B., Busse D., Li N., et al. . (2011). Global quantification of mammalian gene expression control. Nature 473, 337–342. PubMed
Scott S.P., Bendix R., Chen P., et al. . (2002). Missense mutations but not allelic variants alter the function of ATM by dominant interference in patients with breast cancer. Proc. Natl Acad. Sci. USA 99, 925–930. PubMed PMC
Soderberg O., Gullberg M., Jarvius M., et al. . (2006). Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat. Methods 3, 995–1000. PubMed
Stracker T.H., Roig I., Knobel P.A., et al. . (2013). The ATM signaling network in development and disease. Front. Genet. 4, 37. PubMed PMC
Supek F., Minana B., Valcarcel J., et al. . (2014). Synonymous mutations frequently act as driver mutations in human cancers. Cell 156, 1324–1335. PubMed
Takagi M., Tsuchida R., Oguchi K., et al. . (2004). Identification and characterization of polymorphic variations of the ataxia telangiectasia mutated (ATM) gene in childhood Hodgkin disease. Blood 103, 283–290. PubMed
Teufel D.P., Bycroft M., and Fersht A.R. (2009). Regulation by phosphorylation of the relative affinities of the N-terminal transactivation domains of p53 for p300 domains and Mdm2. Oncogene 28, 2112–2118. PubMed PMC
Tompa P. (2002). Intrinsically unstructured proteins. Trends Biochem. Sci. 27, 527–533. PubMed
Tompa P. (2005). The interplay between structure and function in intrinsically unstructured proteins. FEBS Lett. 579, 3346–3354. PubMed
Tournillon A.S., Lopez I., Malbert-Colas L., et al. . (2016). p53 binds the mdmx mRNA and controls its translation. Oncogene 36, 723–730. PubMed
Uversky V.N. (2016). p53 proteoforms and intrinsic disorder: an illustration of the protein structure-function continuum concept. Int. J. Mol. Sci. 17, 1874. PubMed PMC
Weibrecht I., Lundin E., Kiflemariam S., et al. . (2013). In situ detection of individual mRNA molecules and protein complexes or post-translational modifications using padlock probes combined with the in situ proximity ligation assay. Nat. Protoc. 8, 355–372. PubMed
Wright P.E., and Dyson H.J. (2009). Linking folding and binding. Curr. Opin. Struct. Biol. 19, 31–38. PubMed PMC
Yang D.Q., Halaby M.J., and Zhang Y. (2006). The identification of an internal ribosomal entry site in the 5′-untranslated region of p53 mRNA provides a novel mechanism for the regulation of its translation following DNA damage. Oncogene 25, 4613–4619. PubMed
Zhang Q., Xiao H., Chai S.C., et al. . (2011). Hydrophilic residues are crucial for ribosomal protein L11 (RPL11) interaction with zinc finger domain of MDM2 and p53 protein activation. J. Biol. Chem. 286, 38264–38274. PubMed PMC
Zhou X., Liao J.M., Liao W.J., et al. . (2012). Scission of the p53-MDM2 loop by ribosomal proteins. Genes Cancer 3, 298–310. PubMed PMC
The Elephant Evolved p53 Isoforms that Escape MDM2-Mediated Repression and Cancer
p53 mRNA Metabolism Links with the DNA Damage Response
Molecular and Biochemical Techniques for Deciphering p53-MDM2 Regulatory Mechanisms
MDM2's dual mRNA binding domains co-ordinate its oncogenic and tumour suppressor activities
Alternative Mechanisms of p53 Action During the Unfolded Protein Response
Shaping the regulation of the p53 mRNA tumour suppressor: the co-evolution of genetic signatures
The p53 mRNA: an integral part of the cellular stress response