Insights into the Structure of the Spruce Budworm (Choristoneura fumiferana) Genome, as Revealed by Molecular Cytogenetic Analyses and a High-Density Linkage Map
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29950429
PubMed Central
PMC6071596
DOI
10.1534/g3.118.200263
PII: g3.118.200263
Knihovny.cz E-zdroje
- Klíčová slova
- Choristoneura fumiferana, genotyping-by-sequencing, karyotype, linkage map, neo-Z chromosome,
- MeSH
- chromozomy hmyzu genetika MeSH
- genetická vazba * MeSH
- genom hmyzu * MeSH
- hmyzí proteiny genetika MeSH
- jednonukleotidový polymorfismus MeSH
- Lepidoptera genetika MeSH
- protein spojený s mnohočetnou rezistencí k lékům 2 MeSH
- proteiny spojené s mnohočetnou rezistencí k lékům genetika MeSH
- rezistence k insekticidům MeSH
- syntenie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- hmyzí proteiny MeSH
- protein spojený s mnohočetnou rezistencí k lékům 2 MeSH
- proteiny spojené s mnohočetnou rezistencí k lékům MeSH
Genome structure characterization can contribute to a better understanding of processes such as adaptation, speciation, and karyotype evolution, and can provide useful information for refining genome assemblies. We studied the genome of an important North American boreal forest pest, the spruce budworm, Choristoneura fumiferana, through a combination of molecular cytogenetic analyses and construction of a high-density linkage map based on single nucleotide polymorphism (SNP) markers obtained through a genotyping-by-sequencing (GBS) approach. Cytogenetic analyses using fluorescence in situ hybridization methods confirmed the haploid chromosome number of n = 30 in both sexes of C. fumiferana and showed, for the first time, that this species has a WZ/ZZ sex chromosome system. Synteny analysis based on a comparison of the Bombyx mori genome and the C. fumiferana linkage map revealed the presence of a neo-Z chromosome in the latter species, as previously reported for other tortricid moths. In this neo-Z chromosome, we detected an ABC transporter C2 (ABCC2) gene that has been associated with insecticide resistance. Sex-linkage of the ABCC2 gene provides a genomic context favorable to selection and rapid spread of resistance against Bacillus thuringiensis serotype kurstaki (Btk), the main insecticide used in Canada to control spruce budworm populations. Ultimately, the linkage map we developed, which comprises 3586 SNP markers distributed over 30 linkage groups for a total length of 1720.41 cM, will be a valuable tool for refining our draft assembly of the spruce budworm genome.
Institut de Biologie Intégrative et des Systèmes Université Laval Quebec City Quebec Canada G1V 0A6
Laurentian Forestry Centre Natural Resources Canada Quebec City Quebec Canada G1V 4C7
Zobrazit více v PubMed
Abe H., Mita K., Yasukochi Y., Oshiki T., Shimada T., 2005. Retrotransposable elements on the W chromosome of the silkworm, Bombyx mori. Cytogenet. Genome Res. 110: 144–151. 10.1159/000084946 PubMed DOI
Ahola V., Lehtonen R., Somervuo P., Salmela L., Koskinen P., et al. , 2014. The Glanville fritillary genome retains an ancient karyotype and reveals selective chromosomal fusions in Lepidoptera. Nat. Commun. 5: 4737 10.1038/ncomms5737 PubMed DOI PMC
Andrews S., 2016. FastQC A quality control tool for high throughput sequence data. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
Atsumi S., Miyamoto K., Yamamoto K., Narukawa J., Kawai S., et al. , 2012. Single amino acid mutation in an ATP-binding cassette transporter gene causes resistance to Bt toxin Cry1Ab in the silkworm, Bombyx mori. Proc. Natl. Acad. Sci. USA 109: E1591–E1598. 10.1073/pnas.1120698109 PubMed DOI PMC
Bachtrog D., Jensen J. D., Zhang Z., 2009. Accelerated adaptive evolution on a newly formed X chromosome. PLoS Biol. 7: e1000082 10.1371/journal.pbio.1000082 PubMed DOI PMC
Baxter S. W., Davey J. W., Johnston J. S., Shelton A. M., Heckel D. G., et al. , 2011. Linkage mapping and comparative genomics using next-generation RAD sequencing of a non-model organism. PLoS One 6: e19315 10.1371/journal.pone.0019315 PubMed DOI PMC
Beldade P., Saenko S. V., Pul N., Long A. D., 2009. A gene-based linkage map for Bicyclus anynana butterflies allows for a comprehensive analysis of synteny with the lepidopteran reference genome. PLoS Genet. 5: e1000366 10.1371/journal.pgen.1000366 PubMed DOI PMC
Blackmon H., Ross L., Bachtrog D., 2017. Sex determination, sex chromosomes, and karyotype evolution in insects. J. Hered. 108: 78–93. 10.1093/jhered/esw047 PubMed DOI PMC
Boulanger Y., Arseneault D., Morin H., Jardon Y., Bertrand P., et al. , 2012. Dendrochronological reconstruction of spruce budworm (Choristoneura fumiferana) outbreaks in southern Quebec for the last 400 years. Can. J. For. Res. 42: 1264–1276. 10.1139/x2012-069 DOI
Brakefield P. M., Pijpe J., Zwaan B. J., 2007. Developmental plasticity and acclimation both contribute to adaptive responses to alternating seasons of plenty and of stress in Bicyclus butterflies. J. Biosci. 32: 465–475. 10.1007/s12038-007-0046-8 PubMed DOI
Brown K. S., Jr, Von Schoultz B., Suomalainen E., 2004. Chromosome evolution in Neotropical Danainae and Ithomiinae (Lepidoptera). Hereditas 141: 216–236. 10.1111/j.1601-5223.2004.01868.x PubMed DOI
Brunet, B. T. M., 2014 Genomic analysis of hybridization between the spruce budworm species Choristoneura fumiferana, C. occidentalis, and C. biennis (Lepidoptera: Tortricidae). PhD thesis, University of Alberta, Edmonton, AB, Canada.
Brunet B. M. T., Blackburn G. S., Muirhead K., Lumley L. M., Boyle B., et al. , 2017. Two’s company, three’s a crowd: new insights on spruce budworm species boundaries using genotyping-by-sequencing in an integrative species assessment (Lepidoptera: Tortricidae). Syst. Entomol. 42: 317–328. 10.1111/syen.12211 DOI
Bush G. L., 1966. Female heterogamety in the family Tephritidae (Acalyptratae, Diptera). Am. Nat. 100: 119–126. 10.1086/282405 DOI
Cartwright D. A., Troggio M., Velasco R., Gutin A., 2007. Genetic mapping in the presence of genotyping errors. Genetics 176: 2521–2527. 10.1534/genetics.106.063982 PubMed DOI PMC
Charlesworth B., Coyne J. A., Barton N. H., 1987. The relative rates of evolution of sex chromosomes and autosomes. Am. Nat. 130: 113–146. 10.1086/284701 DOI
Chen N., Van Hout C. V., Gottipati S., Clark A. G., 2014. Using Mendelian inheritance to improve high-throughput SNP discovery. Genetics 198: 847–857. 10.1534/genetics.114.169052 PubMed DOI PMC
Cheng T., Wu J., Wu Y., Chilukuri R. V., Huang L., et al. , 2017. Genomic adaptation to polyphagy and insecticides in a major East Asian noctuid pest. Nat. Ecol. Evol. 1: 1747–1756. 10.1038/s41559-017-0314-4 PubMed DOI
Dalíková M., Zrzavá M., Hladová I., Nguyen P., Šonský I., et al. , 2017. New insights into the evolution of the W chromosome in Lepidoptera. J. Hered. 108: 709–719. 10.1093/jhered/esx063 PubMed DOI
Danecek P., Auton A., Abecasis G., Albers C. A., Banks E., et al. , 2011. The variant call format and VCFtools. Bioinformatics 27: 2156–2158. 10.1093/bioinformatics/btr330 PubMed DOI PMC
Darrington M., Dalmay T., Morrison N. I., Chapman T., 2017. Implementing the sterile insect technique with RNA interference – a review. Entomol. Exp. Appl. 164: 155–175. 10.1111/eea.12575 PubMed DOI PMC
Davey J. W., Chouteau M., Barker S. L., Maroja L., Baxter S. W., et al. , 2016. Major improvements to the Heliconius melpomene genome assembly used to confirm 10 chromosome fusion events in 6 million years of butterfly evolution. G3 (Bethesda)6: 695–708. 10.1534/g3.115.023655 PubMed DOI PMC
Dupuis J. R., Brunet B. M. T., Bird H. M., Lumley L. M., Fagua G., et al. , 2017. Genome-wide SNPs resolve phylogenetic relationships in the North American spruce budworm (Choristoneura fumiferana) species complex. Mol. Phylogenet. Evol. 111: 158–168. 10.1016/j.ympev.2017.04.001 PubMed DOI
Dopman E. B., Bogdanowicz S. M., Harrison R. G., 2004. Genetic mapping of sexual isolation between E and Z pheromone strains of the European corn borer (Ostrinia nubilalis). Genetics 167: 301–309. 10.1534/genetics.167.1.301 PubMed DOI PMC
Ennis T. J., 1976. Sex chromatin and chromosome numbers in Lepidoptera. Can. J. Genet. Cytol. J. Can. Genet. Cytol. 18: 119–130. 10.1139/g76-017 PubMed DOI
van Frankenhuyzen K., 2013. Cross-order and cross-phylum activity of Bacillus thuringiensis pesticidal protein. J. Invertebr. Pathol. 114: 76–85. 10.1016/j.jip.2013.05.010 PubMed DOI
van Frankenhuyzen K., Nystrom C. W., Tabashnik B. E., 1995. Variation in tolerance to Bacillus thuringiensis among and within populations of the spruce budworm (Lepidoptera: Tortricidae) in Ontario. J. Econ. Entomol. 88: 97–105. 10.1093/jee/88.1.97 PubMed DOI
Fujii T., Shimada T., 2007. Sex determination in the silkworm, Bombyx mori: A female determinant on the W chromosome and the sex-determining gene cascade. Semin. Cell Dev. Biol. 18: 379–388. 10.1016/j.semcdb.2007.02.008 PubMed DOI
Fuková I., Nguyen P., Marec F., 2005. Codling moth cytogenetics: karyotype, chromosomal location of rDNA, and molecular differentiation of sex chromosomes. Genome 48: 1083–1092. 10.1139/g05-063 PubMed DOI
Fuková I., Traut W., Vítková M., Nguyen P., Kubíčková S., et al. , 2007. Probing the W chromosome of the codling moth, Cydia pomonella, with sequences from microdissected sex chromatin. Chromosoma 116: 135–145. 10.1007/s00412-006-0086-0 PubMed DOI
Gu Z., Gu L., Eils R., Schlesner M., Brors B., 2014. circlize implements and enhances circular visualization in R. Bioinformatics 30: 2811–2812. 10.1093/bioinformatics/btu393 PubMed DOI
Hackett C. A., Broadfoot L. B., 2003. Effects of genotyping errors, missing values and segregation distortion in molecular marker data on the construction of linkage maps. Heredity 90: 33–38. 10.1038/sj.hdy.6800173 PubMed DOI
Harvey G. T., 1997. Interspecific crosses and fertile hybrids among the coniferophagous Choristoneura (Lepidoptera: Tortricidae). Can. Entomol. 129: 519–536. 10.4039/Ent129519-3 DOI
Heckel D. G., Gahan L. J., Liu Y.-B., Tabashnik B. E., 1999. Genetic mapping of resistance to Bacillus thuringiensis toxins in diamondback moth using biphasic linkage analysis. Proc. Natl. Acad. Sci. USA 96: 8373–8377. 10.1073/pnas.96.15.8373 PubMed DOI PMC
Jardon Y., Morin H., Dutilleul P., 2003. Périodicité et synchronisme des épidémies de la tordeuse des bourgeons de l’épinette au Québec. Can. J. For. Res. 33: 1947–1961. 10.1139/x03-108 DOI
Jiggins C. D., Mavarez J., Beltrán M., McMillan W. O., Johnston J. S., et al. , 2005. A genetic linkage map of the mimetic butterfly Heliconius melpomene. Genetics 171: 557–570. 10.1534/genetics.104.034686 PubMed DOI PMC
Kapan D. D., Flanagan N. S., Tobler A., Papa R., Reed R. D., et al. , 2006. Localization of Müllerian mimicry genes on a dense linkage map of Heliconius erato. Genetics 173: 735–757. 10.1534/genetics.106.057166 PubMed DOI PMC
Kiuchi T., Koga H., Kawamoto M., Shoji K., Sakai H., et al. , 2014. A single female-specific piRNA is the primary determiner of sex in the silkworm. Nature 509: 633–636. 10.1038/nature13315 PubMed DOI
Kristensen N. P., Scoble M. J., Karsholt O., 2007. Lepidoptera phylogeny and systematics: the state of inventorying moth and butterfly diversity. Zootaxa 1668: 699–747.
Lammermann K., Vogel H., Traut W., 2016. The mitochondrial genome of the Mediterranean flour moth, Ephestia kuehniella (Lepidoptera: Pyralidae), and identification of invading mitochondrial sequences (numts) in the W chromosome. Eur. J. Entomol. 113: 482–488. 10.14411/eje.2016.063 DOI
Li H., Durbin R., 2009. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25: 1754–1760. 10.1093/bioinformatics/btp324 PubMed DOI PMC
Li X., Fan D., Zhang W., Liu G., Zhang L., et al. , 2015. Outbred genome sequencing and CRISPR/Cas9 gene editing in butterflies. Nat. Commun. 6: 8212 10.1038/ncomms9212 PubMed DOI PMC
Lu F., Lipka A. E., Glaubitz J., Elshire R., Cherney J. H., et al. , 2013. Switchgrass genomic diversity, ploidy, and evolution: novel insights from a network-based SNP discovery protocol. PLoS Genet. 9: e1003215 10.1371/journal.pgen.1003215 PubMed DOI PMC
Lukhtanov V. A., 2000. Sex chromatin and sex chromosome systems in nonditrysian Lepidoptera (Insecta). J. Zoological Syst. Evol. Res. 38: 73–79. 10.1046/j.1439-0469.2000.382130.x DOI
Lukhtanov V. A., 2015. The blue butterfly Polyommatus (Plebicula) atlanticus (Lepidoptera, Lycaenidae) holds the record of the highest number of chromosomes in the non-polyploid eukaryotic organisms. Comp. Cytogenet. 9: 683–690. 10.3897/CompCytogen.v9i4.5760 PubMed DOI PMC
Lumley L., Sperling F. A. H., 2011. Utility of microsatellites and mitochondrial DNA for species delimitation in the spruce budworm (Choristoneura fumiferana) species complex (Lepidoptera: Tortricidae). Mol. Phylogenet. Evol. 58: 232–243. 10.1016/j.ympev.2010.11.023 PubMed DOI
MacLean D. A., 2016. Impacts of insect outbreaks on tree mortality, productivity, and stand development. Can. Entomol. 148: S138–S159. 10.4039/tce.2015.24 DOI
MacLean D. A., 1985. Effects of spruce budworm outbreaks on forest growth and yield, pp. 148–175 in Recent Advances in Spruce Budworms Research, edited by Sanders C. J., Stark R. W., Mullins E. J., Murphy J. Canadian Forest Service, Ottawa, Ontario.
Marec F., Neven L. G., Robinson A. S., Vreysen M., Goldsmith M. R., et al. , 2005. Development of genetic sexing strains in Lepidoptera: from traditional to transgenic approaches. J. Econ. Entomol. 98: 248–259. 10.1093/jee/98.2.248 PubMed DOI
Marec F., Sahara K., Traut W., 2010. Rise and fall of the W chromosome in Lepidoptera, pp. 49–63 in Molecular Biology and Genetics of the Lepidoptera, edited by Goldsmith M., Marec F. Taylor & Francis, Boca Raton.
Mascher M., Wu S., Amand P. S., Stein N., Poland J., 2013. Application of genotyping-by-sequencing on semiconductor sequencing platforms: a comparison of genetic and reference-based marker ordering in barley. PLoS One 8: e76925 10.1371/journal.pone.0076925 PubMed DOI PMC
Mediouni J., Fuková I., Frydrychová R., Dhouibi M. H., Marec F., 2004. Karyotype, sex chromatin and sex chromosome differentiation in the carob moth, Ectomyelois ceratoniae (Lepidoptera: Pyralidae). Caryologia 57: 184–194. 10.1080/00087114.2004.10589391 DOI
Miao X.-X., Xub S.-J., Li M.-H., Li M.-W., Huang J.-H., et al. , 2005. Simple sequence repeat-based consensus linkage map of Bombyx mori. Proc. Natl. Acad. Sci. USA 102: 16303–16308. 10.1073/pnas.0507794102 PubMed DOI PMC
Ministère des forêts, de la Faune et des Parcs, 2017 Aires infestées par la tordeuse des bourgeons de l’épinette qu Québec en 2017 - Version 1.0: Gouvernement du Québec, Direction de la protection des forêts.
Mongue A. J., Nguyen P., Voleníková A., Walters J. R., 2017. Neo-sex chromosomes in the monarch butterfly, Danaus plexippus G3 (Bethesda)7: 3281–3294. 10.1534/g3.117.300187 PubMed DOI PMC
Nguyen P., Sýkorová M., Šíchová J., Kůta V., Dalíková M., et al. , 2013. Neo-sex chromosomes and adaptive potential in tortricid pests. Proc. Natl. Acad. Sci. USA 110: 6931–6936. 10.1073/pnas.1220372110 PubMed DOI PMC
van Nieukerken E. J., Kaila L., Kitching I. J., Kristensen N. P., Lees D., et al. , 2011. Order Lepidoptera Linnaeus, 1758. Zootaxa 3148: 212–221.
Nokkala S., 1987. Cytological characteristics of chromosome behaviour during female meiosis in Sphinx ligustri L. (Sphingidae, Lepidoptera). Hereditas 106: 169–179. 10.1111/j.1601-5223.1987.tb00250.x DOI
Orr H. A., 2010. The population genetics of beneficial mutations. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365: 1195–1201. 10.1098/rstb.2009.0282 PubMed DOI PMC
Park Y., González-Martínez R. M., Navarro-Cerrillo G., Chakroun M., Kim Y., et al. , 2014. ABCC transporters mediate insect resistance to multiple Bt toxins revealed by bulk segregant analysis. BMC Biol. 12: 46 10.1186/1741-7007-12-46 PubMed DOI PMC
Picq S., Keena M., Havill N., Stewart D., Pouliot E., et al. , 2018. Assessing the potential of genotyping-by-sequencing-derived single nucleotide polymorphisms to identify the geographic origins of intercepted gypsy moth (Lymantria dispar) specimens: A proof-of-concept study. Evol. Appl. 11: 325–339. 10.1111/eva.12559 DOI
Pringle E. G., Baxter S. W., Webster C. L., Papanicolaou A., Lee S. F., et al. , 2007. Synteny and chromosome evolution in the Lepidoptera: evidence from mapping in Heliconius melpomene. Genetics 177: 417–426. 10.1534/genetics.107.073122 PubMed DOI PMC
De Prins J., Saitoh K., 2003. 17. Karyology and sex determination, Lepidoptera, Moths and Butterflies: Morphology, Physiology, and Development, edited by Kristensen N. P., Walter de Guyter, Berlin: 10.1515/9783110893724.449 DOI
Pureswaran D. S., Johns R., Heard S. B., Quiring D., 2016. Paradigms in eastern spruce budworm (Lepidoptera: Tortricidae) population ecology: A century of debate. Environ. Entomol. 45: 1333–1342. 10.1093/ee/nvw103 PubMed DOI
Rastas P., 2017. Lep-MAP3: robust linkage mapping even for low-coverage whole genome sequencing data. Bioinformatics 33: 3726–3732. 10.1093/bioinformatics/btx494 PubMed DOI
Rastas P., Paulin L., Hanski I., Lehtonen R., Auvinen P., 2013. Lep-MAP: fast and accurate linkage map construction for large SNP datasets. Bioinformatics 29: 3128–3134. 10.1093/bioinformatics/btt563 PubMed DOI PMC
Rimmer A., Phan H., Mathieson I., Iqbal Z., Twigg S. R. F., et al. , 2014. Integrating mapping-, assembly- and haplotype-based approaches for calling variants in clinical sequencing applications. Nat. Genet. 46: 912–918. 10.1038/ng.3036 PubMed DOI PMC
Robinson R., 1971. Lepidoptera Genetics, Pergamon Press, Oxford.
Roe A., Weller S., Baixeras J., Brown J. W., Cummings M. P., et al. , 2010. Evolutionary framework for Lepidoptera model systems, Molecular Biology and Genetics of the Lepidoptera, edited by Goldsmith M., Marec F. Taylor & Francis, Boca Raton.
Sahara K., Marec F., Traut W., 1999. TTAGG telomeric repeats in chromosomes of some insects and other arthropods. Chromosome Res. 7: 449–460. 10.1023/A:1009297729547 PubMed DOI
Sahara K., Yoshido A., Traut W., 2012. Sex chromosome evolution in moths and butterflies. Chromosome Res. 20: 83–94. 10.1007/s10577-011-9262-z PubMed DOI
Šíchová J., Nguyen P., Dalíková M., Marec F., 2013. Chromosomal evolution in tortricid moths: conserved karyotypes with diverged features. PLoS One 8: e64520 10.1371/journal.pone.0064520 PubMed DOI PMC
Šíchová J., Voleníková A., Dincă V., Nguyen P., Vila R., et al. , 2015. Dynamic karyotype evolution and unique sex determination systems in Leptidea wood white butterflies. BMC Evol. Biol. 15: 89 10.1186/s12862-015-0375-4 PubMed DOI PMC
Suomalainen E., 1969. Chromosome evolution in the Lepidoptera. Chromosomes Today 2: 132–138.
Suomalainen E., Cook L. M., Turner J. R. G., 1973. Achiasmatic oogenesis in the Heliconiine butterflies. Hereditas 74: 302–304. 10.1111/j.1601-5223.1973.tb01134.x DOI
The Heliconius Genome Consortium , 2012. Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature 487: 94–98. 10.1038/nature11041 PubMed DOI PMC
Tobler A., Kapan D., Flanagan N. S., Gonzalez C., Peterson E., et al. , 2004. First-generation linkage map of the warningly colored butterfly Heliconius erato. Heredity 94: 408–417. 10.1038/sj.hdy.6800619 PubMed DOI
Torkamaneh D., Laroche J., Bastien M., Abed A., Belzile F., 2017. Fast-GBS: a new pipeline for the efficient and highly accurate calling of SNPs from genotyping-by-sequencing data. BMC Bioinformatics 18: 5 10.1186/s12859-016-1431-9 PubMed DOI PMC
Traut W., 1977. A study of recombination, formation of chiasmata and synaptonemal complexes in female and male meiosis of Ephestia kuehniella (Lepidoptera). Genetica 47: 135–142. 10.1007/BF00120178 DOI
Traut W., Marec F., 1997. Sex chromosome and sex determination in some species of Lepidoptera (Insecta). Chromosome Res. 5: 283–291. 10.1023/B:CHRO.0000038758.08263.c3 PubMed DOI
Traut W., Sahara K., Marec F., 2007. Sex chromosomes and sex determination in Lepidoptera. Sex Dev. 1: 332–346. 10.1159/000111765 PubMed DOI
Traut W., Vogel H., Glöckner G., Hartmann E., Heckel D. G., 2013. High-throughput sequencing of a single chromosome: a moth W chromosome. Chromosome Res. 21: 491–505. 10.1007/s10577-013-9376-6 PubMed DOI
Turner J., Sheppard P., 1975. Absence of crossing-over in female butterflies (Heliconius). Heredity 34: 265–269. 10.1038/hdy.1975.29 PubMed DOI
Van Belleghem S. M., Rastas P., Papanicolaou A., Martin S. H., Arias C. F., et al. , 2017. Complex modular architecture around a simple toolkit of wing pattern genes. Nat. Ecol. Evol. 1: 52 10.1038/s41559-016-0052 PubMed DOI PMC
Van’t Hof A. E., Marec F., Saccheri I. J., Brakefield P. M., Zwaan B. J., 2008. Cytogenetic characterization and AFLP-based genetic linkage mapping for the butterfly Bicyclus anynana, covering all 28 karyotyped chromosomes. PLoS One 3: e3882 10.1371/journal.pone.0003882 PubMed DOI PMC
Van’t Hof A. E., Nguyen P., Dalíková M., Edmonds N., Marec F., et al. , 2013. Linkage map of the peppered moth, Biston betularia (Lepidoptera, Geometridae): a model of industrial melanism. Heredity 110: 283–295. 10.1038/hdy.2012.84 PubMed DOI PMC
Vítková M., Fuková I., Kubíčková S., Marec F., 2007. Molecular divergence of the W chromosomes in pyralid moths (Lepidoptera). Chromosome Res. 15: 917–930. 10.1007/s10577-007-1173-7 PubMed DOI
Wang B., Porter A. H., 2004. An AFLP-based interspecific linkage map of sympatric, hybridizing Colias butterflies. Genetics 168: 215–225. 10.1534/genetics.104.028118 PubMed DOI PMC
Whyard S., Erdelyan C. N., Partridge A. L., Singh A. D., Beebe N. W., et al. , 2015. Silencing the buzz: a new approach to population suppression of mosquitoes by feeding larvae double-stranded RNAs. Parasit. Vectors 8: 96 10.1186/s13071-015-0716-6 PubMed DOI PMC
Winnepenninckx B., Backeljau T., De Wachter R., 1993. Extraction of high molecular weight DNA from molluscs. Trends Genet. 9: 407 10.1016/0168-9525(93)90102-N PubMed DOI
Winter C. B., Porter A. H., 2010. AFLP linkage map of hybridizing swallowtail butterflies, Papilio glaucus and Papilio canadensis. J. Hered. 101: 83–90. 10.1093/jhered/esp067 PubMed DOI
Xiao Y., Zhang T., Liu C., Heckel D. G., Li X., et al. , 2014. Mis-splicing of the ABCC2 gene linked with Bt toxin resistance in Helicoverpa armigera. Sci. Rep. 4: 6184 10.1038/srep06184 PubMed DOI PMC
Yamamoto K., Nohata J., Kadono-Okuda K., Narukawa J., Sasanuma M., et al. , 2008. A BAC-based integrated linkage map of the silkworm Bombyx mori. Genome Biol. 9: R21 10.1186/gb-2008-9-1-r21 PubMed DOI PMC
Yasukochi Y., Ashakumary L. A., Baba K., Yoshido A., Sahara K., 2006. A second-generation integrated map of the silkworm reveals synteny and conserved gene order between lepidopteran insects. Genetics 173: 1319–1328. 10.1534/genetics.106.055541 PubMed DOI PMC
Yasukochi Y., Ohno M., Shibata F., Jouraku A., Nakano R., et al. , 2016. A FISH-based chromosome map for the European corn borer yields insights into ancient chromosomal fusions in the silkworm. Heredity 116: 75–83. 10.1038/hdy.2015.72 PubMed DOI PMC
Yasukochi Y., Tanaka-Okuyama M., Shibata F., Yoshido A., Marec F., et al. , 2009. Extensive conserved synteny of genes between the karyotypes of Manduca sexta and Bombyx mori revealed by BAC-FISH mapping. PLoS One 4: e7465 10.1371/journal.pone.0007465 PubMed DOI PMC
Yoshido A., Marec F., Sahara K., 2005. Resolution of sex chromosome constitution by genomic in situ hybridization and fluorescence in situ hybridization with (TTAGG)n telomeric probe in some species of Lepidoptera. Chromosoma 114: 193–202. 10.1007/s00412-005-0013-9 PubMed DOI
Yoshido A., Marec F., Sahara K., 2016. The fate of W chromosomes in hybrids between wild silkmoths, Samia cynthia ssp.: no role in sex determination and reproduction. Heredity 116: 424–433. 10.1038/hdy.2015.110 PubMed DOI PMC
Yoshido A., Yamada Y., Sahara K., 2006. The W chromosome detection in several lepidopteran species by genomic in situ hybridization (GISH). J. Insect Biotechnol. Sericology 75: 147–151.
Yoshido A., Yasukochi Y., Sahara K., 2011. Samia cynthia vs. Bombyx mori: Comparative gene mapping between a species with a low-number karyotype and the model species of Lepidoptera. Insect Biochem. Mol. Biol. 41: 370–377. 10.1016/j.ibmb.2011.02.005 PubMed DOI
You M., Yue Z., He W., Yang X., Yang G., et al. , 2013. A heterozygous moth genome provides insights into herbivory and detoxification. Nat. Genet. 45: 220–225. 10.1038/ng.2524 PubMed DOI
Large-scale comparative analysis of cytogenetic markers across Lepidoptera
Advances and Challenges of Using the Sterile Insect Technique for the Management of Pest Lepidoptera
Sex Chromosome Turnover in Moths of the Diverse Superfamily Gelechioidea