Advances and Challenges of Using the Sterile Insect Technique for the Management of Pest Lepidoptera

. 2019 Oct 25 ; 10 (11) : . [epub] 20191025

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid31731445

Grantová podpora
17-13713S Grantová Agentura České Republiky
23379 International Atomic Energy Agency

Over the past 30 years, the sterile insect technique (SIT) has become a regular component of area-wide integrated pest management (AW-IPM) programs against several major agricultural pests and vectors of severe diseases. The SIT-based programs have been especially successful against dipteran pests. However, the SIT applicability for controlling lepidopteran pests has been challenging, mainly due to their high resistance to the ionizing radiation that is used to induce sterility. Nevertheless, the results of extensive research and currently operating SIT programs show that most problems with the implementation of SIT against pest Lepidoptera have been successfully resolved. Here, we summarize the cytogenetic peculiarities of Lepidoptera that should be considered in the development and application of SIT for a particular pest species. We also discuss the high resistance of Lepidoptera to ionizing radiation, and present the principle of derived technology based on inherited sterility (IS). Furthermore, we present successful SIT/IS applications against five major lepidopteran pests, and summarize the results of research on the quality control of reared and released insects, which is of great importance for their field performance. In the light of new research findings, we also discuss options for the development of genetic sexing strains, which is a challenge to further improve the applicability of SIT/IS against selected lepidopteran pests.

Zobrazit více v PubMed

Klassen W. Area-wide integrated pest management and the sterile insect technique. In: Dyck V.A., Hendrichs J., Robinson A.S., editors. Sterile Insect Technique. Principles and Practice in Area-Wide Integrated Pest Management. Springer; Dordrecht, The Netherlands: 2005. pp. 39–68. DOI

Knipling E.F. The Basic Principles of Insect Suppression and Management. United States Department of Agriculture, Agricultural Research Service; Washington, DC, USA: 1979. Agricultural Handbook 512.

Krafsur E.S. Sterile insect technique for suppressing and eradicating insect populations: 55 years and counting. J. Agric. Entomol. 1998;15:303–317.

Vreysen M.J.B. Principles of area-wide integrated tsetse fly control using the sterile insect technique. Med. Trop. (Mars.) 2001;61:397–411. PubMed

Vreysen M.J.B., Robinson A.S. Ionising radiation and area-wide management of insect pests to promote sustainable agriculture. Agron. Sustain. Dev. 2011;31:233–250. doi: 10.1051/agro/2010009. DOI

Lees R.S., Gilles J.R.L., Hendrichs J., Vreysen M.J.B., Bourtzis K. Back to the future: The sterile insect technique against mosquito disease vectors. Curr. Opin. Insect Sci. 2015;10:156–162. doi: 10.1016/j.cois.2015.05.011. PubMed DOI

LaChance L.E. The induction of dominant lethal mutations in insects by ionizing radiation and chemicals—As related to the sterile-male technique of insect control. In: Wright J.W., Pal R., editors. Genetics of Insect Vectors of Disease. Elsevier; Amsterdam, The Netherlands: 1967. pp. 617–650.

LaChance L.E. Genetic Methods for the Control of Lepidopteran Species: Status and Potential. Volume ARS-28. United States Department of Agriculture, Agricultural Research Service; Washington, DC, USA: 1985. 44p. DOI

Proverbs M.D. Progress on the use of induced sexual sterility for the control of the codling moth Carpocapsa pomonella (L.) (Lepidoptera: Olethreutidae) Proc. Entomol. Soc. Ont. 1962;92:5–11.

North D.T. Inherited sterility in Lepidoptera. Annu. Rev. Entomol. 1975;20:167–182. doi: 10.1146/annurev.en.20.010175.001123. PubMed DOI

Carpenter J.E., Bloem S., Marec F. Inherited sterility in insects. In: Dyck V.A., Hendrichs J., Robinson A.S., editors. Sterile Insect Technique. Principles and Practice in Area-Wide Integrated Pest Management. Springer; Dordrecht, The Netherlands: 2005. pp. 115–146. DOI

Vreysen M.J.B., Carpenter J.E., Marec F. Improvement of the sterile insect technique for codling moth Cydia pomonella (Linnaeus) (Lepidoptera, Tortricidae) to facilitate expansion of field application. J. Appl. Entomol. 2010;134:165–181. doi: 10.1111/j.1439-0418.2009.01430.x. DOI

Vreysen M.J.B., Klassen W., Carpenter J.E. Overview of technological advances toward greater efficiency and efficacy in sterile insect-inherited sterility programs against moth pests. Fla. Entomol. 2016;99:1–12. doi: 10.1653/024.099.sp102. DOI

Fuková I., Traut W., Vítková M., Nguyen P., Kubíčková S., Marec F. Probing the W chromosome of the codling moth, Cydia pomonella, with sequences from microdissected sex chromatin. Chromosoma. 2007;116:135–145. doi: 10.1007/s00412-006-0086-0. PubMed DOI

Sahara K., Yoshido A., Shibata F., Fujikawa-Kojima N., Okabe T., Tanaka-Okuyama M., Yasukochi Y. FISH identification of Helicoverpa armigera and Mamestra brassicae chromosomes by BAC and fosmid probes. Insect Biochem. Mol. Biol. 2013;43:644–653. doi: 10.1016/j.ibmb.2013.04.003. PubMed DOI

Traut W., Sahara K., Marec F. Sex chromosomes and sex determination in Lepidoptera. Sex. Dev. 2007;1:332–346. doi: 10.1159/000111765. PubMed DOI

Marec F., Sahara K., Traut W. Rise and fall of the W chromosome in Lepidoptera. In: Goldsmith M.R., Marec F., editors. Molecular Biology and Genetics of the Lepidoptera. CRC Press; Boca Raton, FL, USA: 2010. pp. 49–63.

Sahara K., Yoshido A., Traut W. Sex chromosome evolution in moths and butterflies. Chromosome Res. 2012;20:83–94. doi: 10.1007/s10577-011-9262-z. PubMed DOI

Dalíková M., Zrzavá M., Hladová I., Nguyen P., Šonský I., Flegrová M., Kubíčková S., Voleníková A., Kawahara A.Y., Peters R.S., et al. New insights into the evolution of the W chromosome in Lepidoptera. J. Hered. 2017;108:709–719. doi: 10.1093/jhered/esx063. PubMed DOI

Yoshido A., Šíchová J., Kubíčková S., Marec F., Sahara K. Rapid turnover of the W chromosome in geographical populations of wild silkmoths, Samia cynthia ssp. Chromosome Res. 2013;21:149–164. doi: 10.1007/s10577-013-9344-1. PubMed DOI

Kost S., Heckel D.G., Yoshido A., Marec F., Groot A.T. A Z-linked sterility locus causes sexual abstinence in hybrid females and facilitates speciation in Spodoptera frugiperda. Evolution. 2016;70:1418–1427. doi: 10.1111/evo.12940. PubMed DOI

Yasukochi Y., Ohno M., Shibata F., Jouraku A., Nakano R., Ishikawa Y., Sahara K. A FISH-based chromosome map for the European corn borer yields insights into ancient chromosomal fusions in the silkworm. Heredity. 2016;116:75–83. doi: 10.1038/hdy.2015.72. PubMed DOI PMC

Nguyen P., Sýkorová M., Šíchová J., Kůta V., Dalíková M., Čapková Frydrychová R., Neven L.G., Sahara K., Marec F. Neo-sex chromosomes and adaptive potential in tortricid pests. Proc. Nat. Acad. Sci. USA. 2013;110:6931–6936. doi: 10.1073/pnas.1220372110. PubMed DOI PMC

Šíchová J., Nguyen P., Dalíková M., Marec F. Chromosomal evolution in tortricid moths: Conserved karyotypes with diverged features. PLoS ONE. 2013;8:e64520. doi: 10.1371/journal.pone.0064520. PubMed DOI PMC

Picq S., Lumley L., Šíchová J., Laroche J., Pouliot E., Brunet B., Levesque R.C., Sperling F.A.H., Marec F., Cusson M. Insights into the structure of the spruce budworm (Choristoneura fumiferana) genome, as revealed by molecular cytogenetic analyses and a high-density linkage map. G3 (Bethesda) 2018;8:2539–2549. doi: 10.1534/g3.118.200263. PubMed DOI PMC

Nokkala S. Cytological characteristics of chromosome behaviour during female meiosis in Sphinx ligustri L. (Sphingidae, Lepidoptera) Hereditas. 1987;106:169–179. doi: 10.1111/j.1601-5223.1987.tb00250.x. DOI

Marec F. Synaptonemal complexes in insects. Int. J. Insect Morphol. Embryol. 1996;25:205–233. doi: 10.1016/0020-7322(96)00009-8. DOI

Traut W. A study of recombination, formation of chiasmata and synaptonemal complexes in female and male meiosis of Ephestia kuehniella (Lepidoptera) Genetica. 1977;47:135–142. doi: 10.1007/BF00120178. DOI

Marec F., Traut W. Synaptonemal complexes in female and male meiotic prophase of Ephestia kuehniella (Lepidoptera) Heredity. 1993;71:394–404. doi: 10.1038/hdy.1993.154. DOI

Traut W., Marec F. Sex chromatin in Lepidoptera. Q. Rev. Biol. 1996;71:239–256. doi: 10.1086/419371. PubMed DOI

Buntrock L., Marec F., Krueger S., Traut W. Organ growth without cell division: Somatic polyploidy in a moth, Ephestia kuehniella. Genome. 2012;55:755–763. doi: 10.1139/g2012-060. PubMed DOI

Fuková I., Neven L.G., Bárcenas N.M., Gund N.A., Dalíková M., Marec F. Rapid assessment of the sex of codling moth Cydia pomonella (Linnaeus) (Lepidoptera: Tortricidae) eggs and larvae. J. Appl. Entomol. 2009;133:249–261. doi: 10.1111/j.1439-0418.2008.01352.x. DOI

Traut W., Vogel H., Glöckner G., Hartmann E., Heckel D.G. High-throughput sequencing of a single chromosome: A moth W chromosome. Chromosome Res. 2013;21:491–505. doi: 10.1007/s10577-013-9376-6. PubMed DOI

Murakami A., Imai H.T. Cytological evidence for holocentric chromosomes of the silkworms, Bombyx mori and B. mandarina, (Bombycidae, Lepidoptera) Chromosoma. 1974;47:167–178. doi: 10.1007/BF00331804. PubMed DOI

Wolf K.W. The structure of condensed chromosomes in mitosis and meiosis of insects. Int. J. Insect Morphol. Embryol. 1996;25:37–62. doi: 10.1016/0020-7322(95)00021-6. DOI

Melters D.P., Paliulis L.V., Korf I.F., Chan S.W.L. Holocentric chromosomes: Convergent evolution, meiotic adaptations, and genomic analysis. Chromosome Res. 2012;20:579–593. doi: 10.1007/s10577-012-9292-1. PubMed DOI

Robinson R. Lepidoptera Genetics. Pergamon Press; Oxford, UK: 1971.

Lukhtanov V.A. Sex chromatin and sex chromosome systems in nonditrysian Lepidoptera (Insecta) J. Zool. Syst. Evol. Res. 2000;38:73–79. doi: 10.1046/j.1439-0469.2000.382130.x. DOI

Baxter S.W., Davey J.W., Johnston J.S., Shelton A.M., Heckel D.G., Jiggins C.D., Blaxter M.L. Linkage mapping and comparative genomics using next-generation RAD sequencing of a non-model organism. PLoS ONE. 2011;6:e19315. doi: 10.1371/journal.pone.0019315. PubMed DOI PMC

Van’t Hof A.E., Nguyen P., Dalíková M., Edmonds N., Marec F., Saccheri I.J. Linkage map of the peppered moth, Biston betularia (Lepidoptera, Geometridae): A model of industrial melanism. Heredity. 2013;110:283–295. doi: 10.1038/hdy.2012.84. PubMed DOI PMC

Ahola V., Lehtonen R., Somervuo P., Salmela L., Koskinen P., Rastas P., Välimäki N., Paulin L., Kvist J., Wahlberg N., et al. The Glanville fritillary genome retains an ancient karyotype and reveals selective chromosomal fusions in Lepidoptera. Nat. Commun. 2014;5:4737. doi: 10.1038/ncomms5737. PubMed DOI PMC

Kandul N.P., Lukhtanov V.A., Pierce N.E. Karyotypic diversity and speciation in Agrodiaetus butterflies. Evolution. 2007;61:546–559. doi: 10.1111/j.1558-5646.2007.00046.x. PubMed DOI

Šíchová J., Ohno M., Dincă V., Watanabe M., Sahara K., Marec F. Fissions, fusions, and translocations shaped the karyotype and multiple sex chromosome constitution in the northeast-Asian wood white butterfly, Leptidea amurensis. Biol. J. Linn. Soc. 2016;118:457–471. doi: 10.1111/bij.12756. DOI

Mediouni J., Fuková I., Frydrychová R., Dhouibi M.H., Marec F. Karyotype, sex chromatin and sex chromosome differentiation in the carob moth, Ectomyelois ceratoniae (Lepidoptera: Pyralidae) Caryologia. 2004;57:184–194. doi: 10.1080/00087114.2004.10589391. DOI

Fuková I., Nguyen P., Marec F. Codling moth cytogenetics: Karyotype, chromosomal location of rDNA, and molecular differentiation of sex chromosomes. Genome. 2005;2005 48:1083–1092. doi: 10.1139/g05-063. PubMed DOI

D’Alençon E., Sezutsu H., Legea F., Permal E., Bernard-Samain S., Gimenez S., Gagneur C., Cousserans F., Shimomura M., Brun-Barale A., et al. Extensive synteny conservation of holocentric chromosomes in Lepidoptera despite high rates of local genome rearrangements. Proc. Nat. Acad. Sci. USA. 2010;107:7680–7685. doi: 10.1073/pnas.0910413107. PubMed DOI PMC

Friedländer M., Seth R.K., Reynolds S.E. Eupyrene and apyrene sperm: Dichotomous spermatogenesis in Lepidoptera. Adv. Insect Physiol. 2005;32:206–308. doi: 10.1016/S0065-2806(05)32003-0. DOI

Cook P.A., Wedell N. Ejaculate dynamics in butterflies: A strategy for maximizing fertilization success? Proc. R. Soc. Lond. B Biol. Sci. 1996;263:1047–1051. doi: 10.1098/rspb.1996.0154. DOI

Cook P.A. Sperm numbers and female fertility in the moth Plodia interpunctella (Hubner) (Lepidoptera; Pyralidae) J. Insect Behav. 1999;12:767–779. doi: 10.1023/A:1020952909933. DOI

Cook P.A., Wedell N. Non-fertile sperm delay female remating. Nature. 1999;397:486. doi: 10.1038/17257. DOI

Hiroki Sakai H., Oshima H., Yuri K., Gotoh H., Daimon T., Yaginuma T., Sahara K., Niimi T. Dimorphic sperm formation by Sex-lethal. Proc. Nat. Acad. Sci. USA. 2019;116:10412–10417. doi: 10.1073/pnas.1820101116. PubMed DOI PMC

LaChance L.E. Dominant lethal mutations in insects with holokinetic chromosomes. 2. Irradiation of sperm of cabbage looper. Ann. Entomol. Soc. Am. 1974;67:35–39. doi: 10.1093/aesa/67.1.35. DOI

Berg G.J., LaChance L.E. Dominant lethal mutations in insects with holokinetic chromosomes: Irradiation of pink bollworm sperm. Ann. Entomol. Soc. Am. 1976;69:971–976. doi: 10.1093/aesa/69.5.971. DOI

Marec F., Tothová A., Sahara K., Traut W. Meiotic pairing of sex chromosome fragments and its relation to atypical transmission of a sex-linked marker in Ephestia kuehniella (Insecta: Lepidoptera) Heredity. 2001;87:659–671. doi: 10.1046/j.1365-2540.2001.00958.x. PubMed DOI

LaChance L.E., Graham C.K. Insect radiosensitivity: Dose curves and dose-fractionation studies of dominant lethal mutations in the mature sperm of 4 insect species. Mutat. Res. 1984;127:49–59. doi: 10.1016/0027-5107(84)90139-8. PubMed DOI

Marec F., Kollárová I., Pavelka J. Radiation-induced inherited sterility combined with a genetic sexing system in Ephestia kuehniella (Lepidoptera: Pyralidae) Ann. Entomol. Soc. Am. 1999;92:250–259. doi: 10.1093/aesa/92.2.250. DOI

Bakri A., Metha K., Lance D.R. Sterilizing insects with ionizing radiation. In: Dyck V.A., Hendrichs J., Robinson A.S., editors. Sterile Insect Technique. Principles and Practice in Area-Wide Integrated Pest Management. Springer; Dordrecht, The Netherlands: 2005. pp. 233–268. DOI

Cladera J.L., Vilardi J.C., Juri M., Paulin L.E., Giardini M.C., Gómez Cendra P.V., Segura D.F., Lanzavecchia S.B. Genetics and biology of Anastrepha fraterculus: Research supporting the use of the sterile insect technique (SIT) to control this pest in Argentina. BMC Genet. 2014;15:S12. doi: 10.1186/1471-2156-15-S2-S12. PubMed DOI PMC

Koval T.M. Moths: Myths and mysteries of stress resistance. Bioessays. 1996;18:149–156. doi: 10.1002/bies.950180211. DOI

Chandna S., Dwarakanath B.S., Seth R.K., Khaitan D., Adhikari J.S., Jain V. Radiation responses of Sf9, a highly radioresistant lepidopteran insect cell line. Int. J. Radiat. Biol. 2004;80:301–315. doi: 10.1080/09553000410001679794. PubMed DOI

Suman S., Khan Z., Zarin M., Chandna S., Seth R.K. Radioresistant Sf9 insect cells display efficient antioxidant defence against high dose of γ-radiation. Int. J. Radiat. Biol. 2015;91:732–741. doi: 10.3109/09553002.2015.1054958. PubMed DOI

Sharma K., Kumar A., Chandna S. Constitutive hyperactivity of histone deacetylases enhances radioresistance in Lepidopteran Sf9 insect cells. Biochim. Biophys. Acta. 2016;1860:1237–1246. doi: 10.1016/j.bbagen.2016.03.004. PubMed DOI

Tothová A., Marec F. Chromosomal principle of radiation-induced F1 sterility in Ephestia kuehniella (Lepidoptera: Pyralidae) Genome. 2001;44:172–184. doi: 10.1139/g00-107. PubMed DOI

Anisimov A.I., Lazurkina N.V., Shvedov A.N. Influence of radiation-induced genetic damage on the suppressive effect of inherited sterility in the codling moth (Lepidoptera: Tortricidae) Ann. Entomol. Soc. Am. 1989;82:769–777. doi: 10.1093/aesa/82.6.769. DOI

Bloem S., Carpenter J.E., Hofmeyr J.H. Radiation biology and inherited sterility in false codling moth (Lepidoptera: Tortricidae) J. Econ. Entomol. 2003;96:1724–1731. doi: 10.1093/jee/96.6.1724. PubMed DOI

Astaurov B.I., Frolova S.L. Artificial mutations in the silkworm (Bombyx mori L.). V. Sterility and spermatogenic anomalies in the progeny of irradiated moths concerning some questions of general biological and mutagenic action of X-rays. Biologicheskii Zhurnal. 1935;4:861–894.

Ostriakova-Varshaver V.P. The bee moth, Galleria mellonella, as a new object for genetic investigations. II. Cytogenetic analysis of sterility initiated by X-rays in males. Biologicheskii Zhurnal. 1937;6:816–836.

Knipling E.F. Suppression of pest Lepidoptera by releasing partially sterile males: A theoretical appraisal. BioScience. 1970;20:456–470. doi: 10.2307/1295155. DOI

Carabajal Paladino L.Z., Ferrari M.E., Lauría J.P., Cagnotti C.L., Šíchová J., López S.N. The effect of X-rays on cytological traits of Tuta absoluta (Lepidoptera: Gelechiidae) Fla. Entomol. 2016;99:43–53. doi: 10.1653/024.099.sp107. DOI

Lukhtanov V.A., Dincă V., Friberg M., Šíchová J., Olofsson M., Vila R., Marec F., Wiklund C. Versatility of multivalent orientation, inverted meiosis, and rescued fitness in holocentric chromosomal hybrids. Proc. Nat. Acad. Sci. USA. 2018;115:E9610–E9619. doi: 10.1073/pnas.1802610115. PubMed DOI PMC

Koudelová J., Cook P.A. Effect of gamma radiation and sex-linked recessive lethal mutations on sperm transfer in Ephestia kuehniella (Lepidoptera: Pyralidae) Fla. Entomol. 2001;84:172–182. doi: 10.2307/3496164. DOI

Hendrichs J., Vreysen M.J.B., Enkerlin W.R., Cayol J.P. Strategic options in using sterile insects for area-wide integrated pest management. In: Dyck V.A., Hendrichs J., Robinson A.S., editors. Sterile Insect Technique. Principles and Practice in Area-Wide Integrated Pest Management. Springer; Dordrecht, The Netherlands: 2005. pp. 563–600. DOI

Hofmeyr J.H., Carpenter J.E., Bloem S., Slabbert J.P., Hofmeyr M., Groenewald S.S. Development of the sterile insect technique to suppress false codling moth Thaumatotibia leucotreta (Lepidoptera: Tortricidae) in citrus fruit: Research to implementation (Part 1) Afr. Entomol. 2015;23:180–186. doi: 10.4001/003.023.0112. DOI

Hofmeyr J.H., Hofmeyr M., Carpenter J.E., Bloem S., Slabbert J.P. Sterile insect releases for control of Thaumatotibia leucotreta (Lepidoptera: Tortricidae): An assessment on semi-commercial scale. Afr. Entomol. 2016;24:80–89. doi: 10.4001/003.024.0080. DOI

Boersma N. (XSIT, Citrusdal, South Africa). Personal communication. 2018.

Bloem S., McCluskey A., Fugger R., Arthur S., Wood S., Carpenter J. Suppression of the codling moth Cydia pomonella in British Columbia, Canada using an area-wide integrated approach with an SIT component. In: Vreysen M.J.B., Robinson A.S., Hendrichs J., editors. Area-Wide Control of Insect Pests. From Research to Field Implementation. Springer; Dordrecht, The Netherlands: 2007. pp. 591–602. DOI

Proverbs M.D., Newton J.R. Influence of gamma radiation on the development and fertility of the codling moth, Carpocapsa pomonella (L.) (Lepidoptera: Olethreutidae) Can. J. Zool. 1962;40:401–420. doi: 10.1139/z62-038. DOI

Proverbs M.D., Newton J.R. Some effects of gamma radiation on the reproductive potential of the codling moth, Carpocapsa pomonella (L.) (Lepidoptera: Olethreutidae) Can. Entomol. 1962;94:1162–1170. doi: 10.4039/Ent941162-11. DOI

Proverbs M.D., Newton J.R., Campbell C.J. Codling moth: A pilot program of control by sterile insect release in British Columbia. Can. Entomol. 1982;114:363–376. doi: 10.4039/Ent114363-4. DOI

Bloem S., Bloem K.A., Knight A.L. Assessing the quality of mass-reared codling moths (Lepidoptera: Tortricidae) by using field release-recapture tests. J. Econ. Entomol. 1998;91:1122–1130. doi: 10.1093/jee/91.5.1122. DOI

Bloem S., Carpenter J.E., Bloem K.A., Tomlin L., Taggart S. Effect of rearing strategy and gamma radiation on field competitiveness of mass-reared codling moths (Lepidoptera: Tortricidae) J. Econ. Entomol. 2004;97:1891–1898. doi: 10.1093/jee/97.6.1891. PubMed DOI

Judd G.J.R., Thistlewood H.M.A., Gardiner M.G.T., Lannard B.L. Is lack of mating competitiveness in spring linked to mating asynchrony between wild and mass-reared codling moths from an operational sterile insect programme? Entomol. Exp. Appl. 2006;120:113–124. doi: 10.1111/j.1570-7458.2006.00431.x. DOI

Tyson R., Thistlewood H., Judd G.J.R. Modelling dispersal of sterile male codling moths, Cydia pomonella, across orchard boundaries. Ecol. Model. 2007;205:1–12. doi: 10.1016/j.ecolmodel.2006.12.038. DOI

Judd G.J.R., Arthur S., Deglow K., Gardiner M.G.T. Operational mark-release-recapture field tests comparing competitiveness of wild and differentially mass-reared codling moths from the Okanagan Kootenay sterile insect program. Can. Entomol. 2011;143:300–316. doi: 10.4039/n11-005. DOI

Thistlewood H.M.A., Judd G.J.R. Twenty-five years of research experience with the sterile insect technique and area-wide management of codling moth, Cydia pomonella (L.), in Canada. Insects. 2019;10:292. doi: 10.3390/insects10090292. PubMed DOI PMC

Philip H. (Okanagan Kootenay Sterile Insect Release Program, Kelowna, BC, Canada). Personal communication. 2018.

A Benefit-Cost Analysis of the Okanagan Kootenay Sterile Insect Release Program. [(accessed on 13 April 2019)]; Available online: http://www.oksirconnect.com/uploads/5/3/7/6/53763585/oksir_b-c_analysis_report_-_lee_cartier_okanagan_college_school_of_business.pdf.

Nelson C. (Okanagan Kootenay Sterile Insect Release Program, Kelowna, BC, Canada). Personal communication. 2018.

Staten R.T., Rosander R.W., Keaveny D.F. Genetic control of cotton insects. The pink bollworm as a working programme. In: Howard-Kitto P., Kelleher R.F., Ramesh G.V., editors. Management of Insect Pests: Nuclear and Related Molecular and Genetic Techniques. International Atomic Energy Agency (IAEA); Vienna, Austria: 1993. pp. 269–283.

Henneberry T.J. Integrated systems for control of the pink bollworm Pectinophora gossypiella in cotton. In: Vreysen M.J.B., Robinson A.S., Hendrichs J., editors. Area-Wide Control of Insect Pests. From Research to Field Implementation. Springer; Dordrecht, The Netherlands: 2007. pp. 567–580. DOI

USDA Announces Pink Bollworm Eradication Significantly Saving Cotton Farmers in Yearly Control Costs. [(accessed on 13 April 2019)]; Available online: https://www.usda.gov/media/press-releases/2018/10/19/usda-announces-pink-bollworm-eradication-significantly-saving.

Davis E. (USDA-APHIS, Phoenix, AZ, USA). Personal communication. 2018.

Zimmermann H.G., Perez-Sandi M., Bello-Rivera A. The Status of Cactoblastis cactorum (Lepidoptera: Pyralidae) in the Caribbean and the Likelihood of Its Spread to Mexico. Unpublished Report to International Atomic Energy Agency (Project TC MEX/5/029); Vienna, Austria: 2005. 60p

Zimmermann H.G., Bloem S., Klein H. Biology, History, Threat, Surveillance and Control of the Cactus Moth, Cactoblastis cactorum. IAEA/FAO-BSC/CM; Vienna, Austria: 2004. 40p

Soberon J., Golubov J., Sarukhán J. The importance of Opuntia in Mexico and routes of invasion and impact of Cactoblastis cactorum (Lepidoptera: Pyralidae) Fla. Entomol. 2001;84:486–492. doi: 10.2307/3496376. DOI

Hernández J., Sánchez H., Bello A., González G. Preventive programme against the cactus moth Cactoblasis cactorum in Mexico. In: Vreysen M.J.B., Robinson A.S., Hendrichs J., editors. Area-wide Control of Insect Pests. From Research to Field Implementation. Springer; Dordrecht, The Netherlands: 2007. pp. 345–350. DOI

Carpenter J.E. (retired, Tifton, GA, USA; former USDA/ARS). Personal communication. 2019.

Bello-Rivera A., Pereira R., Enkerlin-Hoeflich W., Bloem S., Bloem K., Hights S., Carpenter J.E., Trujillo-Arriaga F.J., Sanchez-Anguiano H.M., Zetina-Rodriguez R. Successful area-wide programme in Mexico that eradicated outbreaks of the cactus moth. In: Hendrichs J., Pereira R., Vreysen M.J.B., editors. Area-Wide Integrated Pest Management: Development and Field Application. CRC Press; Boca Raton, FL, USA: 2019. in press.

Suckling D.M., Hackett J., Daly J. Sterilisation of painted apple moth Teia anartoides (Lepidoptera: Lymantriidae) by irradiation. N. Z. Plant Prot. 2002;55:7–11.

Suckling D.M., Charles J., Allan D., Chhagan A., Barrington A., Burnip G.M., El-Sayed A.M. Performance of irradiated Teia anartoides (Lepidoptera: Lymantriidae) in urban Auckland, New Zealand. J. Econ. Entomol. 2005;98:1531–1538. doi: 10.1093/jee/98.5.1531. PubMed DOI

Stephens A.E.A., Suckling D.M., Burnip G.M., Richmond J., Flynn A. Field records of painted apple moth (Teia anartoides Walker: Lepidoptera: Lymantriidae) on plants and inanimate objects in Auckland, New Zealand. Aust. J. Entomol. 2007;46:152–159. doi: 10.1111/j.1440-6055.2007.00571.x. DOI

Self M. Biosecurity: The implications for international forestry trade. In: Mason E.G., Perley C.J., editors. Proceedings of the Australian and New Zealand Institutes of Forestry Conference; Queenstown, New Zealand. 27 April–1 May 2003; Queenstown, New Zealand: New Zealand Institute of Forestry; 2003. pp. 59–63.

El-Sayed A.M., Gibb A.R., Suckling D.M., Bunn B., Fiedler S., Comeskey D., Manning L.A., Foster S.P., Morris B.D., Ando T., et al. Identification of sex pheromone components of the painted apple moth: A tussock moth with a thermally labile pheromone component. J. Chem. Ecol. 2005;31:621–646. doi: 10.1007/s10886-005-2050-5. PubMed DOI

Suckling D.M., Barrington A.M., Chhagan A., Stephens A.E.A., Burnip G.M., Charles J.G., Wee S.L. Eradication of the Australian painted apple moth Teia anartoides in New Zealand: Trapping, inherited sterility, and male competitiveness. In: Vreysen M.J.B., Robinson A.S., Hendrichs J., editors. Area-Wide Control of Insect Pests. From Research to Field Implementation. Springer; Dordrecht, The Netherlands: 2007. pp. 603–615. DOI

Charles J.G., Allan D.J., Chhagan A., Jamieson L.E. Effectiveness of Foray 48B over time after application against the painted apple moth. N. Z. Plant Prot. 2005;58:17–23. doi: 10.30843/nzpp.2005.58.4247. DOI

Richardson B., Kay M.K., Kimberley M.O., Charles J.G., Gresham B.A. Evaluating the benefits of dose-response bioassays during aerial pest eradication operations. N. Z. Plant Prot. 2005;58:12–16.

Suckling D.M. Applying the sterile insect technique for biosecurity: Benefits and constraints. N. Z. Plant Prot. 2003;56:21–26. doi: 10.30843/nzpp.2003.56.6026. DOI

Simmons G.S., Suckling D.M., Carpenter J.E., Addison M.F., Dyck V.A., Vreysen M.J.B. Improved quality management to enhance the efficacy of the sterile insect technique for lepidopteran pests. J. Appl. Entomol. 2010;134:261–273. doi: 10.1111/j.1439-0418.2009.01438.x. DOI

Kleynhans E., Conlong D.E., Terblanche J.S. Host plant related variation in thermal tolerance of Eldana saccharina. Entomol. Exp. Appl. 2014;150:113–122. doi: 10.1111/eea.12144. DOI

Mudavanhu P., Conlong D.E., Addison P. Impact of mass rearing and gamma radiation on thermal tolerance of Eldana saccharina Walker (Lepidoptera: Pyralidae) Proc. S. Afr. Sugar Technol. Assoc. 2012;85:139–143.

Stotter R.L., Terblanche J.S. Low-temperature tolerance of false codling moth Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Tortricidae) in South Africa. J. Therm. Biol. 2009;34:320–325. doi: 10.1016/j.jtherbio.2009.05.002. DOI

Chidawanyika F., Terblanche J.S. Costs and benefits of thermal acclimation for codling moth, Cydia pomonella (Lepidoptera: Tortricidae): Implications for pest control and the sterile insect release programme. Evol. Appl. 2011;4:534–544. doi: 10.1111/j.1752-4571.2010.00168.x. PubMed DOI PMC

Blomefield T.L., Bloem S., Carpenter J.E. Effect of radiation on fecundity and fertility of a South African codling moth (Lepidoptera: Tortricidae) strain. J. Appl. Entomol. 2010;134:216–220. doi: 10.1111/j.1439-0418.2008.01377.x. DOI

Saour G. Sterile insect technique and F1 sterility in the European grapevine moth, Lobesia botrana. J. Insect Sci. 2014;14:8. doi: 10.1093/jis/14.1.8. PubMed DOI PMC

Walton A., Conlong D.E. Radiation biology of Eldana saccharina (Lepidoptera: Pyralidae) Fla. Entomol. 2016;99:36–42. doi: 10.1653/024.099.sp106. DOI

Cagnotti C.L., Viscarret M.M., Riquelme M.B., Botto E.N., Carabajal L.Z., Segura D.F., López S.N. Effects of X rays on Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) for use in inherited sterility programmes. J. Pest Sci. 2012;85:413–421. doi: 10.1007/s10340-012-0455-9. DOI

Cagnotti C.L., Andorno A.V., Hernández C.M., Carabajal Paladino L., Botto E.N., López S.N. Inherited sterility in Tuta absoluta (Lepidoptera: Gelechiidae): Pest population suppression and potential for combined use with a generalist predator. Fla. Entomol. 2016;99:87–94. doi: 10.1653/024.099.sp112. DOI

Fu H., Zhu F.W., Deng Y.Y., Weng Q.F., Hu M.Y., Zhang T.Z. Development, reproduction and sexual competitiveness of irradiated Conopomorpha sinensis (Lepidoptera: Gracillaridae) pupae and adults. Fla. Entomol. 2016;99:66–72. doi: 10.1653/024.099.sp109. DOI

Jang E.B., McInnis D.O., Kurashima R., Woods B., Suckling D.M. Irradiation of adult Epiphyas postvittana (Lepidoptera: Tortricidae): Egg sterility in parental and F1 generations. J. Econ. Entomol. 2012;105:54–61. doi: 10.1603/EC11135. PubMed DOI

Chakroun S., Rempoulakis C., Lebdi-Grissa K., Vreysen M.J.B. Gamma irradiation of the carob or date moth Ectomyelois ceratoniae: Dose-response effects on egg hatch, fecundity and survival. Entomol. Exp. Appl. 2017;164:257–268. doi: 10.1111/eea.12617. DOI

Carpenter J.E., Bloem S., Taggart S. Effect of rearing strategy and gamma radiation on the fecundity and fertility of mass-reared codling moth. J. Appl. Entomol. 2010;134:221–226. doi: 10.1111/j.1439-0418.2009.01388.x. PubMed DOI

López-Martínez G., Carpenter J.E., Hight S.D., Hahn D.A. Low-oxygen atmospheric treatment improves the performance of irradiation-sterilized male cactus moths used in SIT. J. Econ. Entomol. 2014;107:185–197. doi: 10.1603/EC13370. PubMed DOI

López-Martínez G., Carpenter J.E., Hight S.D., Hahn D.A. Anoxia-conditioning hormesis alters the relationship between irradiation doses for survival and sterility in the cactus moth, Cactoblastis cactorum (Lepidoptera: Pyralidae) Fla. Entomol. 2016;99:95–105. doi: 10.1653/024.099.sp113. DOI

Vreysen M.J.B. Monitoring sterile and wild insects in area-wide integrated pest management programmes. In: Dyck V.A., Hendrichs J., Robinson A.S., editors. Sterile Insect Technique. Principles and Practice in Area-Wide Integrated Pest Management. Springer; Dordrecht, The Netherlands: 2005. pp. 325–361. DOI

Cayol J.P., Vilardi J., Rial E., Vera M.T. New indices and method to measure the sexual compatibility and mating performance of Ceratitis capitata (Diptera: Tephritidae) laboratory-reared strains under field cage conditions. J. Econ. Entomol. 1999;99:140–145. doi: 10.1093/jee/92.1.140. DOI

Vera M.T., Cáceres C., Wornoayporn V., Islam A., Robinson A.S., de la Vega M.H., Hendrichs J., Cayol J.P. Mating incompatibility among populations of the South American fruit fly, Anastrepha fraterculus (Diptera: Tephritidae) Ann. Entomol. Soc. Am. 2006;99:387–397. doi: 10.1603/0013-8746(2006)099[0387:MIAPOT]2.0.CO;2. DOI

Taret G., Sevilla M., Wornoayporn V., Islam A., Ahmad S., Caceres C., Robinson A.S., Vreysen M.J.B. Mating compatibility among populations of codling moth Cydia pomonella (Linnaeus) (Lepidoptera: Tortricidae) from different geographic origins. J. Appl. Entomol. 2010;134:207–215. doi: 10.1111/j.1439-0418.2008.01375.x. DOI

Mudavanhu P., Addison P., Carpenter J.E., Conlong D.E. Mating compatibility and competitiveness between wild and laboratory strains of Eldana saccharina (Lepidoptera: Pyralidae) after radiation treatment. Fla. Entomol. 2016;99:54–65. doi: 10.1653/024.099.sp108. DOI

Stringer L.D., Sullivan N.J., Sullivan T.E.S., Mitchell V.J., Manning L.-A.M., Mas F., Hood-Nowotny R.C., Suckling D.M. Attractiveness and competitiveness of irradiated light brown apple moths. Entomol. Exp. Appl. 2013;148:203–212. doi: 10.1111/eea.12096. DOI

Suckling D.M., Stringer L.D., Mitchell V.J., Sullivan T.E., Simmons G.S., Barrington A.M., El-Sayed A.M. Comparative fitness of irradiated light brown apple moths (Lepidoptera: Tortricidae) in a wind tunnel, hedgerow and vineyard. J. Econ. Entomol. 2011;104:1301–1308. doi: 10.1603/EC10394. PubMed DOI

Saour G. Flight ability and dispersal of the European grapevine moth gamma-irradiated males (Lepidoptera: Tortricidae) Fla. Entomol. 2016;99:73–78. doi: 10.1653/024.099.sp110. DOI

Zhang K., Fu H., Zhu S., Li Z., Weng Q.F., Hu M.Y. Influence of irradiation on flight ability and dispersal of Conopomorpha sinensis (Lepidoptera: Gracillariidae) Fla. Entomol. 2016;99:79–86. doi: 10.1653/024.099.sp111. DOI

Brown R.L., Stanbury M., El-Sayed A.M., Laban J., Butler R., Suckling D.M. Locomotion activity meter for quality assessment of mass-reared sterile male moths. Fla. Entomol. 2016;99:131–137. doi: 10.1653/024.099.sp116. DOI

Carpenter J.E., Blomefield T., Vreysen M.J.B. A flight cylinder bioassay as a simple, effective quality control test for Cydia pomonella. J. Appl. Entomol. 2012;136:711–720. doi: 10.1111/j.1439-0418.2012.01711.x. DOI

Carpenter J.E., Blomefield T., Hight S.D. Comparison of laboratory and field bioassays to examine lab-reared Cydia pomonella (Lepidoptera: Tortricidae) quality and field performance. J. Appl. Entomol. 2013;137:631–640. doi: 10.1111/jen.12039. DOI

Woods B., McInnis D., Steiner E., Soopaya A., Lindsey J., Lacey I., Virdi A., Fogliani R. Developing field cage tests to measure mating competitiveness of sterile light brown apple moth (Lepidoptera: Torticidae) in Western Australia. Fla. Entomol. 2016;99:138–145. doi: 10.1653/024.099.sp117. DOI

Carpenter J.E., Marti O.G., Wee S.L., Suckling D.M. Cytological attributes of sperm bundles unique to F1 progeny of irradiated male Lepidoptera: Relevance to sterile insect technique programs. Fla. Entomol. 2009;92:80–86. doi: 10.1653/024.092.0113. DOI

Wee S.L., Suckling D.M., Barrington A.M. Feasibility study on cytological sperm bundle assessment of F1 progeny of irradiated male painted apple moth (Teia anartoides Walker; Lepidoptera: Lymantriidae) for the sterile insect technique. Aust. J. Entomol. 2011;50:269–275. doi: 10.1111/j.1440-6055.2011.00815.x. DOI

Light D.M., Knight A.L., Henrick C.A., Rajapaska D., Lindgren B., Dickens J.C., Reynolds K.M., Buttery R.G., Merrill G., Roitman J., et al. A pear derived kairomone with pheromonal potency that attracts male and female codling moth, Cydia pomonella (L.) Naturwissenschaften. 2001;88:333–338. doi: 10.1007/s001140100243. PubMed DOI

Wee S.L. Effects of conspecific herbivory and mating status on host searching and oviposition behavior of Plutella xylostella (Lepidoptera: Plutellidae) in relation to its host, Brassica oleracea (Brassicales: Brassicaceae) Fla. Entomol. 2016;99:159–165. doi: 10.1653/024.099.sp119. DOI

Simmons G.S., McKemey A., Morrison N., O’Connell S., Tabashnik B., Claus J., Fu G., Tang G., Sledge M., Walker A., et al. Field performance of a genetically engineered strain of pink bollworm. PLoS ONE. 2011;6:e24110. doi: 10.1371/journal.pone.0024110. PubMed DOI PMC

Hood-Nowotny R., Mayr L., Islam A., Robinson A.S., Caceres C. Routine isotope marking for the Mediterranean fruit fly (Diptera: Tephritidae) J. Econ. Entomol. 2009;102:941–947. doi: 10.1603/029.102.0312. PubMed DOI

Hood-Nowotny R., Watzka M., Mayr L., Mekonnen S., Kapitano B., Parker A. Intrinsic and synthetic stable isotope marking of tsetse flies. J. Insect Sci. 2011;11:79. doi: 10.1673/031.011.7901. PubMed DOI PMC

Hood-Nowotny R., Harari A., Seth R., Wee S.-L., Conlong D.E., Suckling D.M., Lebdi-Grissa K., Simmons G., Carpenter J.E. Stable isotope markers differentiate between mass-reared and wild Lepidoptera in sterile insect technique programs. Fla. Entomol. 2016;99:166–176. doi: 10.1653/024.099.sp120. DOI

Marec F., Neven L.G., Robinson A.S., Vreysen M., Goldsmith M.R., Nagaraju J., Franz G. Development of genetic sexing strains in Lepidoptera: From traditional to transgenic approaches. J. Econ. Entomol. 2005;98:248–259. doi: 10.1093/jee/98.2.248. PubMed DOI

Rendón P., McInnes D., Lance D., Stewart J. Medfly (Diptera: Tephritidae) genetic sexing: Large scale field comparison of males-only and bisexual sterile fly releases in Guatemala. J. Econ. Entomol. 2004;97:1547–1553. doi: 10.1603/0022-0493-97.5.1547. PubMed DOI

Hight S.D., Carpenter J.E., Bloem S., Bloem K.A. Developing a sterile insect release program for Cactoblastis cactorum (Berg) (Lepidoptera: Pyralidae): Effective overflooding ratios and release-recapture field studies. Environ. Entomol. 2005;34:850–856. doi: 10.1603/0046-225X-34.4.850. DOI

Strunnikov V.A. Sex control in the silkworms. Nature. 1975;255:111–113. doi: 10.1038/255111a0. PubMed DOI

Ohnuma A. Establishment of the practical male-rearing technology by a balanced sex-linked lethal (in Japanese) J. Sericult. Sci. Jpn. 2005;74:81–87. doi: 10.11416/kontyushigen.74.81. DOI

Marec F. Genetic control of pest Lepidoptera: Construction of a balanced lethal strain in Ephestia kuehniella. Entomol. Exp. Appl. 1991;61:271–283. doi: 10.1111/j.1570-7458.1991.tb01560.x. DOI

Peloquin J.J., Thibault S.T., Staten R., Miller T.A. Germ-line transformation of pink bollworm (Lepidoptera: Gelechiidae) mediated by the piggyBac transposable element. Insect Mol. Biol. 2000;9:323–333. doi: 10.1046/j.1365-2583.2000.00194.x. PubMed DOI

Tamura T., Thibert C., Royer C., Kanda T., Abraham E., Kamba M., Komoto N., Thomas J.L., Mauchamp B., Chavancy G., et al. Germline transformation of the silkworm Bombyx mori L. using a piggyBac transposon derived vector. Nat. Biotechnol. 2000;18:81–84. doi: 10.1038/71978. PubMed DOI

Marec F., Neven L.G., Fuková I. Developing transgenic sexing strains for the release of non-transgenic sterile male codling moths Cydia pomonella. In: Vreysen M.J.B., Robinson A.S., Hendrichs J., editors. Area-Wide Control of Insect Pests. From Research to Field Implementation. Springer; Dordrecht, The Netherlands: 2007. pp. 103–111. DOI

Ma S., Wang X., Fei J., Liu Y., Duan J., Wang F., Xu H., Zhao P., Xia Q. Genetic marking of sex using a W chromosome-linked transgene. Insect Biochem. Mol. Biol. 2013;43:1079–1086. doi: 10.1016/j.ibmb.2013.08.009. PubMed DOI

Tan A., Fu G., Jin L., Guo Q., Li Z., Niu B., Meng Z., Morrison N.I., Alphey L., Huang Y. Transgene-based, female-specific lethality system for genetic sexing of the silkworm, Bombyx mori. Proc. Nat. Acad. Sci. USA. 2013;110:6766–6770. doi: 10.1073/pnas.1221700110. PubMed DOI PMC

Jin L., Walker A.S., Fu G., Harvey-Samuel T., Dafa’alla T., Miles A., Marubbi T., Granville D., Humphrey-Jones N., O’Connell S., et al. Engineered female-specific lethality for control of pest Lepidoptera. ACS Synth. Biol. 2013;2:160–166. doi: 10.1021/sb300123m. PubMed DOI

Kiuchi T., Sugano Y., Shimada T., Katsuma S. Two CCCH-type zinc finger domains in the Masc protein are dispensable for masculinization and dosage compensation in Bombyx mori. Insect Biochem. Mol. Biol. 2019;104:30–38. doi: 10.1016/j.ibmb.2018.12.003. PubMed DOI

Wang Y., Chen X., Liu Z., Xu J., Li X., Bi H., Andongma A.A., Niu C., Huang Y. Mutation of doublesex induces sex-specific sterility of the diamondback moth Plutella xylostella. Insect Biochem. Mol. Biol. 2019;112:103180. doi: 10.1016/j.ibmb.2019.103180. PubMed DOI

Ohbayashi F., Suzuki M.G., Mita K., Okano K., Shimada T. A homologue of the Drosophila doublesex gene is transcribed into sex-specific mRNA isoforms in the silkworm, Bombyx mori. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2001;128:145–158. doi: 10.1016/S1096-4959(00)00304-3. PubMed DOI

Suzuki M.G. Sex determination: Insights from the silkworm. J. Genet. 2010;89:357–363. doi: 10.1007/s12041-010-0047-5. PubMed DOI

Kunte K., Zhang W., Tenger-Trolander A., Palmer D.H., Martin A., Reed R.D., Mullen S.P., Kronforst M.R. doublesex is a mimicry supergene. Nature. 2014;507:229–232. doi: 10.1038/nature13112. PubMed DOI

Nagaraju J., Gopinath G., Sharma V., Shukla J.N. Lepidopteran sex determination: A cascade of surprises. Sex. Dev. 2014;8:104–112. doi: 10.1159/000357483. PubMed DOI

Wang X.Y., Zheng Z.Z., Song H.S., Xu Y.Z. Conserved RNA cis-elements regulate alternative splicing of Lepidopteran doublesex. Insect Biochem. Mol. Biol. 2014;44:1–11. doi: 10.1016/j.ibmb.2013.10.009. PubMed DOI

Fujii T., Shimada T. Sex determination in the silkworm, Bombyx mori: A female determinant on the W chromosome and the sex-determining gene cascade. Semin. Cell Dev. Biol. 2007;18:379–388. doi: 10.1016/j.semcdb.2007.02.008. PubMed DOI

Kiuchi T., Koga H., Kawamoto M., Shoji K., Sakai H., Arai Y., Ishihara G., Kawaoka S., Sugano S., Shimada T., et al. A single female-specific piRNA is the primary determiner of sex in the silkworm. Nature. 2014;509:633–636. doi: 10.1038/nature13315. PubMed DOI

Yoshido A., Marec F., Sahara K. The fate of W chromosomes in hybrids between wild silkmoths, Samia cynthia ssp.: No role in sex determination and reproduction. Heredity. 2016;116:424–433. doi: 10.1038/hdy.2015.110. PubMed DOI PMC

Gempe T., Beye M. Function and evolution of sex determination mechanisms, genes and pathways in insects. Bioessays. 2011;33:52–60. doi: 10.1002/bies.201000043. PubMed DOI PMC

Kean J.M., Suckling D.M., Sullivan N.J., Tobin P.C., Stringer L.D., Lee D.C., Smith G.R., Flores Vargas R., Fletcher J., Macbeth F., et al. Global Eradication and Response Database. [(accessed on 22 April 2019)];2016 Available online: http://b3.net.nz/gerda/index.php.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...