Large-scale comparative analysis of cytogenetic markers across Lepidoptera

. 2021 Jun 09 ; 11 (1) : 12214. [epub] 20210609

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34108567
Odkazy

PubMed 34108567
PubMed Central PMC8190105
DOI 10.1038/s41598-021-91665-7
PII: 10.1038/s41598-021-91665-7
Knihovny.cz E-zdroje

Fluorescence in situ hybridization (FISH) allows identification of particular chromosomes and their rearrangements. Using FISH with signal enhancement via antibody amplification and enzymatically catalysed reporter deposition, we evaluated applicability of universal cytogenetic markers, namely 18S and 5S rDNA genes, U1 and U2 snRNA genes, and histone H3 genes, in the study of the karyotype evolution in moths and butterflies. Major rDNA underwent rather erratic evolution, which does not always reflect chromosomal changes. In contrast, the hybridization pattern of histone H3 genes was well conserved, reflecting the stable organisation of lepidopteran genomes. Unlike 5S rDNA and U1 and U2 snRNA genes which we failed to detect, except for 5S rDNA in a few representatives of early diverging lepidopteran lineages. To explain the negative FISH results, we used quantitative PCR and Southern hybridization to estimate the copy number and organization of the studied genes in selected species. The results suggested that their detection was hampered by long spacers between the genes and/or their scattered distribution. Our results question homology of 5S rDNA and U1 and U2 snRNA loci in comparative studies. We recommend the use of histone H3 in studies of karyotype evolution.

Zobrazit více v PubMed

Traut W, Ahola V, Smith DAS, Gordon IJ, ffrench-Constant RH. Karyotypes versus genomes: The nymphalid butterflies Melitaeacinxia, Danausplexippus, and D.chrysippus. Cytogenet. Genome Res. 2017;153:46–53. doi: 10.1159/000484032. PubMed DOI

Heng HH, et al. A postgenomic perspective on molecular cytogenetics. CG. 2018;19:227–239. doi: 10.2174/1389202918666170717145716. PubMed DOI PMC

Deakin JE, et al. Chromosomics: Bridging the gap between genomes and chromosomes. Genes. 2019;10:627. doi: 10.3390/genes10080627. PubMed DOI PMC

Lewin HA, et al. Earth BioGenome Project: Sequencing life for the future of life. PNAS. 2018;115:4325–4333. doi: 10.1073/pnas.1720115115. PubMed DOI PMC

Claussen U. Chromosomics. Cytogenet. Genome Res. 2005;111:101–106. doi: 10.1159/000086377. PubMed DOI

Graphodatsky AS. Comparative chromosomics. Mol. Biol. 2007;41:361–375. doi: 10.1134/S002689330703003X. PubMed DOI

Dutrillaux B, Couturier J, Richer C-L, Viegas-Péquignot E. Sequence of DNA replication in 277 R- and Q-bands of human chromosomes using a BrdU treatment. Chromosoma. 1976;58:51–61. doi: 10.1007/BF00293440. PubMed DOI

Bickmore, W. A. Karyotype analysis and chromosome banding. In EncyclopediaofLifeSciences (ed. Wiley) a0001160 (Wiley, 2001).

King M. C-Banding studies on Australian hylid frogs: Secondary constriction structure and the concept of euchromatin transformation. Chromosoma. 1980;80:191–217. doi: 10.1007/BF00286300. DOI

Steiniger GE, Mukherjee AB. Insect chromosome banding: technique for G- and Q-banding pattern in the mosquito Aedesalbopictus. Can. J. Genet. Cytol. 1975;17:241–244. doi: 10.1139/g75-031. PubMed DOI

Brum-Zorrilla N, Postiglioni A. Banding pattern in chromosomes of Lycosa species (Araneae-Lycosidae) Genetica. 1980;54:149–153. doi: 10.1007/BF00055984. DOI

Cabrero J, Camacho JPM. Cytogenetic studies in gomphocerine grasshoppers. I. Comparative analysis of chromosome C-banding pattern. Heredity. 1986;56:365–372. doi: 10.1038/hdy.1986.58. DOI

Chen R, Song W, Li X, An Z. Chromosome G-banding in plants by inducing with trypsin and urea. Cell Res. 1994;4:79–87. doi: 10.1038/cr.1994.8. DOI

Song YC, et al. Comparisons of G-banding patterns in six species of the Poaceae. Hereditas. 2004;121:31–38. doi: 10.1111/j.1601-5223.1994.00031.x. DOI

Bedo DG. Karyotypic and chromosome banding studies of the potato tuber moth, Phthorimaeaoperculella (Zeller) (Lepidoptera, Gelechiidae) Can. J. Genet. Cytol. 1984;26:141–145. doi: 10.1139/g84-024. DOI

Prins, J. D. & Saitoh, K. Karyology and sex determination. In Band4:Arthropoda,2Hälfte:Insecta,Lepidoptera,MothsandButterflies,Teilband/Part36,Vol2:Morphology,Physiology,andDevelopment (ed. Kükenthal, W.) (DE GRUYTER, 2003).

Van Nieukerken EJ, et al. Order Lepidoptera Linnaeus, 1758. In: Zhang, Z.-Q. (Ed.) Animal biodiversity: An outline of higher-level classification and survey of taxonomic richness. Zootaxa. 2011;3148:212. doi: 10.11646/zootaxa.3148.1.41. PubMed DOI

Yoshido A, et al. Evolution of multiple sex-chromosomes associated with dynamic genome reshuffling in Leptidea wood-white butterflies. Heredity. 2020;125:138–154. doi: 10.1038/s41437-020-0325-9. PubMed DOI PMC

Nguyen P, et al. Neo-sex chromosomes and adaptive potential in tortricid pests. PNAS. 2013;110:6931–6936. doi: 10.1073/pnas.1220372110. PubMed DOI PMC

Picq S, et al. Insights into the structure of the spruce budworm (Choristoneurafumiferana) genome, as revealed by molecular cytogenetic analyses and a high-density linkage map. G3. 2018;8:2539–2549. doi: 10.1534/g3.118.200263. PubMed DOI PMC

Asser-Kaiser S, et al. Rapid emergence of baculovirus resistance in codling moth due to dominant, sex-linked inheritance. Science. 2007;317:1916–1918. doi: 10.1126/science.1146542. PubMed DOI

Carabajal Paladino LZ, et al. Sex chromosome turnover in moths of the diverse superfamily Gelechioidea. Genome Biol. Evol. 2019;11:1307–1319. doi: 10.1093/gbe/evz075. PubMed DOI PMC

Labbé R, Caveney S, Donly C. Genetic analysis of the xenobiotic resistance-associated ABC gene subfamilies of the Lepidoptera. Insect Mol. Biol. 2010;20:243–256. doi: 10.1111/j.1365-2583.2010.01064.x. PubMed DOI

Wolf-I KW, Novák K, Marec F. Kinetic organization of metaphase I bivalents in spermatogenesis of Lepidoptera and Trichoptera species with small chromosome numbers. Heredity. 1997;79:35–143.

Fuková I, Nguyen P, Marec F. Codling moth cytogenetics: Karyotype, chromosomal location of rDNA, and molecular differentiation of sex chromosomes. Genome. 2005;48:1083–1092. doi: 10.1139/g05-063. PubMed DOI

Gan Y, et al. Individual chromosome identification, chromosomal collinearity and genetic-physical integrated map in Gossypiumdarwinii and four D genome cotton species revealed by BAC-FISH. Genes Genet. Syst. 2012;87:233–241. doi: 10.1266/ggs.87.233. PubMed DOI

Carabajal Paladino LZ, Nguyen P, Šíchová J, Marec F. Mapping of single-copy genes by TSA-FISH in the codling moth, Cydiapomonella. BMC Genet. 2014;15:S15. doi: 10.1186/1471-2156-15-S2-S15. PubMed DOI PMC

Traut W. Pachytene mapping in the female silkworm, Bombyxmori L. (Lepidoptera) Chromosoma. 1976;58:275–284. doi: 10.1007/BF00292094. PubMed DOI

Nguyen P, Sahara K, Yoshido A, Marec F. Evolutionary dynamics of rDNA clusters on chromosomes of moths and butterflies (Lepidoptera) Genetica. 2010;138:343–354. doi: 10.1007/s10709-009-9424-5. PubMed DOI

Vershinina AO, Anokhin BA, Lukhtanov VA. Ribosomal DNA clusters and telomeric (TTAGG)n repeats in blue butterflies (Lepidoptera, Lycaenidae) with low and high chromosome numbers. CCG. 2015;9:161–171. doi: 10.3897/CompCytogen.v9i2.4715. PubMed DOI PMC

Yoshido A, Bando H, Yasukochi Y, Sahara K. The Bombyxmori karyotype and the assignment of linkage groups. Genetics. 2005;170:675–685. doi: 10.1534/genetics.104.040352. PubMed DOI PMC

Lukhtanov VA, et al. Versatility of multivalent orientation, inverted meiosis, and rescued fitness in holocentric chromosomal hybrids. PNAS. 2018;115:E9610–E9619. doi: 10.1073/pnas.1802610115. PubMed DOI PMC

Lee Y-I, et al. Satellite DNA in Paphiopedilum subgenus Parvisepalum as revealed by high-throughput sequencing and fluorescent in situ hybridization. BMC Genom. 2018;19:578. doi: 10.1186/s12864-018-4956-7. PubMed DOI PMC

Cabral-de-Mello DC, Martins C, Souza MJ, Moura RC. Cytogenetic mapping of 5S and 18S rRNAs and H3 histone genes in 4 ancient Proscopiidae grasshopper species: Contribution to understanding the evolutionary dynamics of multigene families. Cytogenet. Genome Res. 2011;132:89–93. doi: 10.1159/000317476. PubMed DOI

García-Souto D, Troncoso T, Pérez M, Pasantes JJ. Molecular cytogenetic analysis of the European hake Merlucciusmerluccius (Merlucciidae, Gadiformes): U1 and U2 snRNA gene clusters map to the same location. PLoS One. 2015;10:e0146150. doi: 10.1371/journal.pone.0146150. PubMed DOI PMC

Kobayashi T, Heck DJ, Nomura M, Horiuchi T. Expansion and contraction of ribosomal DNA repeats in Saccharomycescerevisiae: requirement of replication fork blocking (Fob1) protein and the role of RNA polymerase I. Genes Dev. 1998;12:3821–3830. doi: 10.1101/gad.12.24.3821. PubMed DOI PMC

Prokopowich CD, Gregory TR, Crease TJ. The correlation between rDNA copy number and genome size in eukaryotes. Genome. 2003;46:48–50. doi: 10.1139/g02-103. PubMed DOI

Cabral-de-Mello DC, Moura RC, Martins C. Chromosomal mapping of repetitive DNAs in the beetle Dichotomiusgeminatus provides the first evidence for an association of 5S rRNA and histone H3 genes in insects, and repetitive DNA similarity between the B chromosome and A complement. Heredity. 2010;104:393–400. doi: 10.1038/hdy.2009.126. PubMed DOI

Cabral-de-Mello DC, Oliveira SG, de Moura RC, Martins C. Chromosomal organization of the 18S and 5S rRNAs and histone H3 genes in Scarabaeinaecoleopterans: Insights into the evolutionary dynamics of multigene families and heterochromatin. BMC Genet. 2011;12:88. doi: 10.1186/1471-2156-12-88. PubMed DOI PMC

Badaeva ED, et al. A set of cytogenetic markers allows the precise identification of all A-genome chromosomes in diploid and polyploid wheat. Cytogenet. Genome Res. 2015;146:71–79. doi: 10.1159/000433458. PubMed DOI

Wang W, et al. Remarkable variation of ribosomal DNA organization and copy number in gnetophytes, a distinct lineage of gymnosperms. Ann. Bot. 2019;123:767–781. doi: 10.1093/aob/mcy172. PubMed DOI PMC

Palacios-Gimenez OM, Castillo ER, Martí DA, Cabral-de-Mello DC. Tracking the evolution of sex chromosome systems in Melanoplinae grasshoppers through chromosomal mapping of repetitive DNA sequences. BMC Evol. Biol. 2013;13:167. doi: 10.1186/1471-2148-13-167. PubMed DOI PMC

Vierna J, Wehner S, Höner zu Siederdissen C, Martínez-Lage A, Marz M. Systematic analysis and evolution of 5S ribosomal DNA in metazoans. Heredity. 2013;111:410–421. doi: 10.1038/hdy.2013.63. PubMed DOI PMC

Garcia S, Garnatje T, Kovařík A. Plant rDNA database: Ribosomal DNA loci information goes online. Chromosoma. 2012;121:389–394. doi: 10.1007/s00412-012-0368-7. PubMed DOI

Sochorová J, Garcia S, Gálvez F, Symonová R, Kovařík A. Evolutionary trends in animal ribosomal DNA loci: Introduction to a new online database. Chromosoma. 2018;127:141–150. doi: 10.1007/s00412-017-0651-8. PubMed DOI PMC

Anjos A, et al. U1 snDNA clusters in grasshoppers: Chromosomal dynamics and genomic organization. Heredity. 2015;114:207–219. doi: 10.1038/hdy.2014.87. PubMed DOI PMC

Barzotti R, Pelliccia F, Rocchi A. Identifcation and characterization of U1 small nuclear RNA genes from two crustacean isopod species. Chromosome Res. 2003;11:365–373. doi: 10.1023/A:1024048108918. PubMed DOI

Cabral-de-Mello DC, Valente GT, Nakajima RT, Martins C. Genomic organization and comparative chromosome mapping of the U1 snRNA gene in cichlid fish, with an emphasis in Oreochromisniloticus. Chromosome Res. 2012;20:279–292. doi: 10.1007/s10577-011-9271-y. PubMed DOI

Merlo MA, et al. Analysis of the histone cluster in Senegalese sole (Soleasenegalensis): Evidence for a divergent evolution of two canonical histone clusters. Genome. 2017;60:441–453. doi: 10.1139/gen-2016-0143. PubMed DOI

Piscor D, Fernandes CA, Parise-Maltempi PP. Conserved number of U2 snDNA sites in Piabinaargentea, Piabarchusstramineus and two Bryconamericus species (Characidae, Stevardiinae) Neotrop. Ichthyol. 2018;16:e170066. doi: 10.1590/1982-0224-20170066. DOI

Sember A, et al. Dynamics of tandemly repeated DNA sequences during evolution of diploid and tetraploid botiid loaches (Teleostei: Cobitoidea: Botiidae) PLoS One. 2018;13:e0195054. doi: 10.1371/journal.pone.0195054. PubMed DOI PMC

Poletto AB, et al. Chromosome differentiation patterns during cichlid fish evolution. BMC Genet. 2010;11:50. doi: 10.1186/1471-2156-11-50. PubMed DOI PMC

Symonová R, et al. Genome differentiation in a species pair of coregonine fishes: An extremely rapid speciation driven by stress-activated retrotransposons mediating extensive ribosomal DNA multiplications. BMC Evol. Biol. 2013;13:42. doi: 10.1186/1471-2148-13-42. PubMed DOI PMC

de Sene VF, et al. Mapping of the retrotransposable elements Rex1 and Rex3 in chromosomes of Eigenmannia (Teleostei, Gymnotiformes, Sternopygidae) Cytogenet. Genome Res. 2015;146:319–324. doi: 10.1159/000441465. PubMed DOI

Cai Q, Zhang D, Liu Z-L, Wang X-R. Chromosomal localization of 5S and 18S rDNA in five species of subgenus Strobus and their implications for genome evolution of Pinus. Ann. Bot. 2006;97:715–722. doi: 10.1093/aob/mcl030. PubMed DOI PMC

Grozeva S, Kuznetsova V, Anokhin B. Karyotypes, male meiosis and comparative FISH mapping of 18S ribosomal DNA and telomeric (TTAGG)n repeat in eight species of true bugs (Hemiptera, Heteroptera) CCG. 2011;5:355–374. doi: 10.3897/compcytogen.v5i4.2307. PubMed DOI PMC

Chirino MG, Bressa MJ. Karyotype evolution in progress: A new diploid number in Belostomacandidulum (Heteroptera: Belostomatidae) from Argentina leading to new insights into its ecology and evolution. Eur. J. Entomol. 2014;111:165–174. doi: 10.14411/eje.2014.027. DOI

Roehrdanz R, Heilmann L, Senechal P, Sears S, Evenson P. Histone and ribosomal RNA repetitive gene clusters of the boll weevil are linked in a tandem array: Histone-ribosomal DNA repeats. Insect Mol. Biol. 2010;19:463–471. PubMed

Schienman JE, Lozovskaya ER, Strausbaugh LD. Drosophilavirilis has atypical kinds and arrangements of histone repeats. Chromosoma. 1998;107:529–539. doi: 10.1007/s004120050339. PubMed DOI

Zhang L, Bao Z, Wang S, Huang X, Hu J. Chromosome rearrangements in Pectinidae (Bivalvia: Pteriomorphia) implied based on chromosomal localization of histone H3 gene in four scallops. Genetica. 2007;130:193–198. doi: 10.1007/s10709-006-9006-8. PubMed DOI

Silva DMZA, et al. Chromosomal organization of repetitive DNA sequences in Astyanaxbockmanni (Teleostei, Characiformes): Dispersive location, association and co-localization in the genome. Genetica. 2013;141:329–336. doi: 10.1007/s10709-013-9732-7. PubMed DOI

Maxson R, Cohn R, Kedes L, Mohun T. Expression and organization of histone genes. Annu. Rev. Genet. 1983;17:239–277. doi: 10.1146/annurev.ge.17.120183.001323. PubMed DOI

Eirín-López JM, et al. Molecular evolutionary characterization of the mussel Mytilus histone multigene family: First record of a tandemly repeated unit of five histone genes containing an H1 subtype with ‘Orphon’ features. J. Mol. Evol. 2004;58:131–144. doi: 10.1007/s00239-003-2531-5. PubMed DOI

Šíchová J, Nguyen P, Dalíková M, Marec F. Chromosomal evolution in tortricid moths: Conserved karyotypes with diverged features. PLoS One. 2013;8:e64520. doi: 10.1371/journal.pone.0064520. PubMed DOI PMC

Šíchová J, et al. Dynamic karyotype evolution and unique sex determination systems in Leptidea wood white butterflies. BMC Evol. Biol. 2015;15:89. doi: 10.1186/s12862-015-0375-4. PubMed DOI PMC

Mutanen M, Wahlberg N, Kaila L. Comprehensive gene and taxon coverage elucidates radiation patterns in moths and butterflies. Proc. R. Soc. B. 2010;277:2839–2848. doi: 10.1098/rspb.2010.0392. PubMed DOI PMC

Wiemers M, Chazot N, Wheat C, Schweiger O, Wahlberg N. A complete time-calibrated multi-gene phylogeny of the European butterflies. ZooKeys. 2020;938:97–124. doi: 10.3897/zookeys.938.50878. PubMed DOI PMC

Kawahara AY, et al. Phylogenomics reveals the evolutionary timing and pattern of butterflies and moths. PNAS. 2019;116:22657–22663. doi: 10.1073/pnas.1907847116. PubMed DOI PMC

Marec F, Traut W. Synaptonemal complexes in female and male meiotic prophase of Ephestiakuehniella (Lepidoptera) Heredity. 1993;71:394–404. doi: 10.1038/hdy.1993.154. DOI

Zrzavá M, et al. Sex chromosomes of the iconic moth Abraxasgrossulariata (Lepidoptera, Geometridae) and its congener A.sylvata. Genes. 2018;9:279. doi: 10.3390/genes9060279. PubMed DOI PMC

Kiauta B, Lankhorst L. The chromosomes of the caddis-fly, Glyphotaeliuspellucidus (Retzius, 1783) (Trichoptera: Limnephilidae, Limnephilinae) Genetica. 1969;40:1–6. doi: 10.1007/BF01787334. PubMed DOI

Lukhtanov VA. Sex chromatin and sex chromosome systems in nonditrysian Lepidoptera (Insecta) J. Zool. Syst. Evol. Res. 2000;38:73–79. doi: 10.1046/j.1439-0469.2000.382130.x. DOI

Seiler J. Research on the sex-chromosomes of Psychidae (Lepidoptera) Biol. Bull. 1919;36:399–404. doi: 10.2307/1536220. DOI

Seiler J. Geschlechtschromosomen-Untersuchungen an Psychiden. Z. Indukt. Abstamm. Vererbungsl. 1922;31:1–99.

Hejníčková M, et al. Absence of W chromosome in Psychidae moths and implications for the theory of sex chromosome evolution in Lepidoptera. Genes. 2019;10:1016. doi: 10.3390/genes10121016. PubMed DOI PMC

Dalíková M, et al. New insights into the evolution of the W chromosome in Lepidoptera. J. Hered. 2017;108:709–719. doi: 10.1093/jhered/esx063. PubMed DOI

Prins JD, Prins WD, Dall’Asta U. The karyotype of Camerariaohridella (Lepidoptera: Gracillariidae) Phegea. 2002;301:5–10.

Kawazoé A. The chromosome in the primitive or microlepidopterous moth-groups II. Proc. Jpn. Acad. Ser. B. 1987;63:87–90. doi: 10.2183/pjab.63.87. DOI

Nilsson N-O, Löfstedt C, Dävring L. Unusual sex chromosome inheritance in six species of small ermine moths (Yponomeuta, Yponomeutidae, Lepidoptera) Hereditas. 1988;108:259–265. doi: 10.1111/j.1601-5223.1988.tb00311.x. DOI

Ortiz E, Templado J. Los cromosomas de tres especies de tortrícidos (Lep. Tortricidae) EOS Rev. Esp. Entomol. 1976;51:77–84.

Robinson, R. LepidopteraGenetics. (Pergamon Press, 1971).

Carabajal Paladino LZ, et al. The effect of X-rays on cytological traits of Tutaabsoluta (Lepidoptera: Gelechiidae) Fla. Entomol. 2016;99:43–53. doi: 10.1653/024.099.sp107. DOI

Schulz H-J, Traut W. The pachytene complement of the wildtype and a chromosome mutant strain of the flour moth, Ephestiakuehniella (Lepidoptera) Genetica. 1979;50:61–66. doi: 10.1007/BF00122679. DOI

Van’t Hof AE, et al. Linkage map of the peppered moth, Bistonbetularia (Lepidoptera, Geometridae): A model of industrial melanism. Heredity. 2013;110:283–295. doi: 10.1038/hdy.2012.84. PubMed DOI PMC

Kawamura N. Cytological studies on the mosaic silkworms induced by low temperature treatment. Chromosoma. 1979;74:179–188. doi: 10.1007/BF00292271. DOI

Bytinski-Salz, H. Untersuchungen an Lepidopteren-hybriden V. Die Verwandfschaft der Platysamia-Arten (Lepidoptera, Saturniidae) nach Untersuchungen über die Fertilität und die Chromosomenverhältnisse ihrer Bastarde. Arch. Exp. Zellforsch22, 217–237 (1938).

Ahola V, et al. The Glanville fritillary genome retains an ancient karyotype and reveals selective chromosomal fusions in Lepidoptera. Nat. Commun. 2014;5:4737. doi: 10.1038/ncomms5737. PubMed DOI PMC

da Silva M, Ribeiro ED, Matoso DA. Chromosomal polymorphism in two species of Hypancistrus (Siluriformes: Loricariidae): An integrative approach for understanding their biodiversity. Genetica. 2014;142:127–139. PubMed

Supiwong W, et al. Karyotype diversity and evolutionary trends in the Asian swamp eel Monopterusalbus (Synbranchiformes, Synbranchidae): A case of chromosomal speciation? BMC Evol. Biol. 2019;19:73. doi: 10.1186/s12862-019-1393-4. PubMed DOI PMC

Šíchová J, et al. Fissions, fusions, and translocations shaped the karyotype and multiple sex chromosome constitution of the northeast-Asian wood white butterfly, Leptideaamurensis. Biol. J. Linn. Soc. 2016;118:457–471. doi: 10.1111/bij.12756. DOI

Lukhtanov VA, Dincă V, Talavera G, Vila R. Unprecedented within-species chromosome number cline in the Wood White butterfly Leptideasinapis and its significance for karyotype evolution and speciation. BMC Evol. Biol. 2011;11:109. doi: 10.1186/1471-2148-11-109. PubMed DOI PMC

Hill J, et al. Unprecedented reorganization of holocentric chromosomes provides insights into the enigma of lepidopteran chromosome evolution. Sci. Adv. 2019;5:eaau3648. doi: 10.1126/sciadv.aau3648. PubMed DOI PMC

Ferguson L, et al. Ancient expansion of the Hox cluster in Lepidoptera generated four Homeobox genes implicated in extra-embryonic tissue formation. PLoS Genet. 2014;10:e1004698. doi: 10.1371/journal.pgen.1004698. PubMed DOI PMC

Thomas GWC, et al. Gene content evolution in the arthropods. Genome Biol. 2020;21:15. doi: 10.1186/s13059-019-1925-7. PubMed DOI PMC

Cheng R-L, Yu Y-X, Liu L-X, Zhang C-X, Fang C-X. A draft genome of the ghost moth, Thitarodes (Hepialus) sp., a medicinal caterpillar fungus. Insect Sci. 2016;23:326–329. doi: 10.1111/1744-7917.12292. PubMed DOI

Fraïsse C, Picard MAL, Vicoso B. The deep conservation of the Lepidoptera Z chromosome suggests a non-canonical origin of the W. Nat. Commun. 2017;8:1486. doi: 10.1038/s41467-017-01663-5. PubMed DOI PMC

Aguilera PM, Debat HJ, Scaldaferro MA, Martí DA, Grabiele M. FISH-mapping of the 5S rDNA locus in chili peppers (Capsicum-Solanaceae) An. Acad. Bras. Ciênc. 2016;88:117–125. doi: 10.1590/0001-37652301620140616. PubMed DOI

Volkov RA, et al. Evolutional dynamics of 45S and 5S ribosomal DNA in ancient allohexaploid Atropa belladonna. BMC Plant. Biol. 2017;17:21. doi: 10.1186/s12870-017-0978-6. PubMed DOI PMC

Mount SM, Gotea V, Lin C-F, Hernandez K, Makalowski W. Spliceosomal small nuclear RNA genes in 11 insect genomes. RNA. 2006;13:5–14. doi: 10.1261/rna.259207. PubMed DOI PMC

Marz M, Kirsten T, Stadler PF. Evolution of spliceosomal snRNA genes in metazoan animals. J. Mol. Evol. 2008;67:594–607. doi: 10.1007/s00239-008-9149-6. PubMed DOI

Mesa A, Somarelli JA, Herrera RJ. Small nuclear RNA variants of three Bombyxmori strains. Entomol. Res. 2008;38:61–68. doi: 10.1111/j.1748-5967.2008.00131.x. DOI

Merlo MA, Cross I, Rodríguez-Rúa A, Manchado M, Rebordinos L. First approach to studying the genetics of the meagre (Argyrosomus regius; Asso, 1801) using three multigene families. Aquac. Res. 2013;44:974–984. doi: 10.1111/j.1365-2109.2012.03103.x. DOI

Mediouni J, Fuková I, Frydrychová R, Dhouibi MH, Marec F. Karyotype, sex chromatin and sex chromosome differentiation in the carob moth, Ectomyeloisceratoniae (Lepidoptera: Pyralidae) Caryologia. 2004;57:184–194. doi: 10.1080/00087114.2004.10589391. DOI

Lockwood A. “Ringer” solutions and some notes on the physiological basis of their ionic composition. Comp. Biol. Phys. 1961;2:241–289. PubMed

Rovatsos M, Altmanová M, Pokorná M, Kratochvíl L. Conserved sex chromosomes across adaptively radiated Anolis lizards. Evolution. 2014;68:2079–2085. doi: 10.1111/evo.12357. PubMed DOI

Blin N, Stafford DW. A general method for isolation of high molecular weight DNA from eukaryotes. Nucleic Acids Res. 1976;3:2303–2308. doi: 10.1093/nar/3.9.2303. PubMed DOI PMC

Ferguson KB, et al. Jekyll or Hyde? The genome (and more) of Nesidiocoris tenuis, a zoophytophagous predatory bug that is both a biological control agent and a pest. Insect Mol. Biol. 2020;30:188–209. doi: 10.1111/imb.12688. PubMed DOI PMC

Fuková I, et al. Probing the W chromosome of the codling moth, Cydiapomonella, with sequences from microdissected sex chromatin. Chromosoma. 2007;116:135–145. doi: 10.1007/s00412-006-0086-0. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace