Insights into the Karyotype Evolution of Charinidae, the Early-Diverging Clade of Whip Spiders (Arachnida: Amblypygi)
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LTAUSA 19142
Czech Ministry of Education, Youth, and Sports
SVV 260568
Czech Ministry of Education, Youth, and Sports
92218
Grant Agency of the Charles University
67985904
RVO of Institute of Animal Physiology and Genetics CAS, Liběchov
CZ.1.07/2.3.00/30.0032
Postdok_BIOGLOBE
16-10298S
Czech Science Foundation
PubMed
34827965
PubMed Central
PMC8614469
DOI
10.3390/ani11113233
PII: ani11113233
Knihovny.cz E-zdroje
- Klíčová slova
- Charinus, Sarax, chromosome fusion, fluorescence in situ hybridization, heterochromatin, nucleolar organizer region, telomere,
- Publikační typ
- časopisecké články MeSH
Whip spiders (Amblypygi) represent an ancient order of tetrapulmonate arachnids with a low diversity. Their cytogenetic data are confined to only a few reports. Here, we analyzed the family Charinidae, a lineage almost at the base of the amblypygids, providing an insight into the ancestral traits and basic trajectories of amblypygid karyotype evolution. We performed Giemsa staining, selected banding techniques, and detected 18S ribosomal DNA and telomeric repeats by fluorescence in situ hybridization in four Charinus and five Sarax species. Both genera exhibit a wide range of diploid chromosome numbers (2n = 42-76 and 22-74 for Charinus and Sarax, respectively). The 2n reduction was accompanied by an increase of proportion of biarmed elements. We further revealed a single NOR site (probably an ancestral condition for charinids), the presence of a (TTAGG)n telomeric motif localized mostly at the chromosome ends, and an absence of heteromorphic sex chromosomes. Our data collectively suggest a high pace of karyotype repatterning in amblypygids, with probably a high ancestral 2n and its subsequent gradual reduction by fusions, and the action of pericentric inversions, similarly to what has been proposed for neoamblypygids. The possible contribution of fissions to charinid karyotype repatterning, however, cannot be fully ruled out.
Arthropod Genetics Group The Pirbright Institute Ash Road Pirbright Woking GU24 0NF UK
Department of Zoology Faculty of Science Charles University Viničná 7 128 44 Prague Czech Republic
Natural History Museum Vienna 3 Zoology Burgring 7 1010 Vienna Austria
Zobrazit více v PubMed
Weygoldt P. Whip Spiders (Chelicerata: Amblypygi). Their Biology, Morphology and Systematics. Apollo Books; Stenstrup, Denmark: 2000. 163p
Colla A., Legittimo C.M., Castelucci F., Simeon E., Miranda G.S. First record of Amblypygi from Italy: Charinus ioanniticus (Charinidae) Arachnology. 2020;18:642–648. doi: 10.13156/arac.2020.18.6.642. DOI
Harvey M.S. Catalogue of the Smaller Arachnid Orders of the World. Amblypygi, Uropygi, Schizomida, Palpigradi, Ricinulei and Solifugae. CSIRO Publishing; Collingwood, Australia: 2003. 385p. DOI
Garwood R.J., Dunlop J.A., Knecht B.J., Hegna T.A. The phylogeny of fossil whip spiders. BMC Evol. Biol. 2017;17:105–118. doi: 10.1186/s12862-017-0931-1. PubMed DOI PMC
Esposito A.L., Bloom T., Caicedo-Quiroga L., Alicea-Serrano A.M., Sánchez-Ruiz J.A., May-Collado L.J., Blinford G.J., Agnarsson I. Islands within islands: Diversification of tailless whip spiders (Amblypygi, Phrynus) in Caribbean caves. Mol. Phylogenet. Evol. 2015;93:107–117. doi: 10.1016/j.ympev.2015.07.005. PubMed DOI
Reveillion F., Wattier R., Montuire S., Carvalho L.S., Bollache L. Cryptic diversity within three South American whip spider species (Arachnida, Amblypygi) Zool. Res. 2020;41:595–598. doi: 10.24272/j.issn.2095-8137.2020.068. PubMed DOI PMC
Seiter M., Reyes Lerma A.C., Král J., Sember A., Divišová K., Palacios J.G.V., Colmenares P.A., Loria S.F., Prendini L. Cryptic diversity in the whip spider genus Paraphrynus (Amblypygi: Phrynidae): Integrating morphology, karyotype and DNA. Arthropod Syst. Phylogeny. 2020;78:265–285. doi: 10.26049/ASP78-2-2020-04. DOI
Harvey M.S. The neglected cousins: What do we know about the smaller arachnid orders? J. Arachnol. 2002;30:357–372. doi: 10.1636/0161-8202(2002)030[0357:TNCWDW]2.0.CO;2. DOI
Roskov Y., Ower G., Orrell T., Nicolson D., Bailly N., Kirk P.M., Bourgoin T., DeWalt R.E., Decock W., Van Nieukerken E., et al. Species 2000 & ITIS Catalogue of Life, 2019 Annual Checklist. Species 2000; Leiden, The Netherlands: 2019. [(accessed on 30 September 2021)]. ISSN 2405-884X. Available online: www.catalogueoflife.org/annual-checklist/2019.
Miranda G.S., Giupponi A.P.L., Scharff N., Prendini L. Phylogeny and biogeography of the pantropical whip spider family Charinidae (Arachnida: Amblypygi) Zool. J. Linn. Soc. 2021:zlaa101. doi: 10.1093/zoolinnean/zlaa101. DOI
Miranda G.S., Giupponi A.P., Prendini L., Scharff N. Systematic revision of the pantropical whip spider family Charinidae Quintero, 1986 (Arachnida, Amblypygi) Eur. J. Taxon. 2021;772:1–409. doi: 10.5852/ejt.2021.772.1505. DOI
World Arachnida Catalog. World Amblypygi Catalog. Natural History Museum Bern. 2021. [(accessed on 12 October 2021)]. Available online: http://wac.nmbe.ch.
Sharma P.P., Kaluziak S.T., Pérez-Porro A.R., González V.L., Hormiga G., Wheeler W.C., Giribet G. Phylogenomic interrogation of Arachnida reveals systemic conflicts in phylogenetic signal. Mol. Biol. Evol. 2014;31:2963–2984. doi: 10.1093/molbev/msu235. PubMed DOI
Ballesteros J.A., Sharma P.P. A critical appraisal of the placement of Xiphosura (Chelicerata) with account of known sources of phylogenetic error. Syst. Biol. 2019;68:896–917. doi: 10.1093/sysbio/syz011. PubMed DOI
Lozano-Fernandez J., Tanner A.R., Giacomelli M., Carton R., Vinther J., Edgecombe G.D., Pisani D. Increasing species sampling in chelicerate genomic-scale datasets provides support for monophyly of Acari and Arachnida. Nat. Commun. 2019;10:4534. doi: 10.1038/s41467-019-12259-6. PubMed DOI PMC
Millot J., Tuzet O. La spermatogenèse chez les Pédipalpes. Bull. Biol. Fr. Belg. 1934;68:77–83.
Vítková M., Král J., Traut W., Zrzavý J., Marec F. The evolutionary origin of insect telomeric repeats, (TTAGG)n. Chromosome Res. 2005;13:145–156. doi: 10.1007/s10577-005-7721-0. PubMed DOI
Paula-Neto E., Araujo D., Carvalho L.S., Cella D.M., Schneider M.C. Chromosomal characteristics of a Brazilian whip spider (Amblypygi) and evolutionary relationships with other arachnid orders. Genet. Mol. Res. 2013;12:3726–3734. doi: 10.4238/2013.September.19.3. PubMed DOI
Miranda G.S., Giupponi A.P.L., Prendini L., Scharff N. Weygoldtia, a new genus of Charinidae Quintero, 1986 (Arachnida, Amblypygi) with a reappraisal of the genera in the family. Zool. Anz. 2018;273:23–32. doi: 10.1016/j.jcz.2018.02.003. DOI
Seiter M., Schramm F.D., Schwaha T. Description of a new Charinus species (Amblypygi: Charinidae) from the Monseñor Nouel province, Dominican Republic. Zootaxa. 2018;4438:349–361. doi: 10.11646/zootaxa.4438.2.9. PubMed DOI
Miranda G.S., Reboleira P.A.S. Amblypygids of Timor-Leste: First record of the order from the country with the description of a remarkable new species of Sarax (Arachnida, Amblypygi, Charinidae) Zookeys. 2019;820:1–12. doi: 10.3897/zookeys.820.30139. PubMed DOI PMC
Weygoldt P. Evolutionary morphology of whip spiders: Towards a phylogenetic system (Chelicerata: Arachnida: Amblypygi) J. Zool. Syst. Evol. Res. 1996;34:185–202. doi: 10.1111/j.1439-0469.1996.tb00825.x. DOI
Traut W. Pachytene mapping in the female silkworm, Bombyx mori L. (Lepidoptera) Chromosoma. 1976;108:173–180. doi: 10.1007/s004120050366. PubMed DOI
Dolejš P., Kořínková T., Musilová J., Opatová V., Kubcová L., Buchar J., Král J. Karyotypes of central European spiders of the genera Arctosa, Tricca and Xerolycosa (Aranea: Lycosidae) Eur. J. Entomol. 2011;108:1–16. doi: 10.14411/eje.2011.001. DOI
Levan A.K., Fredga K., Sandberg A.A. Nomenclature for centromeric position on chromosomes. Hereditas. 1964;52:201–220. doi: 10.1111/j.1601-5223.1964.tb01953.x. DOI
Matthey R. L’évolution de la formule chromosomiale chez les Vertébrés. Experientia. 1945;I:78–86. doi: 10.1007/BF02156807. DOI
Sumner A.T. A simple technique for demonstrating centromeric heterochromatin. Exp. Cell Res. 1972;75:304–306. doi: 10.1016/0014-4827(72)90558-7. PubMed DOI
Plíšková J., Kovařík F., Košulič O., Šťáhlavský F. Description of a new species of Heterometrus Ehrenberg, 1828 (Scorpiones: Scorpionidae) from Thailand with remarks about the utilization of cytogenetic data in taxonomy of the genus. Annal. Zool. 2016;66:467–476. doi: 10.3161/00034541ANZ2016.66.3.011. DOI
Adilardi R.S., Ojanguren-Affilastro A.A., Martí D.A., Mola L.M. Chromosome puzzle in the southernmost populations of the medically important scorpion Tityus bahiensis (Perty 1833) (Buthidae), a polymorphic species with striking structural rearrangements. Zool. Anz. 2020;288:139–150. doi: 10.1016/j.jcz.2020.08.001. DOI
Sola L., Rossi A.R., Iaselli V., Rasch E.M., Monaco P.J. Cytogenetics of bisexual/unisexual species of Poecilia. II. Analysis of heterochromatin and nucleolar organizer regions in Poecilia mexicana mexicana by C-banding and DAPI, quinacrine, chromomycin A3, and silver staining. Cytogenet. Cell Genet. 1992;60:229–235. doi: 10.1159/000133346. PubMed DOI
Mayr B., Ráb P., Kalat M. Localisation of NORs and counterstain-enhanced fluorescence studies in Perca fluviatilis (Pisces, Percidae) Genetica. 1985;67:51–56. doi: 10.1007/BF02424460. PubMed DOI
Miller D.A., Dev V.G., Tantravahi R., Miller O.J. Suppression of human nucleolus organizer activity in mouse-human somatic hybrid cells. Exp. Cell Res. 1976;101:235–243. doi: 10.1016/0014-4827(76)90373-6. PubMed DOI
Jiménez R., Burgos M., de la Guardia R.D. A study of the Ag-staining significance in mitosis NORs. Heredity. 1988;60:125–127. doi: 10.1038/hdy.1988.18. PubMed DOI
Ijdo J.W., Wells R.A., Baldini A., Readers S.T. Improved telomere detection using a telomere repeat probe (TTAGGG)n generated by PCR. Nucleic Acids Res. 1991;19:4780. doi: 10.1093/nar/19.17.4780. PubMed DOI PMC
Sahara K., Marec F., Traut W. TTAGG telomeric repeats in chromosomes of some insects and other arthropods. Chromosome Res. 1999;7:449–460. doi: 10.1023/A:1009297729547. PubMed DOI
Forman M., Nguyen P., Hula V., Král J. Sex chromosome pairing and extensive NOR polymorphism in Wadicosa fidelis (Araneae: Lycosidae) Cytogenet. Genome Res. 2013;141:43–49. doi: 10.1159/000351041. PubMed DOI
Fuková I., Nguyen P., Marec F. Codling moth cytogenetics: Karyotype, chromosomal location of rDNA, and molecular differentiation of sex chromosomes. Genome. 2005;48:1083–1092. doi: 10.1139/g05-063. PubMed DOI
Traut W., Sahara K., Otto T.D., Marec F. Molecular differentiation of sex chromosomes probed by comparative genomic hybridization. Chromosoma. 1999;108:173–180. doi: 10.1007/s004120050366. PubMed DOI
Schwager E.E., Sharma P.P., Clark T., Leite D.J., Wierschin T., Pechmann M., Akiyama-Oda Y., Esposito L., Bechsgaard J., Bilde T., et al. The house spider genome reveals an ancient whole-genome duplication during arachnid evolution. BMC Biol. 2017;15:62. doi: 10.1186/s12915-017-0399-x. PubMed DOI PMC
Gainett G., Sharma P.P. Genomic resources and toolkits for developmental study of whip spiders (Amblypygi) provide insights into arachnid genome evolution and antenniform leg patterning. EvoDevo. 2020;11:1–18. doi: 10.1186/s13227-020-00163-w. PubMed DOI PMC
Fan Z., Yuan T., Liu P., Wang L.-Y., Jin J.-F., Zhang F., Zhang Z.S. A chromosome-level genome of the spider Trichonephila antipodiana reveals the genetic basis of its polyphagy and evidence of an ancient whole-genome duplication event. GigaScience. 2021;10:giab016. doi: 10.1093/gigascience/giab016. PubMed DOI PMC
Suzuki S. Cytological studies in spiders. III. Studies on the chromosomes of fifty-seven species of spiders belonging to seventeen families with general considerations on chromosomal evolution. J. Sci. Hiroshima Univ. B. 1954;15:23–136.
Deon G.A., Glugoski L., Vicari M.R., Nogaroto V., Sassi F.M.C., Cioffi M.B., Liehr T., Bertollo L.A.C., Moreira-Filho O. Highly rearranged karyotypes and multiple sex chromosome systems in armored catfishes from the genus Harttia (Teleostei, Siluriformes) Genes. 2020;11:1366. doi: 10.3390/genes11111366. PubMed DOI PMC
Araujo D., Cella D.M., Brescovit A.D. Cytogenetic analysis of the Neotropical spider Nephilengys cruentata (Araneomorphae, Tetragnathidae): Standard staining, NORs, C-bands and base-specific fluorochromes. Braz. J. Biol. 2005;65:193–202. doi: 10.1590/S1519-69842005000200002. PubMed DOI
Almeida B.R.R., Milhomem-Paixão S.S.R., Noronha R.C.R., Nagamachi C.Y., Costa M.J.R., Oliveira-Pardal P.P., Coelho J.S., Pieczarka J.C. Karyotype diversity and chromosomal organization of repetitive DNA in Tityus obscurus (Scorpiones, Buthidae) BMC Genet. 2017;18:35. doi: 10.1186/s12863-017-0494-6. PubMed DOI PMC
Rincão M.P., Brescovit A.D., Dias A.L. Insights on repetitive DNA behavior in two species of Ctenus Walckenaer, 1805 and Guasuctenus Polotow and Brescovit, 2019 (Araneae, Ctenidae): Evolutionary profile of H3 histone, 18S rRNA genes and heterochromatin distribution. PLoS ONE. 2020;15:e0231324. doi: 10.1371/journal.pone.0231324. PubMed DOI PMC
Rocchi M., Archidiacono N., Schempp W., Capozzi O., Stanyon R. Centromere repositioning in mammals. Heredity. 2012;108:59–67. doi: 10.1038/hdy.2011.101. PubMed DOI PMC
Král J., Kořínková T., Krkavcová L., Musilová J., Forman M., Ávila Herrera I.M., Haddad C.R., Vítková M., Henriques S., Palacios Vargas J.G., et al. Evolution of karyotype, sex chromosomes, and meiosis in mygalomorph spiders (Araneae: Mygalomorphae) Biol. J. Linn. Soc. 2013;109:377–408. doi: 10.1111/bij.12056. DOI
Řezáč M., Arnedo M.A., Opatova V., Musilová J., Řezáčová V., Král J. Taxonomic revision and insights into the speciation mode of the spider Dysdera erythrina species-complex (Araneae: Dysderidae): Sibling species with sympatric distributions. Invertebr. Syst. 2018;32:10–54. doi: 10.1071/IS16071. DOI
Král J., Forman M., Kořínková T., Reyes Lerma A.C., Haddad C., Musilová J., Řezáč M., Ávila Herrera I.M., Thakur S., Dippenaar-Schoeman A.S., et al. Insights into the karyotype and genome evolution of haplogyne spiders indicate a polyploid origin of lineage with holokinetic chromosomes. Sci. Rep. 2019;9:3001. doi: 10.1038/s41598-019-39034-3. PubMed DOI PMC
Schneider M.C., Zacaro A.A., Pinto-da-Rocha R., Candido D.M., Cella D.M. Complex meiotic configuration of the holocentric chromosomes: The intriguing case of the scorpion Tityus bahiensis. Chromosome Res. 2009;17:883–898. doi: 10.1007/s10577-009-9076-4. PubMed DOI
Kovařík F., Lowe G., Šťáhlavský F. Three new Chaerilus from Malaysia (Tioman Island) and Thailand (Scorpiones: Chaerilidae), with a review of C. cimrmani, C. sejnai, and C. tichyi. Euscorpius. 2018;268:1–27. doi: 10.18590/euscorpius.2018.vol2018.iss268.1. DOI
Tsurusaki N. Geographic variation of chromosomes in Sabacon makinoi Suzuki (Arachnida, Opiliones, Sabaconidae) Bull. Biogeogr. Soc. Jpn. 1989;44:111–116.
Oliveira R.M., Zacaro A.A., Gnaspini P., Cella D.M. Cytogenetics of three Brazilian Goniosoma species: A new record for diploid number in Laniatores (Opiliones, Gonyleptidae, Goniosomatinae) J. Arachnol. 2006;34:435–443. doi: 10.1636/S04-30.1. DOI
Šťáhlavský F., Král J., Harvey M.S., Haddad C.R. A karyotype study on the pseudoscorpion families Geogarypidae, Garypinidae and Olpiidae (Arachnida: Pseudoscorpiones) Eur. J. Entomol. 2006;103:277–289. doi: 10.14411/eje.2006.036. DOI
Šťáhlavský F., Král J., Harvey M.S., Haddad C.R. The first cytogenetic characterisation of atemnids: Pseudoscorpions with the highest chromosome numbers (Arachnida: Pseudoscorpiones) Cytogenet. Genome Res. 2012;137:22–30. doi: 10.1159/000339516. PubMed DOI
Peng J.C., Karpen G.H. Epigenetic regulation of heterochromatic DNA stability. Curr. Opin. Genet. Dev. 2008;18:204–211. doi: 10.1016/j.gde.2008.01.021. PubMed DOI PMC
Brown J.D., O’Neill R.J. Chromosomes, conflict, and epigenetics: Chromosomal speciation revisited. Annu. Rev. Genomics Hum. Genet. 2010;11:291–316. doi: 10.1146/annurev-genom-082509-141554. PubMed DOI
King M. Species Evolution: The Role of Chromosome Change. 1st ed. Cambridge University Press; Cambridge, UK: 1993.
Kandul N.P., Lukhtanov V.A., Pierce N.E. Karyotypic diversity and speciation in Agrodiaetus butterflies. Evolution. 2007;61:546–559. doi: 10.1111/j.1558-5646.2007.00046.x. PubMed DOI
Faria R., Navarro A. Chromosomal speciation revisited: Rearranging theory with pieces of evidence. Trends Ecol. Evol. 2010;25:660–669. doi: 10.1016/j.tree.2010.07.008. PubMed DOI
Luo J., Sun X., Cormack B.P., Boeke J.D. Karyotype engineering by chromosome fusion leads to reproductive isolation in yeast. Nature. 2018;560:392–396. doi: 10.1038/s41586-018-0374-x. PubMed DOI PMC
Damas J., Corbo M., Lewin H.A. Vertebrate chromosome evolution. Annu. Rev. Anim. Biosci. 2021;9:1–27. doi: 10.1146/annurev-animal-020518-114924. PubMed DOI
Guerrero R.F., Kirkpatrick M. Local adaptation and the evolution of chromosome fusions. Evolution. 2014;68:2747–2756. doi: 10.1111/evo.12481. PubMed DOI
Ortiz-Barrientos D., Engelstädter J., Rieseberg L.H. Recombination rate evolution and the origin of species. Trends Ecol. Evol. 2016;31:226–236. doi: 10.1016/j.tree.2015.12.016. PubMed DOI
Wellenreuther M., Bernatchez L. Eco-evolutionary genomics of chromosomal inversions. Trends Ecol. Evol. 2018;33:427–440. doi: 10.1016/j.tree.2018.04.002. PubMed DOI
Araujo D., Schneider M.C., Paula-Neto E., Cella D.M. Sex chromosomes and meiosis in spiders: A review. In: Swan A., editor. Meiosis—Molecular Mechanisms and Cytogenetic Diversity. InTechOpen; Rieka, Croatia: 2012. pp. 87–108.
Kořínková T., Král J. Karyotypes, sex chromosomes, and meiotic division in spiders. In: Nentwig W., editor. Spider Ecophysiology. 1st ed. Springer; Berlin, Germany: 2013. pp. 159–169. DOI
Sember A., Pappová M., Forman M., Nguyen P., Marec F., Dalíková M., Divišová K., Doležálková-Kaštánková M., Zrzavá M., Sadílek D., et al. Patterns of sex chromosome differentiation in spiders: Insights from comparative genomic hybridisation. Genes. 2020;11:849. doi: 10.3390/genes11080849. PubMed DOI PMC
Kasturi Bai A.R., Parthasarathy M.D. The chromosomes of Thelyphonus indicus Stoliczka. Proc. Indian Acad. Sci. B. 1957;24:9–22.
Král J. Evolution of multiple sex chromosomes in the spider genus Malthonica (Araneae: Agelenidae) indicates unique structure of the spider sex chromosome systems. Chromosome Res. 2007;15:863–879. doi: 10.1007/s10577-007-1169-3. PubMed DOI
Sochorová J., García S., Gálvez F., Symonová R., Kovařík A. Evolutionary trends in animal ribosomal DNA loci: Introduction to a new online database. Chromosoma. 2018;127:141–150. doi: 10.1007/s00412-017-0651-8. PubMed DOI PMC
Cabral-de-Mello D.C., Marec F. Universal fluorescence in situ hybridization (FISH) protocol for mapping repetitive DNAs in insects and other arthropods. Mol. Genet. Genom. 2021;296:513–552. doi: 10.1007/s00438-021-01765-2. PubMed DOI
Provazníková I., Hejníčková M., Visser S., Dalíková M., Carabajal Paladino L.Z., Zrzavá M., Voleníková A., Marec F., Nguyen P. Large-scale comparative analysis of cytogenetic markers across Lepidoptera. Sci. Rep. 2021;11:12214. doi: 10.1038/s41598-021-91665-7. PubMed DOI PMC
Rincão M.P., Chavari J.L., Brescovit A.D., Dias A.L. Cytogenetic analysis of five Ctenidae species (Araneae): Detection of heterochromatin and 18S rDNA sites. Comp. Cytogenet. 2017;11:627–639. doi: 10.3897/CompCytogen.v11i4.10620. PubMed DOI PMC
Šťáhlavský F., Forman M., Just P., Denič F., Haddad C.R., Opatova V. Cytogenetics of entelegyne spiders (Arachnida, Araneae) from southern Africa. Comp. Cytogenet. 2020;14:107–138. doi: 10.3897/CompCytogen.v14i1.48667. PubMed DOI PMC
Ávila Herrera I.M., Král J., Pastuchová M., Forman M., Musilová J., Kořínková T., Šťáhlavský F., Zrzavá M., Nguyen P., Just P., et al. Evolutionary pattern of karyotypes and meiosis in pholcid spiders (Araneae: Pholcidae): Implications for reconstructing chromosome evolution of araneomorph spiders. BMC Ecol. Evol. 2021;21:75. doi: 10.1186/s12862-021-01750-8. PubMed DOI PMC
Šťáhlavský F., Štundlová J., Lowe G., Stockmann M., Kovařík F. Application of cytogenetic markers in the taxonomy of flat rock scorpions (Scorpiones: Hormuridae), with the description of Hadogenes weygoldti sp. n. Zool. Anz. 2018;273:173–182. doi: 10.1016/j.jcz.2018.01.007. DOI
Ubinski C.V., Carvalho L.S., Schneider M.C. Mechanisms of karyotype evolution in the Brazilian scorpions of the subfamily Centruroidinae (Buthidae) Genetica. 2018;146:475–486. doi: 10.1007/s10709-018-0038-7. PubMed DOI
Štundlová J., Šmíd J., Nguyen P., Šťáhlavský F. Cryptic diversity and dynamic chromosome evolution in Alpine scorpions (Euscorpiidae: Euscorpius) Mol. Phylogenet. Evol. 2019;134:152–163. doi: 10.1016/j.ympev.2019.02.002. PubMed DOI
Šťáhlavský F., Nguyen P., Sadílek D., Štundlová J., Just P., Haddad C.R., Koc H., Ranawana K.B., Stockmann M., Yagmur E.A., et al. Evolutionary dynamics of rDNA clusters on chromosomes of buthid scorpions (Chelicerata: Arachnida) Biol. J. Linn. Soc. 2020;131:547–565. doi: 10.1093/biolinnean/blaa118. DOI
Šťáhlavský F., Kovařík F., Stockmann M., Opatova V. Karyotype evolution and preliminary molecular assessment of genera in the family Scorpiopidae (Arachnida: Scorpiones) Zoology. 2021;144:125882. doi: 10.1016/j.zool.2020.125882. PubMed DOI
Červená M., Šťáhlavský F., Papáč V., Kováč Ľ., Christophoryová J. Morphological and cytogenetic characteristics of Neobisium (Blothrus) slovacum Gulička, 1977 (Pseudoscorpiones, Neobisiidae), the northernmost troglobitic species of the subgenus Blothrus in Europe. Zookeys. 2019;817:113–130. doi: 10.3897/zookeys.817.27189. PubMed DOI PMC
Svojanovská H., Nguyen P., Hiřman M., Tuf I.H., Wahab R.A., Haddad C.R., Šťáhlavský F. Karyotype evolution in harvestmen of the suborder Cyphophthalmi (Opiliones) Cytogenet. Genome Res. 2016;148:227–236. doi: 10.1159/000445863. PubMed DOI
Šťáhlavský F., Opatova V., Just P., Lotz L.N., Haddad C.R. Molecular technique reveals high variability of 18S rDNA distribution in harvestmen (Opiliones, Phalangiidae) from South Africa. Comp. Cytogenet. 2018;12:41–59. doi: 10.3897/compcytogen.v12i1.21744. PubMed DOI PMC
Jindrová H., Hiřman M., Sadílek D., Bezděčka P., Šťáhlavský F. Distribution of 18S rDNA clusters in Central European harvestmen of the suborder Eupnoi (Arachnida: Opiliones) Eur. J. Entomol. 2020;117:282–288. doi: 10.14411/eje.2020.032. DOI
Hiřman M., Mohagan A., Šťáhlavský F. Unexpectedly high number of 18S rRNA gene clusters in Miopsalis dillyi (Opiliones: Cyphophthalmi: Stylocellidae) from Mindanao, Philippines. J. Arachnol. 2021;48:322–328. doi: 10.1636/JoA-S-20-028. DOI
Hill C.A., Guerrero F.D., Van Zee J.P., Geraci N.S., Walling J.G., Stuart J.J. The position of repetitive DNA sequence in the southern cattle tick genome permits chromosome identification. Chromosome Res. 2009;17:77–89. doi: 10.1007/s10577-008-9003-0. PubMed DOI
Meyer J.M., Kurtti T.J., Van Zee J.P., Hill C.A. Genome organization of major tandem repeats in the hard tick, Ixodes scapularis. Chromosome Res. 2010;18:357–370. doi: 10.1007/s10577-010-9120-4. PubMed DOI
Král J., Musilová J., Šťáhlavský F., Řezáč M., Akan Z., Edwards R.L., Coyle F.A., Almerje C.R. Evolution of the karyotype and sex chromosome systems in basal clades of araneomorph spiders (Araneae: Araneomorphae) Chromosome Res. 2006;14:859–880. doi: 10.1007/s10577-006-1095-9. PubMed DOI
Gulia-Nuss M., Nuss A.B., Meyer J.M., Sonenshine D.E., Roe R.M., Waterhouse R.M., Sattelle D.B., de la Fuente J., Ribeiro J.M., Megy K., et al. Genomic insights into the Ixodes scapularis tick vector of Lyme disease. Nat. Commun. 2016;7:10507. doi: 10.1038/ncomms10507. PubMed DOI PMC
Frydrychová R., Grossmann P., Trubač P., Vítková M., Marec F. Phylogenetic distribution of TTAGG telomeric repeats in insects. Genome. 2004;47:163–178. doi: 10.1139/g03-100. PubMed DOI
Procházková Schrumpfová P., Schořová Š., Fajkus J. Telomere- and telomerase-associated proteins and their functions in the plant cell. Front. Plant Sci. 2016;7:1–19. doi: 10.3389/fpls.2016.00851. PubMed DOI PMC
Grozeva S., Anokhin B.A., Simov N., Kuznetsova V.G. New evidence for the presence of the telomere motif (TTAGG)n in the family Reduviidae and its absence in the families Nabidae and Miridae (Hemiptera, Cimicomorpha) Comp. Cytogenet. 2019;13:283–295. doi: 10.3897/CompCytogen.v13i3.36676. PubMed DOI PMC
Kuznetsova V., Grozeva S., Gokhman V. Telomere structure in insects: A review. J. Zool. Syst. Evol. Res. 2020;58:127–158. doi: 10.1111/jzs.12332. DOI
Chirino M.G., Dalíková M., Marec F.R., Bressa M.J. Chromosomal distribution of interstitial telomeric sequences as signs of evolution through chromosome fusion in six species of the giant water bugs (Hemiptera, Belostoma) Ecol. Evol. 2017;7:5227–5235. doi: 10.1002/ece3.3098. PubMed DOI PMC
Dutra D.D., Souza L.H.B., Cordeiro L.M., Araujo D. The highest chromosome number and first chromosome fluorescent in situ hybridization in the velvet worms of the family Peripatidae. Zool. Stud. 2020;59:e5. doi: 10.6620/ZS.2020.59-5. PubMed DOI PMC
Ruiz-Herrera A., Nergadze S.G., Santagostino M., Giulotto E. Telomeric repeats far from the ends: Mechanisms of origin and role in evolution. Cytogenet. Genome Res. 2008;122:219–228. doi: 10.1159/000167807. PubMed DOI
Bolzán A.D. Interstitial telomeric sequences in vertebrate chromosomes: Origin, function, instability and evolution. Mutat. Res. 2017;773:51–65. doi: 10.1016/j.mrrev.2017.04.002. PubMed DOI