Insights into the Karyotype Evolution of Charinidae, the Early-Diverging Clade of Whip Spiders (Arachnida: Amblypygi)

. 2021 Nov 12 ; 11 (11) : . [epub] 20211112

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34827965

Grantová podpora
LTAUSA 19142 Czech Ministry of Education, Youth, and Sports
SVV 260568 Czech Ministry of Education, Youth, and Sports
92218 Grant Agency of the Charles University
67985904 RVO of Institute of Animal Physiology and Genetics CAS, Liběchov
CZ.1.07/2.3.00/30.0032 Postdok_BIOGLOBE
16-10298S Czech Science Foundation

Whip spiders (Amblypygi) represent an ancient order of tetrapulmonate arachnids with a low diversity. Their cytogenetic data are confined to only a few reports. Here, we analyzed the family Charinidae, a lineage almost at the base of the amblypygids, providing an insight into the ancestral traits and basic trajectories of amblypygid karyotype evolution. We performed Giemsa staining, selected banding techniques, and detected 18S ribosomal DNA and telomeric repeats by fluorescence in situ hybridization in four Charinus and five Sarax species. Both genera exhibit a wide range of diploid chromosome numbers (2n = 42-76 and 22-74 for Charinus and Sarax, respectively). The 2n reduction was accompanied by an increase of proportion of biarmed elements. We further revealed a single NOR site (probably an ancestral condition for charinids), the presence of a (TTAGG)n telomeric motif localized mostly at the chromosome ends, and an absence of heteromorphic sex chromosomes. Our data collectively suggest a high pace of karyotype repatterning in amblypygids, with probably a high ancestral 2n and its subsequent gradual reduction by fusions, and the action of pericentric inversions, similarly to what has been proposed for neoamblypygids. The possible contribution of fissions to charinid karyotype repatterning, however, cannot be fully ruled out.

Zobrazit více v PubMed

Weygoldt P. Whip Spiders (Chelicerata: Amblypygi). Their Biology, Morphology and Systematics. Apollo Books; Stenstrup, Denmark: 2000. 163p

Colla A., Legittimo C.M., Castelucci F., Simeon E., Miranda G.S. First record of Amblypygi from Italy: Charinus ioanniticus (Charinidae) Arachnology. 2020;18:642–648. doi: 10.13156/arac.2020.18.6.642. DOI

Harvey M.S. Catalogue of the Smaller Arachnid Orders of the World. Amblypygi, Uropygi, Schizomida, Palpigradi, Ricinulei and Solifugae. CSIRO Publishing; Collingwood, Australia: 2003. 385p. DOI

Garwood R.J., Dunlop J.A., Knecht B.J., Hegna T.A. The phylogeny of fossil whip spiders. BMC Evol. Biol. 2017;17:105–118. doi: 10.1186/s12862-017-0931-1. PubMed DOI PMC

Esposito A.L., Bloom T., Caicedo-Quiroga L., Alicea-Serrano A.M., Sánchez-Ruiz J.A., May-Collado L.J., Blinford G.J., Agnarsson I. Islands within islands: Diversification of tailless whip spiders (Amblypygi, Phrynus) in Caribbean caves. Mol. Phylogenet. Evol. 2015;93:107–117. doi: 10.1016/j.ympev.2015.07.005. PubMed DOI

Reveillion F., Wattier R., Montuire S., Carvalho L.S., Bollache L. Cryptic diversity within three South American whip spider species (Arachnida, Amblypygi) Zool. Res. 2020;41:595–598. doi: 10.24272/j.issn.2095-8137.2020.068. PubMed DOI PMC

Seiter M., Reyes Lerma A.C., Král J., Sember A., Divišová K., Palacios J.G.V., Colmenares P.A., Loria S.F., Prendini L. Cryptic diversity in the whip spider genus Paraphrynus (Amblypygi: Phrynidae): Integrating morphology, karyotype and DNA. Arthropod Syst. Phylogeny. 2020;78:265–285. doi: 10.26049/ASP78-2-2020-04. DOI

Harvey M.S. The neglected cousins: What do we know about the smaller arachnid orders? J. Arachnol. 2002;30:357–372. doi: 10.1636/0161-8202(2002)030[0357:TNCWDW]2.0.CO;2. DOI

Roskov Y., Ower G., Orrell T., Nicolson D., Bailly N., Kirk P.M., Bourgoin T., DeWalt R.E., Decock W., Van Nieukerken E., et al. Species 2000 & ITIS Catalogue of Life, 2019 Annual Checklist. Species 2000; Leiden, The Netherlands: 2019. [(accessed on 30 September 2021)]. ISSN 2405-884X. Available online: www.catalogueoflife.org/annual-checklist/2019.

Miranda G.S., Giupponi A.P.L., Scharff N., Prendini L. Phylogeny and biogeography of the pantropical whip spider family Charinidae (Arachnida: Amblypygi) Zool. J. Linn. Soc. 2021:zlaa101. doi: 10.1093/zoolinnean/zlaa101. DOI

Miranda G.S., Giupponi A.P., Prendini L., Scharff N. Systematic revision of the pantropical whip spider family Charinidae Quintero, 1986 (Arachnida, Amblypygi) Eur. J. Taxon. 2021;772:1–409. doi: 10.5852/ejt.2021.772.1505. DOI

World Arachnida Catalog. World Amblypygi Catalog. Natural History Museum Bern. 2021. [(accessed on 12 October 2021)]. Available online: http://wac.nmbe.ch.

Sharma P.P., Kaluziak S.T., Pérez-Porro A.R., González V.L., Hormiga G., Wheeler W.C., Giribet G. Phylogenomic interrogation of Arachnida reveals systemic conflicts in phylogenetic signal. Mol. Biol. Evol. 2014;31:2963–2984. doi: 10.1093/molbev/msu235. PubMed DOI

Ballesteros J.A., Sharma P.P. A critical appraisal of the placement of Xiphosura (Chelicerata) with account of known sources of phylogenetic error. Syst. Biol. 2019;68:896–917. doi: 10.1093/sysbio/syz011. PubMed DOI

Lozano-Fernandez J., Tanner A.R., Giacomelli M., Carton R., Vinther J., Edgecombe G.D., Pisani D. Increasing species sampling in chelicerate genomic-scale datasets provides support for monophyly of Acari and Arachnida. Nat. Commun. 2019;10:4534. doi: 10.1038/s41467-019-12259-6. PubMed DOI PMC

Millot J., Tuzet O. La spermatogenèse chez les Pédipalpes. Bull. Biol. Fr. Belg. 1934;68:77–83.

Vítková M., Král J., Traut W., Zrzavý J., Marec F. The evolutionary origin of insect telomeric repeats, (TTAGG)n. Chromosome Res. 2005;13:145–156. doi: 10.1007/s10577-005-7721-0. PubMed DOI

Paula-Neto E., Araujo D., Carvalho L.S., Cella D.M., Schneider M.C. Chromosomal characteristics of a Brazilian whip spider (Amblypygi) and evolutionary relationships with other arachnid orders. Genet. Mol. Res. 2013;12:3726–3734. doi: 10.4238/2013.September.19.3. PubMed DOI

Miranda G.S., Giupponi A.P.L., Prendini L., Scharff N. Weygoldtia, a new genus of Charinidae Quintero, 1986 (Arachnida, Amblypygi) with a reappraisal of the genera in the family. Zool. Anz. 2018;273:23–32. doi: 10.1016/j.jcz.2018.02.003. DOI

Seiter M., Schramm F.D., Schwaha T. Description of a new Charinus species (Amblypygi: Charinidae) from the Monseñor Nouel province, Dominican Republic. Zootaxa. 2018;4438:349–361. doi: 10.11646/zootaxa.4438.2.9. PubMed DOI

Miranda G.S., Reboleira P.A.S. Amblypygids of Timor-Leste: First record of the order from the country with the description of a remarkable new species of Sarax (Arachnida, Amblypygi, Charinidae) Zookeys. 2019;820:1–12. doi: 10.3897/zookeys.820.30139. PubMed DOI PMC

Weygoldt P. Evolutionary morphology of whip spiders: Towards a phylogenetic system (Chelicerata: Arachnida: Amblypygi) J. Zool. Syst. Evol. Res. 1996;34:185–202. doi: 10.1111/j.1439-0469.1996.tb00825.x. DOI

Traut W. Pachytene mapping in the female silkworm, Bombyx mori L. (Lepidoptera) Chromosoma. 1976;108:173–180. doi: 10.1007/s004120050366. PubMed DOI

Dolejš P., Kořínková T., Musilová J., Opatová V., Kubcová L., Buchar J., Král J. Karyotypes of central European spiders of the genera Arctosa, Tricca and Xerolycosa (Aranea: Lycosidae) Eur. J. Entomol. 2011;108:1–16. doi: 10.14411/eje.2011.001. DOI

Levan A.K., Fredga K., Sandberg A.A. Nomenclature for centromeric position on chromosomes. Hereditas. 1964;52:201–220. doi: 10.1111/j.1601-5223.1964.tb01953.x. DOI

Matthey R. L’évolution de la formule chromosomiale chez les Vertébrés. Experientia. 1945;I:78–86. doi: 10.1007/BF02156807. DOI

Sumner A.T. A simple technique for demonstrating centromeric heterochromatin. Exp. Cell Res. 1972;75:304–306. doi: 10.1016/0014-4827(72)90558-7. PubMed DOI

Plíšková J., Kovařík F., Košulič O., Šťáhlavský F. Description of a new species of Heterometrus Ehrenberg, 1828 (Scorpiones: Scorpionidae) from Thailand with remarks about the utilization of cytogenetic data in taxonomy of the genus. Annal. Zool. 2016;66:467–476. doi: 10.3161/00034541ANZ2016.66.3.011. DOI

Adilardi R.S., Ojanguren-Affilastro A.A., Martí D.A., Mola L.M. Chromosome puzzle in the southernmost populations of the medically important scorpion Tityus bahiensis (Perty 1833) (Buthidae), a polymorphic species with striking structural rearrangements. Zool. Anz. 2020;288:139–150. doi: 10.1016/j.jcz.2020.08.001. DOI

Sola L., Rossi A.R., Iaselli V., Rasch E.M., Monaco P.J. Cytogenetics of bisexual/unisexual species of Poecilia. II. Analysis of heterochromatin and nucleolar organizer regions in Poecilia mexicana mexicana by C-banding and DAPI, quinacrine, chromomycin A3, and silver staining. Cytogenet. Cell Genet. 1992;60:229–235. doi: 10.1159/000133346. PubMed DOI

Mayr B., Ráb P., Kalat M. Localisation of NORs and counterstain-enhanced fluorescence studies in Perca fluviatilis (Pisces, Percidae) Genetica. 1985;67:51–56. doi: 10.1007/BF02424460. PubMed DOI

Miller D.A., Dev V.G., Tantravahi R., Miller O.J. Suppression of human nucleolus organizer activity in mouse-human somatic hybrid cells. Exp. Cell Res. 1976;101:235–243. doi: 10.1016/0014-4827(76)90373-6. PubMed DOI

Jiménez R., Burgos M., de la Guardia R.D. A study of the Ag-staining significance in mitosis NORs. Heredity. 1988;60:125–127. doi: 10.1038/hdy.1988.18. PubMed DOI

Ijdo J.W., Wells R.A., Baldini A., Readers S.T. Improved telomere detection using a telomere repeat probe (TTAGGG)n generated by PCR. Nucleic Acids Res. 1991;19:4780. doi: 10.1093/nar/19.17.4780. PubMed DOI PMC

Sahara K., Marec F., Traut W. TTAGG telomeric repeats in chromosomes of some insects and other arthropods. Chromosome Res. 1999;7:449–460. doi: 10.1023/A:1009297729547. PubMed DOI

Forman M., Nguyen P., Hula V., Král J. Sex chromosome pairing and extensive NOR polymorphism in Wadicosa fidelis (Araneae: Lycosidae) Cytogenet. Genome Res. 2013;141:43–49. doi: 10.1159/000351041. PubMed DOI

Fuková I., Nguyen P., Marec F. Codling moth cytogenetics: Karyotype, chromosomal location of rDNA, and molecular differentiation of sex chromosomes. Genome. 2005;48:1083–1092. doi: 10.1139/g05-063. PubMed DOI

Traut W., Sahara K., Otto T.D., Marec F. Molecular differentiation of sex chromosomes probed by comparative genomic hybridization. Chromosoma. 1999;108:173–180. doi: 10.1007/s004120050366. PubMed DOI

Schwager E.E., Sharma P.P., Clark T., Leite D.J., Wierschin T., Pechmann M., Akiyama-Oda Y., Esposito L., Bechsgaard J., Bilde T., et al. The house spider genome reveals an ancient whole-genome duplication during arachnid evolution. BMC Biol. 2017;15:62. doi: 10.1186/s12915-017-0399-x. PubMed DOI PMC

Gainett G., Sharma P.P. Genomic resources and toolkits for developmental study of whip spiders (Amblypygi) provide insights into arachnid genome evolution and antenniform leg patterning. EvoDevo. 2020;11:1–18. doi: 10.1186/s13227-020-00163-w. PubMed DOI PMC

Fan Z., Yuan T., Liu P., Wang L.-Y., Jin J.-F., Zhang F., Zhang Z.S. A chromosome-level genome of the spider Trichonephila antipodiana reveals the genetic basis of its polyphagy and evidence of an ancient whole-genome duplication event. GigaScience. 2021;10:giab016. doi: 10.1093/gigascience/giab016. PubMed DOI PMC

Suzuki S. Cytological studies in spiders. III. Studies on the chromosomes of fifty-seven species of spiders belonging to seventeen families with general considerations on chromosomal evolution. J. Sci. Hiroshima Univ. B. 1954;15:23–136.

Deon G.A., Glugoski L., Vicari M.R., Nogaroto V., Sassi F.M.C., Cioffi M.B., Liehr T., Bertollo L.A.C., Moreira-Filho O. Highly rearranged karyotypes and multiple sex chromosome systems in armored catfishes from the genus Harttia (Teleostei, Siluriformes) Genes. 2020;11:1366. doi: 10.3390/genes11111366. PubMed DOI PMC

Araujo D., Cella D.M., Brescovit A.D. Cytogenetic analysis of the Neotropical spider Nephilengys cruentata (Araneomorphae, Tetragnathidae): Standard staining, NORs, C-bands and base-specific fluorochromes. Braz. J. Biol. 2005;65:193–202. doi: 10.1590/S1519-69842005000200002. PubMed DOI

Almeida B.R.R., Milhomem-Paixão S.S.R., Noronha R.C.R., Nagamachi C.Y., Costa M.J.R., Oliveira-Pardal P.P., Coelho J.S., Pieczarka J.C. Karyotype diversity and chromosomal organization of repetitive DNA in Tityus obscurus (Scorpiones, Buthidae) BMC Genet. 2017;18:35. doi: 10.1186/s12863-017-0494-6. PubMed DOI PMC

Rincão M.P., Brescovit A.D., Dias A.L. Insights on repetitive DNA behavior in two species of Ctenus Walckenaer, 1805 and Guasuctenus Polotow and Brescovit, 2019 (Araneae, Ctenidae): Evolutionary profile of H3 histone, 18S rRNA genes and heterochromatin distribution. PLoS ONE. 2020;15:e0231324. doi: 10.1371/journal.pone.0231324. PubMed DOI PMC

Rocchi M., Archidiacono N., Schempp W., Capozzi O., Stanyon R. Centromere repositioning in mammals. Heredity. 2012;108:59–67. doi: 10.1038/hdy.2011.101. PubMed DOI PMC

Král J., Kořínková T., Krkavcová L., Musilová J., Forman M., Ávila Herrera I.M., Haddad C.R., Vítková M., Henriques S., Palacios Vargas J.G., et al. Evolution of karyotype, sex chromosomes, and meiosis in mygalomorph spiders (Araneae: Mygalomorphae) Biol. J. Linn. Soc. 2013;109:377–408. doi: 10.1111/bij.12056. DOI

Řezáč M., Arnedo M.A., Opatova V., Musilová J., Řezáčová V., Král J. Taxonomic revision and insights into the speciation mode of the spider Dysdera erythrina species-complex (Araneae: Dysderidae): Sibling species with sympatric distributions. Invertebr. Syst. 2018;32:10–54. doi: 10.1071/IS16071. DOI

Král J., Forman M., Kořínková T., Reyes Lerma A.C., Haddad C., Musilová J., Řezáč M., Ávila Herrera I.M., Thakur S., Dippenaar-Schoeman A.S., et al. Insights into the karyotype and genome evolution of haplogyne spiders indicate a polyploid origin of lineage with holokinetic chromosomes. Sci. Rep. 2019;9:3001. doi: 10.1038/s41598-019-39034-3. PubMed DOI PMC

Schneider M.C., Zacaro A.A., Pinto-da-Rocha R., Candido D.M., Cella D.M. Complex meiotic configuration of the holocentric chromosomes: The intriguing case of the scorpion Tityus bahiensis. Chromosome Res. 2009;17:883–898. doi: 10.1007/s10577-009-9076-4. PubMed DOI

Kovařík F., Lowe G., Šťáhlavský F. Three new Chaerilus from Malaysia (Tioman Island) and Thailand (Scorpiones: Chaerilidae), with a review of C. cimrmani, C. sejnai, and C. tichyi. Euscorpius. 2018;268:1–27. doi: 10.18590/euscorpius.2018.vol2018.iss268.1. DOI

Tsurusaki N. Geographic variation of chromosomes in Sabacon makinoi Suzuki (Arachnida, Opiliones, Sabaconidae) Bull. Biogeogr. Soc. Jpn. 1989;44:111–116.

Oliveira R.M., Zacaro A.A., Gnaspini P., Cella D.M. Cytogenetics of three Brazilian Goniosoma species: A new record for diploid number in Laniatores (Opiliones, Gonyleptidae, Goniosomatinae) J. Arachnol. 2006;34:435–443. doi: 10.1636/S04-30.1. DOI

Šťáhlavský F., Král J., Harvey M.S., Haddad C.R. A karyotype study on the pseudoscorpion families Geogarypidae, Garypinidae and Olpiidae (Arachnida: Pseudoscorpiones) Eur. J. Entomol. 2006;103:277–289. doi: 10.14411/eje.2006.036. DOI

Šťáhlavský F., Král J., Harvey M.S., Haddad C.R. The first cytogenetic characterisation of atemnids: Pseudoscorpions with the highest chromosome numbers (Arachnida: Pseudoscorpiones) Cytogenet. Genome Res. 2012;137:22–30. doi: 10.1159/000339516. PubMed DOI

Peng J.C., Karpen G.H. Epigenetic regulation of heterochromatic DNA stability. Curr. Opin. Genet. Dev. 2008;18:204–211. doi: 10.1016/j.gde.2008.01.021. PubMed DOI PMC

Brown J.D., O’Neill R.J. Chromosomes, conflict, and epigenetics: Chromosomal speciation revisited. Annu. Rev. Genomics Hum. Genet. 2010;11:291–316. doi: 10.1146/annurev-genom-082509-141554. PubMed DOI

King M. Species Evolution: The Role of Chromosome Change. 1st ed. Cambridge University Press; Cambridge, UK: 1993.

Kandul N.P., Lukhtanov V.A., Pierce N.E. Karyotypic diversity and speciation in Agrodiaetus butterflies. Evolution. 2007;61:546–559. doi: 10.1111/j.1558-5646.2007.00046.x. PubMed DOI

Faria R., Navarro A. Chromosomal speciation revisited: Rearranging theory with pieces of evidence. Trends Ecol. Evol. 2010;25:660–669. doi: 10.1016/j.tree.2010.07.008. PubMed DOI

Luo J., Sun X., Cormack B.P., Boeke J.D. Karyotype engineering by chromosome fusion leads to reproductive isolation in yeast. Nature. 2018;560:392–396. doi: 10.1038/s41586-018-0374-x. PubMed DOI PMC

Damas J., Corbo M., Lewin H.A. Vertebrate chromosome evolution. Annu. Rev. Anim. Biosci. 2021;9:1–27. doi: 10.1146/annurev-animal-020518-114924. PubMed DOI

Guerrero R.F., Kirkpatrick M. Local adaptation and the evolution of chromosome fusions. Evolution. 2014;68:2747–2756. doi: 10.1111/evo.12481. PubMed DOI

Ortiz-Barrientos D., Engelstädter J., Rieseberg L.H. Recombination rate evolution and the origin of species. Trends Ecol. Evol. 2016;31:226–236. doi: 10.1016/j.tree.2015.12.016. PubMed DOI

Wellenreuther M., Bernatchez L. Eco-evolutionary genomics of chromosomal inversions. Trends Ecol. Evol. 2018;33:427–440. doi: 10.1016/j.tree.2018.04.002. PubMed DOI

Araujo D., Schneider M.C., Paula-Neto E., Cella D.M. Sex chromosomes and meiosis in spiders: A review. In: Swan A., editor. Meiosis—Molecular Mechanisms and Cytogenetic Diversity. InTechOpen; Rieka, Croatia: 2012. pp. 87–108.

Kořínková T., Král J. Karyotypes, sex chromosomes, and meiotic division in spiders. In: Nentwig W., editor. Spider Ecophysiology. 1st ed. Springer; Berlin, Germany: 2013. pp. 159–169. DOI

Sember A., Pappová M., Forman M., Nguyen P., Marec F., Dalíková M., Divišová K., Doležálková-Kaštánková M., Zrzavá M., Sadílek D., et al. Patterns of sex chromosome differentiation in spiders: Insights from comparative genomic hybridisation. Genes. 2020;11:849. doi: 10.3390/genes11080849. PubMed DOI PMC

Kasturi Bai A.R., Parthasarathy M.D. The chromosomes of Thelyphonus indicus Stoliczka. Proc. Indian Acad. Sci. B. 1957;24:9–22.

Král J. Evolution of multiple sex chromosomes in the spider genus Malthonica (Araneae: Agelenidae) indicates unique structure of the spider sex chromosome systems. Chromosome Res. 2007;15:863–879. doi: 10.1007/s10577-007-1169-3. PubMed DOI

Sochorová J., García S., Gálvez F., Symonová R., Kovařík A. Evolutionary trends in animal ribosomal DNA loci: Introduction to a new online database. Chromosoma. 2018;127:141–150. doi: 10.1007/s00412-017-0651-8. PubMed DOI PMC

Cabral-de-Mello D.C., Marec F. Universal fluorescence in situ hybridization (FISH) protocol for mapping repetitive DNAs in insects and other arthropods. Mol. Genet. Genom. 2021;296:513–552. doi: 10.1007/s00438-021-01765-2. PubMed DOI

Provazníková I., Hejníčková M., Visser S., Dalíková M., Carabajal Paladino L.Z., Zrzavá M., Voleníková A., Marec F., Nguyen P. Large-scale comparative analysis of cytogenetic markers across Lepidoptera. Sci. Rep. 2021;11:12214. doi: 10.1038/s41598-021-91665-7. PubMed DOI PMC

Rincão M.P., Chavari J.L., Brescovit A.D., Dias A.L. Cytogenetic analysis of five Ctenidae species (Araneae): Detection of heterochromatin and 18S rDNA sites. Comp. Cytogenet. 2017;11:627–639. doi: 10.3897/CompCytogen.v11i4.10620. PubMed DOI PMC

Šťáhlavský F., Forman M., Just P., Denič F., Haddad C.R., Opatova V. Cytogenetics of entelegyne spiders (Arachnida, Araneae) from southern Africa. Comp. Cytogenet. 2020;14:107–138. doi: 10.3897/CompCytogen.v14i1.48667. PubMed DOI PMC

Ávila Herrera I.M., Král J., Pastuchová M., Forman M., Musilová J., Kořínková T., Šťáhlavský F., Zrzavá M., Nguyen P., Just P., et al. Evolutionary pattern of karyotypes and meiosis in pholcid spiders (Araneae: Pholcidae): Implications for reconstructing chromosome evolution of araneomorph spiders. BMC Ecol. Evol. 2021;21:75. doi: 10.1186/s12862-021-01750-8. PubMed DOI PMC

Šťáhlavský F., Štundlová J., Lowe G., Stockmann M., Kovařík F. Application of cytogenetic markers in the taxonomy of flat rock scorpions (Scorpiones: Hormuridae), with the description of Hadogenes weygoldti sp. n. Zool. Anz. 2018;273:173–182. doi: 10.1016/j.jcz.2018.01.007. DOI

Ubinski C.V., Carvalho L.S., Schneider M.C. Mechanisms of karyotype evolution in the Brazilian scorpions of the subfamily Centruroidinae (Buthidae) Genetica. 2018;146:475–486. doi: 10.1007/s10709-018-0038-7. PubMed DOI

Štundlová J., Šmíd J., Nguyen P., Šťáhlavský F. Cryptic diversity and dynamic chromosome evolution in Alpine scorpions (Euscorpiidae: Euscorpius) Mol. Phylogenet. Evol. 2019;134:152–163. doi: 10.1016/j.ympev.2019.02.002. PubMed DOI

Šťáhlavský F., Nguyen P., Sadílek D., Štundlová J., Just P., Haddad C.R., Koc H., Ranawana K.B., Stockmann M., Yagmur E.A., et al. Evolutionary dynamics of rDNA clusters on chromosomes of buthid scorpions (Chelicerata: Arachnida) Biol. J. Linn. Soc. 2020;131:547–565. doi: 10.1093/biolinnean/blaa118. DOI

Šťáhlavský F., Kovařík F., Stockmann M., Opatova V. Karyotype evolution and preliminary molecular assessment of genera in the family Scorpiopidae (Arachnida: Scorpiones) Zoology. 2021;144:125882. doi: 10.1016/j.zool.2020.125882. PubMed DOI

Červená M., Šťáhlavský F., Papáč V., Kováč Ľ., Christophoryová J. Morphological and cytogenetic characteristics of Neobisium (Blothrus) slovacum Gulička, 1977 (Pseudoscorpiones, Neobisiidae), the northernmost troglobitic species of the subgenus Blothrus in Europe. Zookeys. 2019;817:113–130. doi: 10.3897/zookeys.817.27189. PubMed DOI PMC

Svojanovská H., Nguyen P., Hiřman M., Tuf I.H., Wahab R.A., Haddad C.R., Šťáhlavský F. Karyotype evolution in harvestmen of the suborder Cyphophthalmi (Opiliones) Cytogenet. Genome Res. 2016;148:227–236. doi: 10.1159/000445863. PubMed DOI

Šťáhlavský F., Opatova V., Just P., Lotz L.N., Haddad C.R. Molecular technique reveals high variability of 18S rDNA distribution in harvestmen (Opiliones, Phalangiidae) from South Africa. Comp. Cytogenet. 2018;12:41–59. doi: 10.3897/compcytogen.v12i1.21744. PubMed DOI PMC

Jindrová H., Hiřman M., Sadílek D., Bezděčka P., Šťáhlavský F. Distribution of 18S rDNA clusters in Central European harvestmen of the suborder Eupnoi (Arachnida: Opiliones) Eur. J. Entomol. 2020;117:282–288. doi: 10.14411/eje.2020.032. DOI

Hiřman M., Mohagan A., Šťáhlavský F. Unexpectedly high number of 18S rRNA gene clusters in Miopsalis dillyi (Opiliones: Cyphophthalmi: Stylocellidae) from Mindanao, Philippines. J. Arachnol. 2021;48:322–328. doi: 10.1636/JoA-S-20-028. DOI

Hill C.A., Guerrero F.D., Van Zee J.P., Geraci N.S., Walling J.G., Stuart J.J. The position of repetitive DNA sequence in the southern cattle tick genome permits chromosome identification. Chromosome Res. 2009;17:77–89. doi: 10.1007/s10577-008-9003-0. PubMed DOI

Meyer J.M., Kurtti T.J., Van Zee J.P., Hill C.A. Genome organization of major tandem repeats in the hard tick, Ixodes scapularis. Chromosome Res. 2010;18:357–370. doi: 10.1007/s10577-010-9120-4. PubMed DOI

Král J., Musilová J., Šťáhlavský F., Řezáč M., Akan Z., Edwards R.L., Coyle F.A., Almerje C.R. Evolution of the karyotype and sex chromosome systems in basal clades of araneomorph spiders (Araneae: Araneomorphae) Chromosome Res. 2006;14:859–880. doi: 10.1007/s10577-006-1095-9. PubMed DOI

Gulia-Nuss M., Nuss A.B., Meyer J.M., Sonenshine D.E., Roe R.M., Waterhouse R.M., Sattelle D.B., de la Fuente J., Ribeiro J.M., Megy K., et al. Genomic insights into the Ixodes scapularis tick vector of Lyme disease. Nat. Commun. 2016;7:10507. doi: 10.1038/ncomms10507. PubMed DOI PMC

Frydrychová R., Grossmann P., Trubač P., Vítková M., Marec F. Phylogenetic distribution of TTAGG telomeric repeats in insects. Genome. 2004;47:163–178. doi: 10.1139/g03-100. PubMed DOI

Procházková Schrumpfová P., Schořová Š., Fajkus J. Telomere- and telomerase-associated proteins and their functions in the plant cell. Front. Plant Sci. 2016;7:1–19. doi: 10.3389/fpls.2016.00851. PubMed DOI PMC

Grozeva S., Anokhin B.A., Simov N., Kuznetsova V.G. New evidence for the presence of the telomere motif (TTAGG)n in the family Reduviidae and its absence in the families Nabidae and Miridae (Hemiptera, Cimicomorpha) Comp. Cytogenet. 2019;13:283–295. doi: 10.3897/CompCytogen.v13i3.36676. PubMed DOI PMC

Kuznetsova V., Grozeva S., Gokhman V. Telomere structure in insects: A review. J. Zool. Syst. Evol. Res. 2020;58:127–158. doi: 10.1111/jzs.12332. DOI

Chirino M.G., Dalíková M., Marec F.R., Bressa M.J. Chromosomal distribution of interstitial telomeric sequences as signs of evolution through chromosome fusion in six species of the giant water bugs (Hemiptera, Belostoma) Ecol. Evol. 2017;7:5227–5235. doi: 10.1002/ece3.3098. PubMed DOI PMC

Dutra D.D., Souza L.H.B., Cordeiro L.M., Araujo D. The highest chromosome number and first chromosome fluorescent in situ hybridization in the velvet worms of the family Peripatidae. Zool. Stud. 2020;59:e5. doi: 10.6620/ZS.2020.59-5. PubMed DOI PMC

Ruiz-Herrera A., Nergadze S.G., Santagostino M., Giulotto E. Telomeric repeats far from the ends: Mechanisms of origin and role in evolution. Cytogenet. Genome Res. 2008;122:219–228. doi: 10.1159/000167807. PubMed DOI

Bolzán A.D. Interstitial telomeric sequences in vertebrate chromosomes: Origin, function, instability and evolution. Mutat. Res. 2017;773:51–65. doi: 10.1016/j.mrrev.2017.04.002. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...