A step forward in the genome characterization of the sugarcane borer, Diatraea saccharalis: karyotype analysis, sex chromosome system and repetitive DNAs through a cytogenomic approach
Jazyk angličtina Země Rakousko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36219241
DOI
10.1007/s00412-022-00781-4
PII: 10.1007/s00412-022-00781-4
Knihovny.cz E-zdroje
- Klíčová slova
- Chromosome fusion, FISH, Holocentric chromosome, Multiple sex chromosomes, W chromatin, satDNA,
- MeSH
- karyotyp MeSH
- molekulární evoluce MeSH
- můry * genetika MeSH
- pohlavní chromozomy genetika MeSH
- Saccharum * genetika MeSH
- transpozibilní elementy DNA MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- transpozibilní elementy DNA MeSH
Moths of the family Crambidae include a number of pests that cause economic losses to agricultural crops. Despite their economic importance, little is known about their genome architecture and chromosome evolution. Here, we characterized the chromosomes and repetitive DNA of the sugarcane borer Diatraea saccharalis using a combination of low-pass genome sequencing, bioinformatics, and cytogenetic methods, focusing on the sex chromosomes. Diploid chromosome numbers differed between the sexes, i.e., 2n = 33 in females and 2n = 34 in males. This difference was caused by the occurrence of a WZ1Z2 trivalent in female meiosis, indicating a multiple sex-chromosome system WZ1Z2/Z1Z1Z2Z2. A strong interstitial telomeric signal was observed on the W chromosome, indicating a fusion of the ancestral W chromosome with an autosome. Among repetitive DNAs, transposable elements (TEs) accounted for 39.18% (males) to 41.35% (females), while satDNAs accounted for only 0.214% (males) and 0.215% (females) of the genome. FISH mapping revealed different chromosomal organization of satDNAs, such as single localized clusters, spread repeats, and non-clustered repeats. Two TEs mapped by FISH were scattered. Although we found a slight enrichment of some satDNAs in the female genome, they were not differentially enriched on the W chromosome. However, we found enriched FISH signals for TEs on the W chromosome, suggesting their involvement in W chromosome degeneration and differentiation. These data shed light on karyotype and repetitive DNA dynamics due to multiple chromosome fusions in D. saccharalis, contribute to the understanding of genome structure in Lepidoptera and are important for future genomic studies.
Zobrazit více v PubMed
Abe H, Mita K, Yasukochi Y, Oshiki T, Shimada T (2005) Retrotransposable elements on the W chromosome of the silkworm, Bombyx mori. Cytogenet Genome Res 110:144–151. https://doi.org/10.1159/000084946 PubMed DOI
Bardella VB, Fernandes JAM, Cabral-de-Mello DC (2016) Chromosomal evolutionary dynamics of four multigene families in Coreidae and Pentatomidae (Heteroptera) true bugs. Mol Genet Genomics 291:1919–1925. https://doi.org/10.1007/s00438-016-1229-5 PubMed DOI
Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 2:573–580. https://doi.org/10.1093/nar/27.2.573 DOI
Biscotti MA, Olmo E, Heslop-Harrison JS (2015) Repetitive DNA in eukaryotic genomes. Chromosome Res 23:415–420. https://doi.org/10.1007/s10577-015-9499-z PubMed DOI
Borges dos Santos L, Viana JPG, Francischini FJB, Fogliata SV, Joyce AL, Pereira de Souza A, Murúa MG, Clough SJ (2020) A first draft genome of the sugarcane borer, Diatraea saccharalis. F1000Research 9:1269. https://doi.org/10.12688/f1000research.26614.1 DOI
Brown KS, Von Schoultz B, Suomalainen E (2004) Chromosome evolution in Neotropical Danainae and Ithomiinae (Lepidoptera). Hereditas 141:216–236. https://doi.org/10.1111/j.1601-5223.2004.01868.x PubMed DOI
Cabral-de-Mello DC, Marec F (2021) Universal fluorescence in situ hybridization (FISH) protocol for mapping repetitive DNAs in insects and other arthropods. Mol Genet Genomics 296:513–526. https://doi.org/10.1007/s00438-021-01765-2 PubMed DOI
Cabral-de-Mello DC, Oliveira SG, de Moura R, Martins C (2011) Chromosomal organization of the 18S and 5S rRNAs and histone H3 genes in Scarabaeinae coleopterans: insights into the evolutionary dynamics of multigene families and heterochromatin. BMC Genet 12:88. https://doi.org/10.1186/1471-2156-12-88 PubMed DOI PMC
Cabral-de-Mello DC, Zrzavá M, Kubíčková S, Rendón P, Marec F (2021) The role of satellite DNAs in genomic architecture and sex chromosome evolution in Crambidae moths. Front Genet 12:661417. https://doi.org/10.3389/fgene.2021.661417 PubMed DOI PMC
Carabajal Paladino L, Provazníková I, Berger M, Bass C, Aratchige NS, López SN, Marec F, Nguyen P (2019) Sex chromosome turnover in moths of the diverse superfamily Gelechioidea. Genome Biol Evol 11:1307–1319. https://doi.org/10.1093/gbe/evz075 PubMed DOI PMC
Chalopin D, Volff JN, Galiana D, Anderson JL, Schartl M (2015) Transposable elements and early evolution of sex chromosomes in fish. Chromosome Res 23:545–560. https://doi.org/10.1007/s10577-015-9490-8 PubMed DOI
Charlesworth B, Sniegowski P, Stephan W (1994) The evolutionary dynamics of repetitive DNAs in eukaryotes. Nature 371:215–220. https://doi.org/10.1038/371215a0 PubMed DOI
Chénais B, Caruso A, Hiard S, Casse N (2012) The impact of transposable elements on eukaryotic genomes: from genome size increase to genetic adaptation to stressful environments. Gene 509:7–15. https://doi.org/10.1016/j.gene.2012.07.042 PubMed DOI
Dalíková M, Zrzavá M, Hladová I, Nguyen P, Šonský I, Flegrová M, Kubíčková S, Voleníková A, Kawahara AY, Peters RS, Marec F (2017a) New insights into the evolution of the W chromosome in Lepidoptera. J Hered 108:709–719. https://doi.org/10.1093/jhered/esx063 PubMed DOI
Dalíková M, Zrzavá M, Kubíčková S, Marec F (2017b) W-enriched satellite sequence in the Indian meal moth, Plodia interpunctella (Lepidoptera, Pyralidae). Chromosome Res 25:241–252. https://doi.org/10.1007/s10577-017-9558-8 PubMed DOI
Deakin JE, Potter S, O’Neill R, Ruiz-Herrera A, Cioffi MB et al (2019) Chromosomics: bridging the gap between genomes and chromosomes. Genes 10:627. https://doi.org/10.3390/genes10080627 DOI PMC
Ferretti ABSM, Milani D, Palacios-Gimenez OM, Ruiz-Ruano FJ, Cabral-de-Mello DC (2020) High dynamism for neo-sex chromosomes: satellite DNA reveal complex evolution in a grasshopper. Heredity 125:124–137. https://doi.org/10.1038/s41437-020-0327-7 PubMed DOI PMC
Flynn JL, Reagan TE, Ogunwolu EO (1984) Establishment and damage of the sugarcane borer (Lepidoptera: Pyralidae) in corn as influenced by plant development. J Econ Entomol 77:691–697. https://doi.org/10.1093/jee/77.3.691 DOI
Fuková I, Traut W, Vítková M, Kubíčková S, Marec F (2007) Probing the W chromosome of the coding moth, Cydia pomonella, with sequences from microdissected sex chromatin. Chromosoma 116:135–145. https://doi.org/10.1007/s00412-006-0086-0 PubMed DOI
Goubert C, Modolo L, Vieira C, ValienteMoro C, Mavingui P, Boulesteix M (2015) De novo assembly and annotation of the Asian tiger mosquito (Aedes albopictus) repeatome with dnaPipeTE from raw genomic reads and comparative analysis with the yellow fever mosquito (Aedes aegypti). Genome Biol Evol 7:1192–1205. https://doi.org/10.1093/gbe/evv050 PubMed DOI PMC
Grabherr MG, Haas BJ, Yassour M et al (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652. https://doi.org/10.1038/nbt.1883 PubMed DOI PMC
Gregory TR (2020) Animal genome size database. Available online at: http://www.genomesize.com
Gunderina L, Golygina V, Broshkov A (2015) Chromosomal organization of the ribosomal RNA genes in the genus Chironomus (Diptera, Chironomidae). Comp Cytogenet 9:201–220. https://doi.org/10.3897/CompCytogen.v9i2.9055 PubMed DOI PMC
Hejníčková M, Dalíková M, Potocký P, Tammaru T, Trehubenko M, Kubíčková S, Marec F, Zrzavá M (2021) Degenerated, undifferentiated, rearranged, lost: high variability of sex chromosomes in Geometridae (Lepidoptera) indentified by sex chromatin. Cells 10:2230. https://doi.org/10.3390/cells10092230 PubMed DOI PMC
Hill J, Rastas P, Hornett EA et al (2019) Unprecedented reorganization of holocentric chromosomes provides insights into the enigma of lepidopteran chromosome evolution. Sci Adv 5:eaau3648. https://doi.org/10.1126/sciadv.aau3648 PubMed DOI PMC
Hobza R, Kubat Z, Cegan R, Jesionek W, Vyskot B, Kejnovsky E (2015) Impact of repetitive DNA on sex chromosomes in plants. Chromosome Res 23:561–570. https://doi.org/10.1007/s10577-015-9496-2 PubMed DOI
Ijdo JM, Wells RA, Baldini A, Reeders ST (1991) Improved telomere detection using a telomere repeat probe (TTAGGG) PubMed DOI PMC
Joyce AL, White WH, Nuessly GS, Alma Solis M, Scheffer SJ, Lewis ML, Medina RF (2014) Geographic population structure of the sugarcane borer, Diatraea saccharalis (F.) (Lepidoptera: Crambidae), in the Southern United States. PLoS One 9:e110036. https://doi.org/10.1371/journal.pone.0110036 PubMed DOI PMC
Kageyma D, Traut W (2004) Opposite sex-specific effects of Wolbachia and interference with the sex determination of its host Ostrinia scapulalis. Proc Biol Sci 271:251–258. https://doi.org/10.1098/rspb.2003.2604 DOI
Kandul NP, Lukhtanov VA, Pierce NE (2007) Karyotypic diversity and speciation in Agrodiaetus butterflies. Evolution 61:546–559. https://doi.org/10.1111/j.1558-5646.2007.00046.x PubMed DOI
Kejnovský E, Michalovova M, Steflova P, Kejnovska I, Manzano S, Hobza R, Kubat Z, Kovarik J, Jamilena M, Boris V (2013) Expansion of microsatellites on evolutionary young Y chromosome. PLoS ONE 8:e45519. https://doi.org/10.1371/journal.pone.0045519 PubMed DOI PMC
Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120. https://doi.org/10.1007/BF01731581 PubMed DOI
King EG, Brewer FD, Martin DF (1975) Development of Diatraea saccharalis [Lep.: Pyralidae] at constant tempratures. Entomophaga 20:301–306. https://doi.org/10.1007/BF02371955 DOI
Lopes DA, Cantagalli LB, Stuchi ALPB, Mangolin CA, Ruvolo-Takasusuki MCC (2014) Population genetics of the sugarcane borer Diatraea saccharalis (Fabr.) (Lepidoptera: Crambidae). Acta Sci Agron 36:189–194. https://doi.org/10.4025/actasciagron.v36i2.16211 DOI
López-Flores I, Garrido-Ramos MA (2012) The repetitive DNA content of eukaryotic genomes. Genome Dyn 7:1–28. https://doi.org/10.1159/000337118 PubMed DOI
Lukhtanov VA (2000) Sex chromatin and sex chromosome systems in nonditrysian Lepidoptera (Insecta). J Zool Syst Evol Res 38:73–79. https://doi.org/10.1046/j.1439-0469.2000.382130.x DOI
Lukhtanov VA (2015) The blue butterfly Polyommatus (Plebicula) atlanticus (Lepidoptera, Lycaenidae) holds the record of the highest number of chromosomes in the non-polyploid eukaryotic organisms. Comp Cytogenet 9:683–690. https://doi.org/10.3897/CompCytogen.v9i4.5760 PubMed DOI PMC
Lukhtanov VA, Puplesene YuV (1996) Karyotypical peculiarities and main features pf karyotype evolution in lepidopterans of the nepticuloid, tischerioid, gelechioid and tineoid complexes (Lepidoptera: Nepticuloidea, Tischerioidea, Gelechioidea s.l., Psychoidea-Gracillarioidea). Entomologitsheskoe Obozrenie 75:310–323
Mahendran B, Acharya C, Dash R, Ghosh SK, Kundu SC (2006) Repetitive DNA in tropical tasar silkworm Antheraea mylitta. Gene 370:51–57. https://doi.org/10.1016/j.gene.2005.11.010 PubMed DOI
Mandrioli M, Manicardi GC, Marec F (2003) Cytogenetic and molecular characterization of the MBSAT1 satellite DNA in holokinetic chromosomes of the cabbage moth, Mamestra brassicae (Lepidoptera). Chromosome Res 11:51–56. https://doi.org/10.1023/A:1022058032217 PubMed DOI
Marec F, Traut W (1994) Sex chromosome pairing and sex chromatin bodies in W-Z translocation strains of Ephestia kuehniella (Lepidoptera). Genome 37:426–435. https://doi.org/10.1139/g94-060 PubMed DOI
Marec F, Sahara K, Traut W (2010) Rise and fall of the W chromosome in Lepidoptera. In: Goldsmith MR, Marec F (eds) Molecular biology and genetics of the Lepidoptera. CRC, Boca Raton, pp 49–63
Marec F, Tothová A, Sahara K, Traut W (2001) Meiotic pairing of sex chromosome fragments and its relation to atypical transmisión of a sex-linked marker in Ephestia kuehniella (Insecta: Lepidoptera). Heredity 87:659–671. https://doi.org/10.1046/j.1365-2540.2001.00958.x PubMed DOI
Martí E, Milani D, Bardella VB, Albuquerque L, Song H, Palacios-Gimenez OM, Cabral-de-Mello DC (2021) Cytogenomic analysis unveils mixed molecular evolution and recurrent chromosome rearrangements shaping the multigene families on Schistocerca grasshopper genomes. Evolution 75:2027–2041. https://doi.org/10.1111/evo.14287 PubMed DOI
Mediouni J, Fuková I, Frydrychová R, Dhouibi MH, Marec F (2004) Karyotype, sex chromatin and sex chromosome differentiation in the carob moth, Ectomyelois ceratoniae (Lepidoptera: Pyralidae). Caryologia 57:184–194. https://doi.org/10.1080/00087114.2004.10589391 DOI
Merlin BL, Cônsoli FL (2019) Regulation of the larval transcriptome of Diatraea saccharalis (Lepidoptera: Crambidae) by maternal and other factors of the parasitoid Cotesia flavipes (Hymenoptera: Braconidae). Front Physiol 10:1106. https://doi.org/10.3389/fphys.2019.01106 PubMed DOI PMC
Munroe E, Solis MA (1999) The Pyraloidea. In: Kristensen N (ed) Lepidoptera, Moths and Butterflies, Vol. 1. Handbook of Zoology Vol. IV, Atrthropoda: Insecta. Walter de Gruyter & Co., Berlin, pp 233–256. https://doi.org/10.1515/9783110804744.233
Murakami A, Imai HT (1974) Cytological evidence for holocentric chromosomes of silkworms, Bombyx mori and B. mandarina (Bombycidae, Lepidoptera). Chromosoma 47:167–178. https://doi.org/10.1007/BF00331804 PubMed DOI
Myers J (1935) The ecological distribution of some South American grass and sugar-cane borers (Diatraea spp., Lep., Pyralidae). Bull Entomol Res 26:335–342. https://doi.org/10.1017/s0007485300036646 DOI
Nguyen P, Carabajal Paladino L (2016) On the neo-sex chromosomes of Lepidoptera. In: Pontarotti P (ed) Evolutionary Biology: Convergent Evolution, Evolution of Complex Traits, Concepts and Methods. Springer, Heidelberg, pp 171–185. https://doi.org/10.1007/978-3-319-41324-2_11
Nguyen P, Sahara K, Yoshido A, Marec F (2010) Evolutionary dynamics of rDNA clusters on chromosomes of moths and butterflies (Lepidoptera). Genetica 138:343–354. https://doi.org/10.1007/s10709-009-9424-5 PubMed DOI
Nguyen P, Sýkorová M, Šíchová J, Kůta V, Dalíková M, Čapková Frydrychová R, Neven LG, Sahara K, Marec F (2013) Neo-sex chromosomes and adaptive potential in tortricid pests. Proc Natl Acad Sci U S A 110:6931–6936. https://doi.org/10.1073/pnas.1220372110 PubMed DOI PMC
Noriega DD, Arraes FBM, Antonino JD, Macedo LLP, Fonseca FCA, Togawa RC, Crynberg P, Silva MCM, Negrisoli AS Jr, Morgante CV, Grossi-de-Sa MF (2020) Comparative gut transcriptome analysis of Diatraea saccharalis in response to the dietary source. PLoS ONE 15:0235575. https://doi.org/10.1371/journal.pone.0235575 DOI
Novák P, Neumann P, Pech J, Steinhaisl J, Macas J (2013) RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next generation sequence reads. Bioinformatics 29:792–793. https://doi.org/10.1093/bioinformatics/btt054 PubMed DOI
Novák P, Robledillo LA, Koblížková A, Vrbová I, Neumann P, Macas J (2017) TAREAN: a computational tool for identification and characterization of satellite DNA from unassembled short reads. Nucleic Acids Res 45:e111. https://doi.org/10.1093/nar/gkx257 PubMed DOI PMC
Palacio Cortés AM, Zarbin PHG, Takiya DM, Bento MS, Guidolin AS, Consoli FL (2010) Geographic variation of sex pheromone and mitochondrial DNA in Diatraea saccharalis (Fab., 1974) (Lepidoptera: Crambridae). J Insect Physiol 56:1624–1630. https://doi.org/10.1016/j.jinsphys.2010.06.005 DOI
Palacios-Gimenez OM, Bardella VB, Lemos B, Cabral-de-Mello DC (2017) Satellite DNAs are conserved and differentially transcribed among Gryllus cricket species. DNA Res 25:137–147. https://doi.org/10.1093/dnares/dsx044 DOI PMC
Panzera Y, Pita S, Ferreiro MJ, Ferrandis I, Lages C, Pérez R, Silva AE, Guerra M, Panzera F (2012) High dynamics of rDNA cluster location in kissing bug holocentric chromosomes (Triatominae, Heteroptera). Cytogenet Genome Res 138:56–67. https://doi.org/10.1159/000341888 PubMed DOI
Provazníková I, Hejníčková M, Visser S, Dalíková M, Carabajal Paladino LZ, Zrzavá M, Voleníková A, Marec F, Nguyen P (2021) Large-scale comparative analysis of cytogenetic markers across Lepidoptera. Sci Rep 11:12214. https://doi.org/10.1038/s41598-021-91665-7 PubMed DOI PMC
Reagan TE, Mulcahy MM (2019) Interaction of cultural, biological, and varietal controls for management of stalk borers in Louisiana sugarcane. Insects 10:305. https://doi.org/10.3390/insects10090305 DOI PMC
Robinson R (1971) Lepidoptera genetics. Pergamon Press, Oxford DOI
Sahara K, Yoshido A, Kawamura N, Ohnuma A, Abe H, Mita K, Oshiki T, Shimada T, Asano S, Bando H, Yasukochi Y (2003) W-derived BAC probes as a new tool for identification of the W chromosome and its aberrations in Bombyx mori. Chromosoma 112:48–55. https://doi.org/10.1007/s00412-003-0245-5 PubMed DOI
Sahara K, Yoshido A, Marec F, Fuková I, Zhang HB, Wu CC, Goldsmith MR, Yasukochi Y (2007) Conserved synteny of genes between chromosome 15 of Bombyx mori and a chromosome of Manduca sexta shown by five-color BAC-FISH. Genome 50:1061–1065. https://doi.org/10.1139/g07-082 PubMed DOI
Sahara K, Yoshido A, Traut W (2012) Sex chromosome evolution in moths and butterflies. Chromosome Res 20:83–94. https://doi.org/10.1007/s10577-011-9262-z PubMed DOI
Šíchová J, Nguyen P, Dalíková M, Marec F (2013) Chromosomal evolution in tortricid moths: conserved karyotypes with diverged features. PLoS ONE 8:e64520. https://doi.org/10.1371/journal.pone.0064520 PubMed DOI PMC
Šíchová J, Ohno M, Dincă V, Watanabe M, Sahara K, Marec F (2016) Fissions, fusions and translocations shaped the karyotype and multiple sex chromosome constitution of the northeast-Asian wood-white butterfly, Leptidea amurensis. Biol J Linn Soc 118:457–471. https://doi.org/10.1111/bij.12756 DOI
Šíchová J, Voleníková A, Dincă V, Nguyen P, Vila R, Sahara K, Marec F (2015) Dynamic karyotype evolution and unique sex determination systems in Leptidea wood white butterflies. BMC Evol Biol 15:89. https://doi.org/10.1186/s12862-015-0375-4 PubMed DOI PMC
Smit AFA, Hubley R, Green P (2017) RepeatMasker Open-4.0. Available at http://www.repeatmasker.org
Talavera G, Lukhtanov VA, Rieppel L, Pierce NE, Vila R (2013) In the shadow of phylogenetic uncertainty: the recent diversification of Lysandra butterflies through chromosomal change. Mol Phylogenet Evol 69:469–478. https://doi.org/10.1016/j.ympev.2013.08.004 PubMed DOI
Talla V, Suh A, Kalsoom F, Dincă V, Vila R, Friberg M, Wiklund C, Backström N (2017) Rapid increase in genome size as a consequence of transposable element hyperactivity in wood-white (Leptidea) butterflies. Genome Biol Evol 9:2491–2505. https://doi.org/10.1093/gbe/evx163 PubMed DOI PMC
Traut W, Marec F (1996) Sex chromatin in Lepidoptera. Q Rev Biol 71:239–256. https://doi.org/10.1086/419371 PubMed DOI
Traut W, Sahara K, Marec F (2007) Sex chromosomes and sex determination in Lepidoptera. Sex Dev 1:332–346. https://doi.org/10.1159/000111765 PubMed DOI
Traut W, Sahara K, Otto TD, Marec F (1999) Molecular differentiation of sex chromosomes probed by comparative genomic hybridization. Chromosoma 108:173–180. https://doi.org/10.1007/s004120050366 PubMed DOI
Traut W, Vogel H, Glöckner G, Hartmann E, Heckel DG (2013) High-throughput sequencing of a single chromosome: a moth W chromosome. Chromosome Res 21:491–505. https://doi.org/10.1007/s10577-013-9376-6 PubMed DOI
Van Nieukerken EJ, Kaila L, Kitching IJ et al (2011) Order Lepidoptera Linnaeus, 1758. In: Zhang ZQ (ed) Animal Biodiversity: An Outline of Higher-Level Classification and Survey Taxonomic Richness. Magnolia Press, Auckland. https://doi.org/10.11646/ZOOTAXA.3148.1.41
Věchtová P, Dalíková M, Sýkorová M, Žurovcová M, Füssy Z, Zrzavá M (2016) CpSAT-1, a transcribed satellite sequence from the coding moth, Cydia pomonella. Genetica 144:385–395. https://doi.org/10.1007/s10709-016-9907-0 PubMed DOI
Virkki N (1963) Gametogenesis in the sugarcane borer moth, Diatraea saccharalis (f.) (Crambidae). J Agric Univ Puerto Rico 47:102–137. https://doi.org/10.46429/jaupr.v47i2.12944 DOI
Vítková M, Fuková I, Kubíčková S, Marec F (2007) Molecular divergence of the W chromosomes in pyralid moths (Lepidoptera). Chromosome Res 15:917–930. https://doi.org/10.1007/s10577-007-1173-7 PubMed DOI
Wrensch DL, Kethley JB, Norton RA (1994) Cytogenetics of holokinetic chromosomes and inverted meiosis: keys to the evolutionary success of mites, with generalizations on eukaryotes. In: Houck MA (ed) Mites: Ecological and Evolutionary Analyses of Life-History Patterns. Springer, Dordrecht, pp 282–343. https://doi.org/10.1007/978-1-4615-2389-5_11
Yasukochi Y, Ashakumary LA, Baba K, Yoshido A, Sahara K (2006) A second-generation integrated map of the silkworm reveals synteny and conserved gene order between lepidopteran insects. Genetics 173:1319–1328. https://doi.org/10.1534/genetics.106.055541 PubMed DOI PMC
Yasukochi Y, Ohno M, Shibata F, Jouraku A, Nakano R, Ishikawa Y, Sahara K (2016) A FISH-based chromosome map fot the European corn borer yields insights into ancient chromosomal fusions in the silkworm. Heredity 116:75–83. https://doi.org/10.1038/hdy.2015.72 PubMed DOI
Yoshido A, Sahara K, Marec F, Matsuba Y (2011) Step-by-step evolution of neo-sex chromosome in geographical populations of wild silkmoths, Samia cynthia spp. Heredity 106:614–624. https://doi.org/10.1038/hdy.2010.94 PubMed DOI
Yoshido A, Šíchová J, Pospíšilová K, Nguyen P, Voleníková A, Šafář J, Provazník J, Vila R, Marec F (2020) Evolution of multiple sex-chromosomes associated with dynamic genome reshuffling in Leptidea wood-white butterflies. Heredity 125:138–154. https://doi.org/10.1038/s41437-020-0325-9 PubMed DOI PMC
Yoshido A, Yamada Y, Sahara K (2006) The W chromosomes detection in several lepidopteran species by Genomic in situ hybridization (GISH). J Insect Biotec Sericol 75:147–151. https://doi.org/10.11416/jibs.75.147 DOI
Zedek F, Bureš P (2018) Holocentric chromosomes: from tolerance to fragmentation to colonization of the land. Ann Bot 121:9–16. https://doi.org/10.1093/aob/mcx118 PubMed DOI
Zhang J, Yu C, Krishnaswamy L, Peterson T (2011) Transposable elements as catalysts for chromosome rearrangements. Methods Mol Biol 701:315–326. https://doi.org/10.1007/978-1-61737-957-4_18 PubMed DOI
Zrzavá M, Hladová I, Dalíková M, Šíchová J, Õunap E, Kubíčková S, Marec F (2018) Sex chromosomes of the iconic moth Abraxas grossulariata (Lepidoptera, Geometridae) and its congener A. sylvata. Genes 9:279. https://doi.org/10.3390/genes9060279 DOI PMC