On the Origin of Neo-Sex Chromosomes in the Neotropical Dragonflies Rhionaeschna bonariensis and R. planaltica (Aeshnidae, Odonata)
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
0000
Research Cooperation project between CONICET (Buenos Aires, Argentina) and the Czech Academy of Sciences (CAS, Prague, Czech Republic)
X317
University of Buenos Aires (UBA)
PIP Nº 5927 and 11220200102115CO)
National Council of Scientific and Technological Research
PubMed
36555069
PubMed Central
PMC9784284
DOI
10.3390/insects13121159
PII: insects13121159
Knihovny.cz E-zdroje
- Klíčová slova
- FISH, GISH, dragonflies, holokinetic chromosomes, meiosis, neo-sex chromosome evolution, nucleolar organizer region, ribosomal DNA, structural rearrangements,
- Publikační typ
- časopisecké články MeSH
Odonata have holokinetic chromosomes. About 95% of species have an XX/X0 sex chromosome system, with heterogametic males. There are species with neo-XX/neo-XY sex chromosomes resulting from an X chromosome/autosome fusion. The genus Rhionaeschna includes 42 species found in the Americas. We analyzed the distribution of the nucleolar organizer region (NOR) using FISH with rDNA probes in Rhionaeschna bonariensis (n = 12 + neo-XY), R. planaltica (n = 7 + neo-XY), and Aeshna cyanea (n = 13 + X0). In R. bonariensis and A. cyanea, the NOR is located on a large pair of autosomes, which have a secondary constriction in the latter species. In R. planaltica, the NOR is located on the ancestral part of the neo-X chromosome. Meiotic analysis and FISH results in R. planaltica led to the conclusion that the neo-XY system arose by insertion of the ancestral X chromosome into an autosome. Genomic in situ hybridization, performed for the first time in Odonata, highlighted the entire neo-Y chromosome in meiosis of R. bonariensis, suggesting that it consists mainly of repetitive DNA. This feature and the terminal chiasma localization suggest an ancient origin of the neo-XY system. Our study provides new information on the origin and evolution of neo-sex chromosomes in Odonata, including new types of chromosomal rearrangements, NOR transposition, and heterochromatin accumulation.
Biology Centre CAS Institute of Entomology Branišovská 31 370 05 České Budějovice Czech Republic
Instituto de Agrobiotecnología y Biología Molecular Hurlingham Buenos Aires 1686 Argentina
Zobrazit více v PubMed
Tennessen K.J. The rate of species descriptions in Odonata. Entomol. News. 1997;108:122–126.
Paulson D., Schorr M., Deliry C. World Odonata List. [(accessed on 28 October 2022)]. Available online: https://www2.pugetsound.edu/academics/academic-resources/slater-museum/biodiversity-resources/dragonflies/world-odonata-list2/
Pessacq P., Muzón J., Neiss U.G. Order Odonata. In: Thorp J.H., Covich A.P., editors. Thorp and Covich’s Freshwater Invertebrates. Elsevier; London, UK: 2018. pp. 355–366.
Lohmann H. Das Phylogenetische System der Anisoptera (Odonata) Entomol. Z. 1996;106:209–266.
Carle F.L., Kjer K.M., May M.L. A molecular phylogeny and classification of Anisoptera (Odonata) Arthropod Syst. Phylogeny. 2015;73:281–301.
Oertli B. The use of dragonflies in the assessment and monitoring of aquatic habitats. In: Córdoba-Aguilar A., editor. Dragonflies and Damselflies: Model Organisms for Ecological and Evolutionary Research. Oxford University Press; Oxford, UK: 2008. pp. 79–95.
Lozano F., del Palacio A., Ramos L.S., Granato L., Drozd A., Muzón J. Recovery of local dragonfly diversity following restoration of an artificial lake in an urban area near Buenos Aires. Basic Appl. Ecol. 2022;58:88–97. doi: 10.1016/j.baae.2021.11.006. DOI
Nokkala S., Laukkanen A., Nokkala C. Mitotic and meiotic chromosomes in Somatochlora metallica (Corduliidae, Odonata). The absence of localized centromeres and inverted meiosis. Hereditas. 2002;136:7–12. doi: 10.1034/j.1601-5223.2002.1360102.x. PubMed DOI
Oksala T. Zytologische Studien an Odonaten I. Chromosomenverhältnisse bei der Gattung Aeschna mit besonderer Berücksichtigung der Postreduktionellen Teilung der Bivalente. Volume IV. Suomalainen Tiedeakatemia; Helsinki, Finland: 1943. pp. 1–64. Annales Academiae Scientiarum Fennicae (A) IV Biologica.
Kiauta B. Sex chromosomes and sex determining mechanisms in Odonata, with a review of the cytological conditions in the family Gomphidae, and references to the karyotypic evolution in the order. Genetica. 1969;40:127–157. doi: 10.1007/BF01787346. PubMed DOI
Tyagi B.K. Cytotaxonomy of the genus Onychogomphus Selys (Odonata: Anisoptera, Gomphidae), with a special reference to the evolution of the sex-determining mechanism and reduced chromosome number in the family Gomphidae. In: Mathavan S., editor. Proceedings of the First Indian Symposium of Odonatology. Madurai Kamaraj University; Madurai, India: 1985. pp. 217–226.
Mola L.M. Post-reductional meiosis in Aeshna (Aeshnidae, Odonata) Hereditas. 1995;122:47–55. doi: 10.1111/j.1601-5223.1995.00047.x. DOI
Mola L.M. Meiotic studies in nine species of Erythrodiplax (Libellulidae, Odonata). Neo-XY sex chromosome system in E. media. Cytologia. 1996;61:349–357. doi: 10.1508/cytologia.61.349. DOI
Mola L. Cytogenetics of American Odonata. In: Tyagi B.K., editor. Odonata: Biology of Dragonflies. Scientific Publishers; Jodhpur, India: 2007. pp. 153–173.
Mola L.M., Papeschi A.G., Taboada Carrillo E. Cytogenetics of seven species of dragonflies. A novel sex chromosome determining system in Micrathyria ungulata. Hereditas. 1999;131:147–153. doi: 10.1111/j.1601-5223.1999.00147.x. DOI
Mola L.M., Fourastié M.F., Agopian S.S. High karyotypic variation in Orthemis Hagen, 1861 species, with insights about the neo-XY in Orthemis ambinigra Calvert, 1909 (Libellulidae, Odonata) Comp. Cytogenet. 2021;15:355–375. doi: 10.3897/CompCytogen.v15.i4.68761. PubMed DOI PMC
Perepelov E.A., Bugrov A.G., Warchałowska-Śliwa E. C-banded karyotypes of some dragonfly species from Russia. Folia Biol. 1998;46:137–142. PubMed
Perepelov E., Bugrov A.G. Constitutive heterochromatin in chromosomes of some Aeshnidae, with notes on the formation of the neo-XY/neo-XX mode of sex determination in Aeshna (Anisoptera) Odonatologica. 2002;31:77–83.
Mola L.M., Papeschi A.G. Holokinetic chromosomes at a glance. BAG—J. Basic Appl. Genet. 2006;17:147–153.
Papeschi A.G., Bressa M.J. Evolutionary cytogenetics in Heteroptera. J. Biol. Res. 2006;5:3–21.
Sahara K., Yoshido A., Traut W. Sex chromosome evolution in moths and butterflies. Chromosome Res. 2012;20:449–460. doi: 10.1007/s10577-011-9262-z. PubMed DOI
Kaur H., Gaba K. First report on a multiple sex chromosome system (X1X2X30) and population variations in the frequency of ring bivalents in Pyrrhocoridae (Hemiptera: Heteroptera) Eur. J. Entomol. 2015;112:419–425. doi: 10.14411/eje.2015.063. DOI
Šíchová J., Ohno M., Dincă V., Watanabe M., Sahara K., Marec F. Fissions, fusions, and translocations shaped the karyotype and multiple sex chromosome constitution of the northeast-Asian wood white butterfly, Leptidea amurensis. Biol. J. Linn. Soc. 2016;118:457–471. doi: 10.1111/bij.12756. DOI
Yoshido A., Šíchová J., Pospíšilová K., Nguyen P., Voleníková A., Šafář J., Provazník J., Vila R., Marec F. Evolution of multiple sex-chromosomes associated with dynamic genome reshuffling in Leptidea wood-white butterflies. Heredity. 2020;125:138–154. doi: 10.1038/s41437-020-0325-9. PubMed DOI PMC
Hejníčková M., Dalíková M., Potocký P., Tammaru T., Trehubenko M., Kubíčková S., Marec F., Zrzavá M. Degenerated, undifferentiated, rearranged, lost: High variability of sex chromosomes in Geometridae (Lepidoptera) identified by sex chromatin. Cells. 2021;10:2230. doi: 10.3390/cells10092230. PubMed DOI PMC
Seshachar B.R., Bagga S. Chromosome number and sex-determining mechanism in the dragonfly Hemianax ephippiger (Burmeister) Cytologia. 1962;27:443–449. doi: 10.1508/cytologia.27.443. DOI
Kiauta B. Studies on the germ cell chromosome cytology of some cytotaxonomically interesting or hitherto not studied Odonata from the autonomous region Friuli-Venezia Giulia (Northern Italy) Att. Mus. Civ. Stor. Nat. Trieste. 1971;27:65–127.
Ferreira A., Kiauta B., Zaha A. Male germ cell chromosomes of thirty-two Brazilian dragonflies. Odonatologica. 1979;8:5–22.
Kiauta B. The status of the Japanese Crocothemis servilia (Drury) as revealed by karyotypic morphology (Anisoptera: Libellulidae) Odonatologica. 1983;12:381–388.
Agopian S., Mola L.M. Intra and interspecific karyotype variability in five species of Libellulidae (Anisoptera, Odonata) Caryologia. 1988;41:69–78. doi: 10.1080/00087114.1988.10797849. DOI
Kiauta B. Variation in size of the dragonfly m-chromosome, with considerations on its significance for the chorogeography and taxonomy of the order Odonata, and notes on the validity of the rule of Reinig. Genetica. 1968;39:64–74. doi: 10.1007/BF02324456. DOI
Kuznetsova V.G., Golub N.V. A Checklist of chromosome numbers and a review of karyotype variation in Odonata of the world. Comp. Cytogenet. 2020;14:501–540. doi: 10.3897/CompCytogen.v14i4.57062. PubMed DOI PMC
von Ellenrieder N. A synopsis of the Neotropical species of “Aeshna” Fabricius: The genus Rhionaeschna Förster (Odonata: Aeshnidae) Tijdschr. Entomol. 2003;146:67–207. doi: 10.1163/22119434-900000120. DOI
Cumming R.B. Ph.D. Thesis. University of Texas; Austin, TX, USA: 1964. Cytogenetic Studies in the Order Odonata.
Kiauta B. Notes on new or little known dragonfly karyotypes. III. Spermatocyte chromosomes of four Nearctic anisopterans: Aeshna californica Calvert (Aeshnidae), Cordulia shurtleffi Scudder (Corduliidae), Sympetrum internum Montgomery, and S. madidum (Hagen) (Libellulidae) Genen Phaenen. 1973;16:7–12.
Mola L.M., Papeschi A.G. Karyotype evolution in Aeshna (Aeshnidae, Odonata) Hereditas. 1994;121:185–189. doi: 10.1111/j.1601-5223.1994.00185.x. DOI
Cabral-de-Mello D.C., Marec F. Universal fluorescence in situ hybridization (FISH) protocol for mapping repetitive DNAs in insects and other arthropods. Mol. Genet. Genom. 2021;296:513–526. doi: 10.1007/s00438-021-01765-2. PubMed DOI
Kuznetsova V.G., Maryańska-Nadachowska A., Shapoval N.A., Anokhin B.A., Shapoval A.P. Cytogenetic characterization of eight Odonata species originating from the Curonian Spit (the Baltic Sea, Russia) using C-banding and FISH with 18S rDNA and telomeric (TTAGG)n probes. Cytogenet. Genome Res. 2018;153:147–157. doi: 10.1159/000486088. PubMed DOI
Kuznetsova V., Maryańska-Nadachowska N., Anokhin B., Shapoval N., Shapoval A. Chromosomal analysis of eight species of dragonflies (Anisoptera) and damselflies (Zygoptera) using conventional cytogenetics and fluorescence in situ hybridization: Insights into the karyotype evolution of the ancient insect order Odonata. J. Zool. Syst. Evol. Res. 2021;59:387–399. doi: 10.1111/jzs.12429. DOI
Traut W. Pachytene mapping in the female silkworm, Bombyx mori L. (Lepidoptera) Chromosoma. 1976;58:275–284. doi: 10.1007/BF00292094. PubMed DOI
Rebagliati P.J., Papeschi A.G., Mola L.M. Meiosis and fluorescent banding in Edessa meditabunda and E. rufomarginata (Heteroptera: Pentatomidae: Edessinae) Eur. J. Entomol. 2003;100:11–18. doi: 10.14411/eje.2003.002. DOI
Whiting M.F. Phylogeny of the holometabolous insect orders: Molecular evidence. Zool. Scr. 2002;31:3–15. doi: 10.1046/j.0300-3256.2001.00093.x. DOI
Fuková I., Nguyen P., Marec F. Codling moth cytogenetics: Karyotype, chromosomal location of rDNA, and molecular differentiation of sex chromosomes. Genome. 2005;48:1083–1092. doi: 10.1139/g05-063. PubMed DOI
Sahara K., Marec F., Traut W. TTAGG telomeric repeats in chromosomes of some insects and other arthropods. Chromosome Res. 1999;7:449–460. doi: 10.1023/A:1009297729547. PubMed DOI
Adilardi R.S., Affilastro A.A.O., Martí D.A., Mola L.M. Cytogenetic analysis on geographically distant parthenogenetic populations of Tityus trivittatus Kraepelin, 1898 (Scorpiones, Buthidae): Karyotype, constitutive heterochromatin and rDNA localization. Comp. Cytogenet. 2014;8:81–92. doi: 10.3897/CompCytogen.v8i2.6461. PubMed DOI PMC
Camacho J.P.M., Cabrero J., López-León M.D., Cabral-de-Mello D.C., Ruiz-Ruano F.J. Grasshoppers (Orthoptera) In: Sharakhov I.V., editor. Protocols for Cytogenetic Mapping of Arthropod Genomes. Volume 1. CRC Press; Boca Ratón, FL, USA: 2015. pp. 416–418.
Traut W., Sahara K., Otto T.D., Marec F. Molecular differentiation of sex chromosomes probed by comparative genomic hybridization. Chromosoma. 1999;108:173–180. doi: 10.1007/s004120050366. PubMed DOI
Kiauta B. Notes on new or little known dragonfly karyotypes, 2. Male germ cell chromosomes of four east Mediterranean species: Lestes barbarus (Fabricius), Calopteryx splendens amasina Bartenev (Zygoptera: Lestidae, Calopterygidae), Caliaeschna microstigma (Schneider) and Orthetrum taeniolatum (Schneider) (Anisoptera: Aeshnidae, Libellulidae) Genen Phaenen. 1972;15:95–98.
Kiauta B., Kiauta M. The chromosome numbers of sixteen dragonfly species from the Arun Valley, Eastern Nepal. Not. Odonatol. 1982;9:143–146.
Criniti A., Simonazzi G., Cassanelli S., Ferrari M., Bizzaro D., Manicardi G.C. Distribution of heterochromatin and rDNA on the holocentric chromosomes of the aphids Dysaphis plantaginea and Melanaphis pyraria (Hemiptera: Aphididae) Eur. J. Entomol. 2009;106:153–157. doi: 10.14411/eje.2009.018. DOI
de Gennaro D., Rebagliati P.J., Mola L.M. Fluorescent banding and meiotic behaviour in Erythrodiplax nigricans (Libellulidae) and Coryphaeschna perrensi (Aeschnidae) (Anisoptera, Odonata) Caryologia. 2008;61:60–67. doi: 10.1080/00087114.2008.10589610. DOI
Cattani M.V., Papeschi A.G. Nucleolus organizing regions and semi-persistent nucleolus during meiosis in Spartocera fusca (Thunberg) (Coreidae, Heteroptera) Hereditas. 2004;140:105–111. doi: 10.1111/j.1601-5223.2004.01752.x. PubMed DOI
Camacho J.P.M., Belda J., Cabrero J. Meiotic behaviour of the holocentric chromosomes of Nezara viridula (Insecta, Heteroptera) analysed by C-banding and silver impregnation. Can. J. Genet. Cytol. 1985;27:490–497. doi: 10.1139/g85-073. DOI
Papeschi A.G., Mola L.M., Bressa M.J., Greizerstein E.J., Lía V., Poggio L. Behaviour of ring bivalents in holokinetic systems: Alternative sites of spindle attachment in Pachylis argentinus and Nezara viridula (Heteroptera) Chromosome Res. 2003;11:725–733. doi: 10.1023/B:CHRO.0000005740.56221.03. PubMed DOI
Castillo E.R., Martí D.A., Bidau C.J. Sex and neo-sex chromosomes in Orthoptera: A review. J. Orthoptera Res. 2010;19:213–231. doi: 10.1665/034.019.0207. DOI
Castillo E.R.D., Taffarel A., Martí D.A. The early evolutionary history of neo-sex chromosomes in Neotropical grasshoppers, Boliviacris noroestensis (Orthoptera: Acrididae: Melanoplinae) Eur. J. Entomol. 2014;111:321–327. doi: 10.14411/eje.2014.047. DOI
Bidau C.J., Martí D.A., Castillo E.R. Inexorable spread: Inexorable death? The fate of neo-XY chromosomes of grasshoppers. J. Genet. 2011;90:397–400. doi: 10.1007/s12041-011-0108-4. PubMed DOI
Palacios-Gimenez O.M., Milani D., Lemos B., Castillo E.R., Martí D.A., Ramos E., Martins C., Cabral-De-Mello D.C. Uncovering the evolutionary history of neo-XY sex chromosomes in the grasshopper Ronderosia bergii (Orthoptera, Melanoplinae) through satellite DNA analysis. BMC Evol. Biol. 2018;18:1–10. doi: 10.1186/s12862-017-1113-x. PubMed DOI PMC
Steinemann M., Steinemann S. Enigma of Y chromosome degeneration: Neo-Y and neo-X chromosomes of Drosophila miranda a model for sex chromosome evolution. Genetica. 1998;102–103:409–420. doi: 10.1023/A:1017058119760. PubMed DOI
Vítková M., Fuková I., Kubíčková S., Marec F. Molecular divergence of the W chromosomes in pyralid moths (Lepidoptera) Chromosome Res. 2007;15:917–930. doi: 10.1007/s10577-007-1173-7. PubMed DOI
Palacios-Gimenez O.M., Marti D.A., Cabral-de-Mello D.C. Neo-sex chromosomes of Ronderosia bergi: Insight into the evolution of sex chromosomes in grasshoppers. Chromosoma. 2015;124:353–365. doi: 10.1007/s00412-015-0505-1. PubMed DOI
Jetybayev I.Y., Bugrov A.G., Ünal M., Buleu O.G., Rubtsov N.B. Molecular cytogenetic analysis reveals the existence of two independent neo-XY sex chromosome systems in Anatolian Pamphagidae grasshoppers. BMC Evol. Biol. 2017;17:20. doi: 10.1186/s12862-016-0868-9. PubMed DOI PMC
Buleu O., Jetybayev I., Mofdi-Neyestanak M., Bugrov A. Karyotypes diversity in some Iranian Pamphagidae grasshoppers (Orthoptera, Acridoidea, Pamphagidae): New insights on the evolution of the neo-XY sex chromosomes. Comp. Cytogenet. 2020;14:549–566. doi: 10.3897/compcytogen.v14.i4.53688. PubMed DOI PMC
Kaiser V.B., Bachtrog D. Evolution of sex chromosomes in insects. Annu. Rev. Genet. 2010;44:91–112. doi: 10.1146/annurev-genet-102209-163600. PubMed DOI PMC
Zhou Q., Ellison C.E., Kaiser V.B., Alekseyenko A.A., Gorchakov A.A., Bachtrog D. The epigenome of evolving Drosophila neo-sex chromosomes: Dosage compensation and heterochromatin formation. PLoS Biol. 2013;11:e1001711. doi: 10.1371/journal.pbio.1001711. PubMed DOI PMC
Palacios-Gimenez O.M., Dias G.B., de Lima L.G., Kuhn G.C.E.S., Ramos É., Martins C., Cabral-De-Mello D.C. High-throughput analysis of the satellitome revealed enormous diversity of satellite DNAs in the neo-Y chromosome of the cricket Eneoptera surinamensis. Sci. Rep. 2017;7:6422. doi: 10.1038/s41598-017-06822-8. PubMed DOI PMC
Moses M.J., Poorman P.A. Synapsis, synaptic adjustment and DNA synthesis in mouse oocytes. In: Bennett M.D., Gropp A., Wolf U., editors. Chromosomes Today. Springer; Dordrecht, The Netherlands: 1984. pp. 90–103. DOI
Weith A., Traut W. Synaptic adjustment, non-homologous pairing, and non-pairing of homologous segments in sex chromosome mutants of Ephestia kuehniella (Insecta, Lepidoptera) Chromosoma. 1986;94:125–131. doi: 10.1007/BF00286990. DOI
Marec F., Traut W. Sex chromosome pairing and sex chromatin bodies in W-Z translocation strains of Ephestia kuehniella (Lepidoptera) Genome. 1994;37:426–435. doi: 10.1139/g94-060. PubMed DOI