On the Origin of Neo-Sex Chromosomes in the Neotropical Dragonflies Rhionaeschna bonariensis and R. planaltica (Aeshnidae, Odonata)

. 2022 Dec 15 ; 13 (12) : . [epub] 20221215

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36555069

Grantová podpora
0000 Research Cooperation project between CONICET (Buenos Aires, Argentina) and the Czech Academy of Sciences (CAS, Prague, Czech Republic)
X317 University of Buenos Aires (UBA)
PIP Nº 5927 and 11220200102115CO) National Council of Scientific and Technological Research

Odonata have holokinetic chromosomes. About 95% of species have an XX/X0 sex chromosome system, with heterogametic males. There are species with neo-XX/neo-XY sex chromosomes resulting from an X chromosome/autosome fusion. The genus Rhionaeschna includes 42 species found in the Americas. We analyzed the distribution of the nucleolar organizer region (NOR) using FISH with rDNA probes in Rhionaeschna bonariensis (n = 12 + neo-XY), R. planaltica (n = 7 + neo-XY), and Aeshna cyanea (n = 13 + X0). In R. bonariensis and A. cyanea, the NOR is located on a large pair of autosomes, which have a secondary constriction in the latter species. In R. planaltica, the NOR is located on the ancestral part of the neo-X chromosome. Meiotic analysis and FISH results in R. planaltica led to the conclusion that the neo-XY system arose by insertion of the ancestral X chromosome into an autosome. Genomic in situ hybridization, performed for the first time in Odonata, highlighted the entire neo-Y chromosome in meiosis of R. bonariensis, suggesting that it consists mainly of repetitive DNA. This feature and the terminal chiasma localization suggest an ancient origin of the neo-XY system. Our study provides new information on the origin and evolution of neo-sex chromosomes in Odonata, including new types of chromosomal rearrangements, NOR transposition, and heterochromatin accumulation.

Zobrazit více v PubMed

Tennessen K.J. The rate of species descriptions in Odonata. Entomol. News. 1997;108:122–126.

Paulson D., Schorr M., Deliry C. World Odonata List. [(accessed on 28 October 2022)]. Available online: https://www2.pugetsound.edu/academics/academic-resources/slater-museum/biodiversity-resources/dragonflies/world-odonata-list2/

Pessacq P., Muzón J., Neiss U.G. Order Odonata. In: Thorp J.H., Covich A.P., editors. Thorp and Covich’s Freshwater Invertebrates. Elsevier; London, UK: 2018. pp. 355–366.

Lohmann H. Das Phylogenetische System der Anisoptera (Odonata) Entomol. Z. 1996;106:209–266.

Carle F.L., Kjer K.M., May M.L. A molecular phylogeny and classification of Anisoptera (Odonata) Arthropod Syst. Phylogeny. 2015;73:281–301.

Oertli B. The use of dragonflies in the assessment and monitoring of aquatic habitats. In: Córdoba-Aguilar A., editor. Dragonflies and Damselflies: Model Organisms for Ecological and Evolutionary Research. Oxford University Press; Oxford, UK: 2008. pp. 79–95.

Lozano F., del Palacio A., Ramos L.S., Granato L., Drozd A., Muzón J. Recovery of local dragonfly diversity following restoration of an artificial lake in an urban area near Buenos Aires. Basic Appl. Ecol. 2022;58:88–97. doi: 10.1016/j.baae.2021.11.006. DOI

Nokkala S., Laukkanen A., Nokkala C. Mitotic and meiotic chromosomes in Somatochlora metallica (Corduliidae, Odonata). The absence of localized centromeres and inverted meiosis. Hereditas. 2002;136:7–12. doi: 10.1034/j.1601-5223.2002.1360102.x. PubMed DOI

Oksala T. Zytologische Studien an Odonaten I. Chromosomenverhältnisse bei der Gattung Aeschna mit besonderer Berücksichtigung der Postreduktionellen Teilung der Bivalente. Volume IV. Suomalainen Tiedeakatemia; Helsinki, Finland: 1943. pp. 1–64. Annales Academiae Scientiarum Fennicae (A) IV Biologica.

Kiauta B. Sex chromosomes and sex determining mechanisms in Odonata, with a review of the cytological conditions in the family Gomphidae, and references to the karyotypic evolution in the order. Genetica. 1969;40:127–157. doi: 10.1007/BF01787346. PubMed DOI

Tyagi B.K. Cytotaxonomy of the genus Onychogomphus Selys (Odonata: Anisoptera, Gomphidae), with a special reference to the evolution of the sex-determining mechanism and reduced chromosome number in the family Gomphidae. In: Mathavan S., editor. Proceedings of the First Indian Symposium of Odonatology. Madurai Kamaraj University; Madurai, India: 1985. pp. 217–226.

Mola L.M. Post-reductional meiosis in Aeshna (Aeshnidae, Odonata) Hereditas. 1995;122:47–55. doi: 10.1111/j.1601-5223.1995.00047.x. DOI

Mola L.M. Meiotic studies in nine species of Erythrodiplax (Libellulidae, Odonata). Neo-XY sex chromosome system in E. media. Cytologia. 1996;61:349–357. doi: 10.1508/cytologia.61.349. DOI

Mola L. Cytogenetics of American Odonata. In: Tyagi B.K., editor. Odonata: Biology of Dragonflies. Scientific Publishers; Jodhpur, India: 2007. pp. 153–173.

Mola L.M., Papeschi A.G., Taboada Carrillo E. Cytogenetics of seven species of dragonflies. A novel sex chromosome determining system in Micrathyria ungulata. Hereditas. 1999;131:147–153. doi: 10.1111/j.1601-5223.1999.00147.x. DOI

Mola L.M., Fourastié M.F., Agopian S.S. High karyotypic variation in Orthemis Hagen, 1861 species, with insights about the neo-XY in Orthemis ambinigra Calvert, 1909 (Libellulidae, Odonata) Comp. Cytogenet. 2021;15:355–375. doi: 10.3897/CompCytogen.v15.i4.68761. PubMed DOI PMC

Perepelov E.A., Bugrov A.G., Warchałowska-Śliwa E. C-banded karyotypes of some dragonfly species from Russia. Folia Biol. 1998;46:137–142. PubMed

Perepelov E., Bugrov A.G. Constitutive heterochromatin in chromosomes of some Aeshnidae, with notes on the formation of the neo-XY/neo-XX mode of sex determination in Aeshna (Anisoptera) Odonatologica. 2002;31:77–83.

Mola L.M., Papeschi A.G. Holokinetic chromosomes at a glance. BAG—J. Basic Appl. Genet. 2006;17:147–153.

Papeschi A.G., Bressa M.J. Evolutionary cytogenetics in Heteroptera. J. Biol. Res. 2006;5:3–21.

Sahara K., Yoshido A., Traut W. Sex chromosome evolution in moths and butterflies. Chromosome Res. 2012;20:449–460. doi: 10.1007/s10577-011-9262-z. PubMed DOI

Kaur H., Gaba K. First report on a multiple sex chromosome system (X1X2X30) and population variations in the frequency of ring bivalents in Pyrrhocoridae (Hemiptera: Heteroptera) Eur. J. Entomol. 2015;112:419–425. doi: 10.14411/eje.2015.063. DOI

Šíchová J., Ohno M., Dincă V., Watanabe M., Sahara K., Marec F. Fissions, fusions, and translocations shaped the karyotype and multiple sex chromosome constitution of the northeast-Asian wood white butterfly, Leptidea amurensis. Biol. J. Linn. Soc. 2016;118:457–471. doi: 10.1111/bij.12756. DOI

Yoshido A., Šíchová J., Pospíšilová K., Nguyen P., Voleníková A., Šafář J., Provazník J., Vila R., Marec F. Evolution of multiple sex-chromosomes associated with dynamic genome reshuffling in Leptidea wood-white butterflies. Heredity. 2020;125:138–154. doi: 10.1038/s41437-020-0325-9. PubMed DOI PMC

Hejníčková M., Dalíková M., Potocký P., Tammaru T., Trehubenko M., Kubíčková S., Marec F., Zrzavá M. Degenerated, undifferentiated, rearranged, lost: High variability of sex chromosomes in Geometridae (Lepidoptera) identified by sex chromatin. Cells. 2021;10:2230. doi: 10.3390/cells10092230. PubMed DOI PMC

Seshachar B.R., Bagga S. Chromosome number and sex-determining mechanism in the dragonfly Hemianax ephippiger (Burmeister) Cytologia. 1962;27:443–449. doi: 10.1508/cytologia.27.443. DOI

Kiauta B. Studies on the germ cell chromosome cytology of some cytotaxonomically interesting or hitherto not studied Odonata from the autonomous region Friuli-Venezia Giulia (Northern Italy) Att. Mus. Civ. Stor. Nat. Trieste. 1971;27:65–127.

Ferreira A., Kiauta B., Zaha A. Male germ cell chromosomes of thirty-two Brazilian dragonflies. Odonatologica. 1979;8:5–22.

Kiauta B. The status of the Japanese Crocothemis servilia (Drury) as revealed by karyotypic morphology (Anisoptera: Libellulidae) Odonatologica. 1983;12:381–388.

Agopian S., Mola L.M. Intra and interspecific karyotype variability in five species of Libellulidae (Anisoptera, Odonata) Caryologia. 1988;41:69–78. doi: 10.1080/00087114.1988.10797849. DOI

Kiauta B. Variation in size of the dragonfly m-chromosome, with considerations on its significance for the chorogeography and taxonomy of the order Odonata, and notes on the validity of the rule of Reinig. Genetica. 1968;39:64–74. doi: 10.1007/BF02324456. DOI

Kuznetsova V.G., Golub N.V. A Checklist of chromosome numbers and a review of karyotype variation in Odonata of the world. Comp. Cytogenet. 2020;14:501–540. doi: 10.3897/CompCytogen.v14i4.57062. PubMed DOI PMC

von Ellenrieder N. A synopsis of the Neotropical species of “Aeshna” Fabricius: The genus Rhionaeschna Förster (Odonata: Aeshnidae) Tijdschr. Entomol. 2003;146:67–207. doi: 10.1163/22119434-900000120. DOI

Cumming R.B. Ph.D. Thesis. University of Texas; Austin, TX, USA: 1964. Cytogenetic Studies in the Order Odonata.

Kiauta B. Notes on new or little known dragonfly karyotypes. III. Spermatocyte chromosomes of four Nearctic anisopterans: Aeshna californica Calvert (Aeshnidae), Cordulia shurtleffi Scudder (Corduliidae), Sympetrum internum Montgomery, and S. madidum (Hagen) (Libellulidae) Genen Phaenen. 1973;16:7–12.

Mola L.M., Papeschi A.G. Karyotype evolution in Aeshna (Aeshnidae, Odonata) Hereditas. 1994;121:185–189. doi: 10.1111/j.1601-5223.1994.00185.x. DOI

Cabral-de-Mello D.C., Marec F. Universal fluorescence in situ hybridization (FISH) protocol for mapping repetitive DNAs in insects and other arthropods. Mol. Genet. Genom. 2021;296:513–526. doi: 10.1007/s00438-021-01765-2. PubMed DOI

Kuznetsova V.G., Maryańska-Nadachowska A., Shapoval N.A., Anokhin B.A., Shapoval A.P. Cytogenetic characterization of eight Odonata species originating from the Curonian Spit (the Baltic Sea, Russia) using C-banding and FISH with 18S rDNA and telomeric (TTAGG)n probes. Cytogenet. Genome Res. 2018;153:147–157. doi: 10.1159/000486088. PubMed DOI

Kuznetsova V., Maryańska-Nadachowska N., Anokhin B., Shapoval N., Shapoval A. Chromosomal analysis of eight species of dragonflies (Anisoptera) and damselflies (Zygoptera) using conventional cytogenetics and fluorescence in situ hybridization: Insights into the karyotype evolution of the ancient insect order Odonata. J. Zool. Syst. Evol. Res. 2021;59:387–399. doi: 10.1111/jzs.12429. DOI

Traut W. Pachytene mapping in the female silkworm, Bombyx mori L. (Lepidoptera) Chromosoma. 1976;58:275–284. doi: 10.1007/BF00292094. PubMed DOI

Rebagliati P.J., Papeschi A.G., Mola L.M. Meiosis and fluorescent banding in Edessa meditabunda and E. rufomarginata (Heteroptera: Pentatomidae: Edessinae) Eur. J. Entomol. 2003;100:11–18. doi: 10.14411/eje.2003.002. DOI

Whiting M.F. Phylogeny of the holometabolous insect orders: Molecular evidence. Zool. Scr. 2002;31:3–15. doi: 10.1046/j.0300-3256.2001.00093.x. DOI

Fuková I., Nguyen P., Marec F. Codling moth cytogenetics: Karyotype, chromosomal location of rDNA, and molecular differentiation of sex chromosomes. Genome. 2005;48:1083–1092. doi: 10.1139/g05-063. PubMed DOI

Sahara K., Marec F., Traut W. TTAGG telomeric repeats in chromosomes of some insects and other arthropods. Chromosome Res. 1999;7:449–460. doi: 10.1023/A:1009297729547. PubMed DOI

Adilardi R.S., Affilastro A.A.O., Martí D.A., Mola L.M. Cytogenetic analysis on geographically distant parthenogenetic populations of Tityus trivittatus Kraepelin, 1898 (Scorpiones, Buthidae): Karyotype, constitutive heterochromatin and rDNA localization. Comp. Cytogenet. 2014;8:81–92. doi: 10.3897/CompCytogen.v8i2.6461. PubMed DOI PMC

Camacho J.P.M., Cabrero J., López-León M.D., Cabral-de-Mello D.C., Ruiz-Ruano F.J. Grasshoppers (Orthoptera) In: Sharakhov I.V., editor. Protocols for Cytogenetic Mapping of Arthropod Genomes. Volume 1. CRC Press; Boca Ratón, FL, USA: 2015. pp. 416–418.

Traut W., Sahara K., Otto T.D., Marec F. Molecular differentiation of sex chromosomes probed by comparative genomic hybridization. Chromosoma. 1999;108:173–180. doi: 10.1007/s004120050366. PubMed DOI

Kiauta B. Notes on new or little known dragonfly karyotypes, 2. Male germ cell chromosomes of four east Mediterranean species: Lestes barbarus (Fabricius), Calopteryx splendens amasina Bartenev (Zygoptera: Lestidae, Calopterygidae), Caliaeschna microstigma (Schneider) and Orthetrum taeniolatum (Schneider) (Anisoptera: Aeshnidae, Libellulidae) Genen Phaenen. 1972;15:95–98.

Kiauta B., Kiauta M. The chromosome numbers of sixteen dragonfly species from the Arun Valley, Eastern Nepal. Not. Odonatol. 1982;9:143–146.

Criniti A., Simonazzi G., Cassanelli S., Ferrari M., Bizzaro D., Manicardi G.C. Distribution of heterochromatin and rDNA on the holocentric chromosomes of the aphids Dysaphis plantaginea and Melanaphis pyraria (Hemiptera: Aphididae) Eur. J. Entomol. 2009;106:153–157. doi: 10.14411/eje.2009.018. DOI

de Gennaro D., Rebagliati P.J., Mola L.M. Fluorescent banding and meiotic behaviour in Erythrodiplax nigricans (Libellulidae) and Coryphaeschna perrensi (Aeschnidae) (Anisoptera, Odonata) Caryologia. 2008;61:60–67. doi: 10.1080/00087114.2008.10589610. DOI

Cattani M.V., Papeschi A.G. Nucleolus organizing regions and semi-persistent nucleolus during meiosis in Spartocera fusca (Thunberg) (Coreidae, Heteroptera) Hereditas. 2004;140:105–111. doi: 10.1111/j.1601-5223.2004.01752.x. PubMed DOI

Camacho J.P.M., Belda J., Cabrero J. Meiotic behaviour of the holocentric chromosomes of Nezara viridula (Insecta, Heteroptera) analysed by C-banding and silver impregnation. Can. J. Genet. Cytol. 1985;27:490–497. doi: 10.1139/g85-073. DOI

Papeschi A.G., Mola L.M., Bressa M.J., Greizerstein E.J., Lía V., Poggio L. Behaviour of ring bivalents in holokinetic systems: Alternative sites of spindle attachment in Pachylis argentinus and Nezara viridula (Heteroptera) Chromosome Res. 2003;11:725–733. doi: 10.1023/B:CHRO.0000005740.56221.03. PubMed DOI

Castillo E.R., Martí D.A., Bidau C.J. Sex and neo-sex chromosomes in Orthoptera: A review. J. Orthoptera Res. 2010;19:213–231. doi: 10.1665/034.019.0207. DOI

Castillo E.R.D., Taffarel A., Martí D.A. The early evolutionary history of neo-sex chromosomes in Neotropical grasshoppers, Boliviacris noroestensis (Orthoptera: Acrididae: Melanoplinae) Eur. J. Entomol. 2014;111:321–327. doi: 10.14411/eje.2014.047. DOI

Bidau C.J., Martí D.A., Castillo E.R. Inexorable spread: Inexorable death? The fate of neo-XY chromosomes of grasshoppers. J. Genet. 2011;90:397–400. doi: 10.1007/s12041-011-0108-4. PubMed DOI

Palacios-Gimenez O.M., Milani D., Lemos B., Castillo E.R., Martí D.A., Ramos E., Martins C., Cabral-De-Mello D.C. Uncovering the evolutionary history of neo-XY sex chromosomes in the grasshopper Ronderosia bergii (Orthoptera, Melanoplinae) through satellite DNA analysis. BMC Evol. Biol. 2018;18:1–10. doi: 10.1186/s12862-017-1113-x. PubMed DOI PMC

Steinemann M., Steinemann S. Enigma of Y chromosome degeneration: Neo-Y and neo-X chromosomes of Drosophila miranda a model for sex chromosome evolution. Genetica. 1998;102–103:409–420. doi: 10.1023/A:1017058119760. PubMed DOI

Vítková M., Fuková I., Kubíčková S., Marec F. Molecular divergence of the W chromosomes in pyralid moths (Lepidoptera) Chromosome Res. 2007;15:917–930. doi: 10.1007/s10577-007-1173-7. PubMed DOI

Palacios-Gimenez O.M., Marti D.A., Cabral-de-Mello D.C. Neo-sex chromosomes of Ronderosia bergi: Insight into the evolution of sex chromosomes in grasshoppers. Chromosoma. 2015;124:353–365. doi: 10.1007/s00412-015-0505-1. PubMed DOI

Jetybayev I.Y., Bugrov A.G., Ünal M., Buleu O.G., Rubtsov N.B. Molecular cytogenetic analysis reveals the existence of two independent neo-XY sex chromosome systems in Anatolian Pamphagidae grasshoppers. BMC Evol. Biol. 2017;17:20. doi: 10.1186/s12862-016-0868-9. PubMed DOI PMC

Buleu O., Jetybayev I., Mofdi-Neyestanak M., Bugrov A. Karyotypes diversity in some Iranian Pamphagidae grasshoppers (Orthoptera, Acridoidea, Pamphagidae): New insights on the evolution of the neo-XY sex chromosomes. Comp. Cytogenet. 2020;14:549–566. doi: 10.3897/compcytogen.v14.i4.53688. PubMed DOI PMC

Kaiser V.B., Bachtrog D. Evolution of sex chromosomes in insects. Annu. Rev. Genet. 2010;44:91–112. doi: 10.1146/annurev-genet-102209-163600. PubMed DOI PMC

Zhou Q., Ellison C.E., Kaiser V.B., Alekseyenko A.A., Gorchakov A.A., Bachtrog D. The epigenome of evolving Drosophila neo-sex chromosomes: Dosage compensation and heterochromatin formation. PLoS Biol. 2013;11:e1001711. doi: 10.1371/journal.pbio.1001711. PubMed DOI PMC

Palacios-Gimenez O.M., Dias G.B., de Lima L.G., Kuhn G.C.E.S., Ramos É., Martins C., Cabral-De-Mello D.C. High-throughput analysis of the satellitome revealed enormous diversity of satellite DNAs in the neo-Y chromosome of the cricket Eneoptera surinamensis. Sci. Rep. 2017;7:6422. doi: 10.1038/s41598-017-06822-8. PubMed DOI PMC

Moses M.J., Poorman P.A. Synapsis, synaptic adjustment and DNA synthesis in mouse oocytes. In: Bennett M.D., Gropp A., Wolf U., editors. Chromosomes Today. Springer; Dordrecht, The Netherlands: 1984. pp. 90–103. DOI

Weith A., Traut W. Synaptic adjustment, non-homologous pairing, and non-pairing of homologous segments in sex chromosome mutants of Ephestia kuehniella (Insecta, Lepidoptera) Chromosoma. 1986;94:125–131. doi: 10.1007/BF00286990. DOI

Marec F., Traut W. Sex chromosome pairing and sex chromatin bodies in W-Z translocation strains of Ephestia kuehniella (Lepidoptera) Genome. 1994;37:426–435. doi: 10.1139/g94-060. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...