Characterization of Archaea membrane lipids in radioactive springs using shotgun lipidomics
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
MZE-RO1923
Ministerstvo Zemědělství
RVO61388971
Mikrobiologický Ústav, Akademie Věd České Republiky
PubMed
39688758
DOI
10.1007/s12223-024-01235-3
PII: 10.1007/s12223-024-01235-3
Knihovny.cz E-zdroje
- Klíčová slova
- d-glucose, l-rhamnose, Archaea, Glycerol dialkyl glycerol tetraethers, Intact polar lipids, Radioactive springs,
- MeSH
- Archaea * chemie klasifikace MeSH
- lipidomika * MeSH
- membránové lipidy * chemie analýza MeSH
- plynová chromatografie s hmotnostně spektrometrickou detekcí MeSH
- přírodní prameny mikrobiologie chemie MeSH
- tandemová hmotnostní spektrometrie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- membránové lipidy * MeSH
Lipids from microorganisms, and especially lipids from Archaea, are used as taxonomic markers. Unfortunately, knowledge is very limited due to the uncultivability of most Archaea, which greatly reduces the importance of the diversity of lipids and their ecological role. One possible solution is to use lipidomic analysis. Six radioactive sources were investigated, two of which are surface (Wettinquelle and Radonka) and four deep from the Svornost mine (Agricola, Behounek, C1, and Curie). A total of 15 core lipids and 82 intact polar lipids were identified from the membranes of microorganisms in six radioactive springs. Using shotgun lipidomics, typical Archaea lipids were identified in spring water, namely dialkyl glycerol tetraethers, archaeol, hydroxyarchaeol and dihydroxyarchaeol. Diverse groups of polar heads were formed in archaeal IPLs, whose polar heads are formed mainly by hexose, deoxyhexose, and phosphoglycerol. The analysis was performed using shotgun lipidomics and the structure of all molecular species was confirmed by tandem mass spectrometry. After acid hydrolysis, a mixture of polar compounds was obtained from the polar head. Further analysis by GC-MS confirmed that the carbohydrates were glucose and rhamnose. Analysis by HPLC-MS of diastereoisomers of 2-(polyhydroxyalkyl)-3-(O-tolylthiocarbamoyl)thiazolidine-4(R)-carboxylates revealed that both L-rhamnose and D-glucose are present in spring samples only in varying amounts. The glycoside composition depends on the type of spring, that is, Wettinquelle and Radonka springs are basically shallow groundwater, while the samples from the Svornost mine are deep groundwater and do not contain glycosides with rhamnose. This method enables quick screening for characteristic Archaea lipids, allowing decisions on whether to pursue further analyses, such as metagenomic analysis, to directly confirm the presence of Archaea.
Institute of Microbiology Czech Academy of Sciences Vídeňská 1083 142 00 Prague Czech Republic
Research Institute of Brewing and Malting Lípová 511 Prague 120 44 Czech Republic
Zobrazit více v PubMed
Alomari AH, Saleh MA, Hashim S, Alsayaheen A, Abdeldin I (2019) Activity concentrations of 226Ra, 228Ra, 222Rn and their health impact in the groundwater of Jordan. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-019-06686-4 DOI
Anitori RP, Trott C, Saul DJ, Bergquist PL, Walter MR (2002) A culture-independent survey of the bacterial community in a radon hot spring. Astrobiology. https://doi.org/10.1089/153110702762027844 PubMed DOI
Asgarani E, Soudi MR, Borzooee F, Dabbagh R (2012) Radio-resistance in psychrotrophic Kocuria sp. ASB 107 isolated from Ab-e-Siah radioactive spring. J Environ Radioact 113:171. https://doi.org/10.1016/j.jenvrad.2012.04.009 PubMed DOI
Bleton J, Mejanelle P, Sansoulet J, Goursaud S, Tchapla A (1996) Characterization of neutral sugars and uronic acids after methanolysis and trimethylsilylation for recognition of plant gums. J Chromatogr A. https://doi.org/10.1016/0021-9673(95)00308-8 DOI
Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol. https://doi.org/10.1139/o59-099 PubMed DOI
Confalonieri F, Sommer S (2011) Bacterial and archaeal resistance to ionizing radiation. J Phys Conf Ser. https://doi.org/10.1088/1742-6596/261/1/012005 DOI
Conroy MJ, Andrews RM, Andrews S, Cockayne L, Dennis EA, Fahy E, Gaud C, Griffiths WJ, Jukes G, Kolchin M, Mendivelso K, Lopez-Clavijo AF, Ready C, Subramaniam S, O’Donnell VBLIPID (2023) MAPS: update to databases and tools for the lipidomics community nucleic acids research. Nucleic Acids Res. https://doi.org/10.1093/nar/gkad896 DOI PMC
Damsté JSS, Schouten S, Hopmans EC, van Duin ACT (2002) Crenarchaeol. J Lipid Res. https://doi.org/10.1194/jlr.M200148-JLR200 PubMed DOI
de Jesus SS, Filho RM (2020) Recent advances in lipid extraction using green solvents. Renew Sustain Energy Rev. https://doi.org/10.1016/j.rser.2020.110289 DOI
de Souza LM, Müller-Santos M, Iacomini M, Gorin PAJ, Sassaki GL (2009) Positive and negative tandem mass spectrometric fingerprints of lipids from the halophilic archaea Haloarcula marismortui. J Lipid Res. https://doi.org/10.1194/jlr.M800478-JLR200 PubMed DOI PMC
De La Torre JR, Walker CB, Ingalls AE, Könneke M, Stahl DA (2008) Cultivation of a thermophilic ammonia oxidizing archaeon synthesizing crenarchaeol. Environ Microbiol. https://doi.org/10.1111/j.1462-2920.2007.01506.x PubMed DOI
Di Carlo C, Lepore L, Venoso G, Ampollini M, Carpentieri C, Tannino A et al (2019) Radon concentration in self-bottled mineral spring waters as a possible public health issue. Sci Rep. https://doi.org/10.1038/s41598-019-50472-x PubMed DOI PMC
Ebert B, Rautengarten C, McFarlane HE, Rupasinghe T, Zeng W, Ford K et al (2018) A Golgi UDP-GlcNAc transporter delivers substrates for N-linked glycans and sphingolipids. Nat Plants. https://doi.org/10.1038/s41477-018-0235-5 PubMed DOI
Etani R, Kataoka T, Kanzaki N, Sakoda A, Tanaka H, Ishimori Y et al (2017) Protective effects of hot spring water drinking and radon inhalation on ethanol-induced gastric mucosal injury in mice. J Radiat Res (Tokyo). https://doi.org/10.1093/jrr/rrx021 PubMed DOI
Gambacorta A, Gliozzi A, De Rosa M (1995) Archaeal lipids and their biotechnological applications. World J Microbiol Biotechnol. https://doi.org/10.1007/BF00339140 PubMed DOI
Gerwig GJ, Kamerling JP, Vliegenthart JFG (1978) Determination of the D and L configuration of neutral monosaccharides by high-resolution capillary GLC. Carbohydr Res. https://doi.org/10.1016/S0008-6215(00)80881-2 DOI
Holub G, Sergeant C, Bailly C, Beauger A, Breton V, Chardon P et al (2024) Radioactivity as a driver of bacterial community composition in naturally radioactive mineral springs in the French Massif Central. Front Microbiol. https://doi.org/10.3389/fmicb.2024.1423342 PubMed DOI PMC
Horai S, Yamauchi N, Naraoka H (2019) Simultaneous total analysis of core and polar membrane lipids in archaea by high-performance liquid chromatography/high-resolution mass spectrometry coupled with heated electrospray ionization. Rapid Commun Mass Spectrom. https://doi.org/10.1002/rcm.8506 PubMed DOI
Itävaara M, Salavirta H, Marjamaa K, Ruskeeniemi T (2016) Chapter one - geomicrobiology and metagenomics of terrestrial deep subsurface microbiomes. In: Sariaslani S, Gadd GM (eds.). Advances in Applied Microbiology, vol 94. Academic Press, pp 1–77. https://www.sciencedirect.com/science/article/pii/S0065216415300010
Kamenova-Totzeva RM, Totzev AV, Kotova RM, Ivanova-Teneva GR (2018) Quantitative and qualitative study of radon content in Bulgarian mineral waters. Radiat Prot Dosimetry. https://doi.org/10.1093/rpd/ncy089 PubMed DOI
Knappy C, Barillà D, Chong J, Hodgson D, Morgan H, Suleman M et al (2015) Mono-, di- and trimethylated homologues of isoprenoid tetraether lipid cores in archaea and environmental samples: mass spectrometric identification and significance. J Mass Spectrom. https://doi.org/10.1002/jms.3709 PubMed DOI
Koga Y, Morii H (2005) Recent advances in structural research on ether lipids from archaea including comparative and physiological aspects. Biosci Biotechnol Biochem. https://doi.org/10.1271/bbb.69.2019 PubMed DOI
Krejbichová Z (1999) Radioactivity of mineral waters in Bohemia. Czechoslov J Phys. https://doi.org/10.1007/s10582-999-0017-4 DOI
Lipp JS, Morono Y, Inagaki F, Hinrichs K-U (2008) Significant contribution of archaea to extant biomass in marine subsurface sediments. Nature. https://doi.org/10.1038/nature07174 PubMed DOI
Liu X-L, Summons RE, Hinrichs K-U (2012) Extending the known range of glycerol ether lipids in the environment: structural assignments based on tandem mass spectral fragmentation patterns. Rapid Commun Mass Spectrom. https://doi.org/10.1002/rcm.6355 PubMed DOI
Liu J, Ye Q, Liu R, Zhang F, Wen Y, Huang Q et al (2022) Identification and differentiation of aldose enantiomers in trace natural glycosides by ultra-performance liquid chromatography with diode array detector coupled to quadrupole/time-of-flight mass spectrometry combined with one-pot derivatized protocol. J Chromatogr A. https://doi.org/10.1016/j.chroma.2022.463521 PubMed DOI
Markham JE, Jaworski JG (2007) Rapid measurement of sphingolipids from Arabidopsis thaliana by reversed-phase high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry. Rapid Commun Mass Spectrom 21:1304 PubMed DOI
Markham JE, Li J, Cahoon EB, Jaworski JG (2006) Separation and identification of major plant sphingolipid classes from leaves. J Biol Chem. https://doi.org/10.1074/jbc.M604050200 PubMed DOI
Meador TB, Gagen EJ, Loscar ME, Goldhammer T, Yoshinaga MY, Wendt J et al (2014) Thermococcus kodakarensis modulates its polar membrane lipids and elemental composition according to growth stage and phosphate availability. Front Microbiol. https://doi.org/10.3389/fmicb.2014.00010 PubMed DOI PMC
Merkle RK, Poppe I (1994) Carbohydrate composition analysis of glycoconjugates by gas-liquid chromatography/mass spectrometry. Methods in Enzymol. Vol 230. Academic Press, 1–15. https://www.sciencedirect.com/science/article/pii/0076687994300038
Paces T, Smejkal V (2004) Magmatic and fossil components of thermal and mineral waters in the continental rift of the Eger River (Bohemian massif, central Europe). In: Wanty RB, Seal RR (eds) Water-Rock Interaction. Taylor and Francis Group, London, pp 167–172
Piao C, Tian M, Gao H, Gao Y, Ruan J, Wu L et al (2020) Effects of radon from hot springs on lymphocyte subsets in peripheral blood. Dose-Response. https://doi.org/10.1177/1559325820902338 PubMed DOI PMC
Pitcher A, Hopmans EC, Mosier AC, Park S-J, Rhee S-K, Francis CA et al (2011) Core and intact polar glycerol dibiphytanyl glycerol tetraether lipids of ammonia-oxidizing archaea enriched from marine and estuarine sediments. Appl Environ Microbiol. https://doi.org/10.1128/AEM.02758-10
Rethemeyer J, Schubotz F, Talbot HM, Cooke MP, Hinrichs K-U, Mollenhauer G (2010) Distribution of polar membrane lipids in permafrost soils and sediments of a small high Arctic catchment. Org Geochem. https://doi.org/10.1016/j.orggeochem.2010.06.004 DOI
Rezanka T, Vítová M, Lukavský J, Nedbalová L, Kolouchová I (2019) Rapid screening of very long-chain fatty acids from microorganisms. J Chromatogr A. https://doi.org/10.1016/j.chroma.2019.460365 PubMed DOI
Rezanka T, Kyselova L, Murphy DJ (2023) Archaeal lipids. Prog Lipid Res. https://doi.org/10.1016/j.plipres.2023.101237 PubMed DOI
Rossel PE, Lipp JS, Fredricks HF, Arnds J, Boetius A, Elvert M et al (2007) Intact polar lipids of anaerobic methanotrophic archaea and associated bacteria. Adv Org Geochem. https://doi.org/10.1016/j.orggeochem.2008.02.021
Rossel PE, Elvert M, Ramette A, Boetius A, Hinrichs K-U (2011) Factors controlling the distribution of anaerobic methanotrophic communities in marine environments: evidence from intact polar membrane lipids. Geochim Cosmochim Acta. https://doi.org/10.1016/j.gca.2010.09.031
Schouten S, Hopmans E, Damste J (2013) The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: a review. Org Geochem. https://doi.org/10.1016/j.orggeochem.2012.09.006 DOI
Schubotz F, Wakeham SG, Lipp JS, Fredricks HF, Hinrichs K-U (2009) Detection of microbial biomass by intact polar membrane lipid analysis in the water column and surface sediments of the Black Sea. Environ Microbiol. https://doi.org/10.1111/j.1462-2920.2009.01999.x
Shiva S, Enninful R, Roth MR, Tamura P, Jagadish K, Welti R (2018) An efficient modified method for plant leaf lipid extraction results in improved recovery of phosphatidic acid. Plant Methods. https://doi.org/10.1186/s13007-018-0282-y PubMed DOI PMC
Smrhova T, Jani K, Pajer P, Kapinusova G, Vylita T, Suman J et al (2022) (2022) Prokaryotes of renowned Karlovy Vary (Carlsbad) thermal springs: phylogenetic and cultivation analysis. Environ Microbiome 17:48. https://doi.org/10.1186/s40793-022-00440-2 PubMed DOI PMC
Sturt HF, Summons RE, Smith K, Elvert M, Hinrichs K-U (2004) Intact polar membrane lipids in prokaryotes and sediments deciphered by high-performance liquid chromatography/electrospray ionization multistage mass spectrometry—new biomarkers for biogeochemistry and microbial ecology. Rapid Commun Mass Spectrom. https://doi.org/10.1002/rcm.1378
Tanaka T, Nakashima T, Ueda T, Tomii K, Kouno I (2007) Facile discrimination of aldose enantiomers by reversed-phase HPLC. Chem Pharm Bull (Tokyo). https://doi.org/10.1248/cpb.55.899 PubMed DOI
Timkina E, Kulišová M, Palyzová A, Marešová H, Maťátková O, Řezanka T et al (2024) Isolation and characterization of multiple-stress tolerant bacteria from radon springs. PLoS ONE. https://doi.org/10.1371/journal.pone.0299532 PubMed DOI PMC
Tourte M, Kuentz V, Schaeffer P, Grossi V, Cario A, Oger PM (2020) Novel intact polar and core lipid compositions in the Pyrococcus model species, P. furiosus and P. yayanosii, reveal the largest lipid diversity amongst Thermococcales. Biomolecules 10:830. https://doi.org/10.3390/biom10060830 PubMed DOI PMC
Turnová Š (2019) Radioactive medicinal springs in the Skalná - Bad Brambach area. Diploma thesis. Praha: Charles University, Faculty of Science. Inst Geochem, Mineral Miner Resour. http://hdl.handle.net/20.500.11956/105322
Wagner C, Mau M, Schlömann M, Heinicke J, Koch U (2007) Characterization of the bacterial flora in mineral waters in upstreaming fluids of deep igneous rock aquifers. J Geophys Res Biogeosciences. https://doi.org/10.1029/2005JG000105 DOI
Wang Y-H, Bharathi A, Fu X, Wang M, Khan IA (2012) Simultaneous determination of the absolute configuration of twelve monosaccharide enantiomers from natural products in a single injection by a UPLC-UV/MS method. Planta Med. https://doi.org/10.1055/s-0031-1298432 PubMed DOI
Weidler GW, Dornmayr-Pfaffenhuemer M, Gerbl FW, Heinen W, Stan-Lotter H (2007) Communities of archaea and bacteria in a subsurface radioactive thermal spring in the Austrian Central Alps, and evidence of ammonia-oxidizing Crenarchaeota. Appl Environ Microbiol. https://doi.org/10.1128/AEM.01570-06 PubMed DOI
Wu W, Xu Y, Hou S, Dong L, Liu H, Wang H et al (2019) Origin and preservation of archaeal intact polar tetraether lipids in deeply buried sediments from the South China Sea. Deep Sea Res Part Oceanogr Res Pap. https://doi.org/10.1016/j.dsr.2019.103107