Reaching unreachables: Obstacles and successes of microbial cultivation and their reasons
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
36960281
PubMed Central
PMC10027941
DOI
10.3389/fmicb.2023.1089630
Knihovny.cz E-zdroje
- Klíčová slova
- VBNC, cultivation techniques, difficult-to-culture microorganisms, dormancy, environmental microbiome, growth factors, improved cultivation, microbial ecology,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
In terms of the number and diversity of living units, the prokaryotic empire is the most represented form of life on Earth, and yet it is still to a significant degree shrouded in darkness. This microbial "dark matter" hides a great deal of potential in terms of phylogenetically or metabolically diverse microorganisms, and thus it is important to acquire them in pure culture. However, do we know what microorganisms really need for their growth, and what the obstacles are to the cultivation of previously unidentified taxa? Here we review common and sometimes unexpected requirements of environmental microorganisms, especially soil-harbored bacteria, needed for their replication and cultivation. These requirements include resuscitation stimuli, physical and chemical factors aiding cultivation, growth factors, and co-cultivation in a laboratory and natural microbial neighborhood.
Zobrazit více v PubMed
Acuna J. J., Marileo L. G., Araya M. A., Rilling J. I., Larama G. A., Mora M. L., et al. . (2020). In situ cultivation approach to increase the culturable bacterial diversity in the rhizobiome of plants. J. Soil Sci. Plant Nutr. 20, 1411–1426. doi: 10.1007/s42729-020-00222-0 DOI
Adam D., Maciejewska M., Naômé A., Martinet L., Coppieters W., Karim L., et al. . (2018). Isolation, characterization, and antibacterial activity of hard-to-culture Actinobacteria from cave moonmilk deposits. Antibiotics 7:28. doi: 10.3390/antibiotics7020028, PMID: PubMed DOI PMC
Adamberg K., Kask S., Laht T.-M., Paalme T. (2003). The effect of temperature and pH on the growth of lactic acid bacteria: a pH-auxostat study. Int. J. Food Microbiol. 85, 171–183. doi: 10.1016/S0168-1605(02)00537-8, PMID: PubMed DOI
Akselband Y., Cabral C., Castor T. P., Chikarmane H. M., McGrath P. (2006). Enrichment of slow-growing marine microorganisms from mixed cultures using gel microdrop (GMD) growth assay and fluorescence-activated cell sorting. J. Exp. Mar. Biol. 329, 196–205. doi: 10.1016/j.jembe.2005.08.018 DOI
Alkayyali T., Pope E., Wheatley S. K., Cartmell C., Haltli B., Kerr R. G., et al. . (2021). Development of a microbe domestication pod (MD pod) for in situ cultivation of micro-encapsulated marine bacteria. Biotechnol. Bioeng. 118, 1166–1176. doi: 10.1002/bit.27633, PMID: PubMed DOI
Almeida M., Pop M., Le Chatelier E., Prifti E., Pons N., Ghozlane A., et al. . (2016). Capturing the most wanted taxa through cross-sample correlations. ISME J. 10, 2459–2467. doi: 10.1038/ismej.2016.35, PMID: PubMed DOI PMC
Anderson C. R., Peterson M. E., Frampton R. A., Bulman S. R., Keenan S., Curtin D. (2018). Rapid increases in soil pH solubilise organic matter, dramatically increase denitrification potential and strongly stimulate microorganisms from the Firmicutes phylum. PeerJ 6:e6090. doi: 10.7717/peerj.6090, PMID: PubMed DOI PMC
Aoi Y., Kinoshita T., Hata T., Ohta H., Obokata H., Tsuneda S. (2009). Hollow-fiber membrane chamber as a device for in situ environmental cultivation. Appl. Environ. Microbiol. 75, 3826–3833. doi: 10.1128/AEM.02542-08, PMID: PubMed DOI PMC
Asker D., Awad T. S., Beppu T., Ueda K. (2012). “Isolation, characterization, and diversity of novel radiotolerant carotenoid-producing bacteria” in Microbial carotenoids from bacteria and microalgae: methods and protocols, methods in molecular biology. eds. Barredo and José-Luis (Springer), 21–60. PubMed
Avhad D. N., Rathod V. K. (2015). Ultrasound assisted production of a fibrinolytic enzyme in a bioreactor. Ultrason. Sonochem. 22, 257–264. doi: 10.1016/j.ultsonch.2014.04.020, PMID: PubMed DOI
Ayrapetyan M., Williams T. C., Oliver J. D. (2015). Bridging the gap between viable but non-culturable and antibiotic persistent bacteria. Trends Microbiol. 23, 7–13. doi: 10.1016/j.tim.2014.09.004, PMID: PubMed DOI
Bahram M., Hildebrand F., Forslund S. K., Anderson J. L., Soudzilovskaia N. A., Bodegom P. M., et al. . (2018). Structure and function of the global topsoil microbiome. Nature 560, 233–237. doi: 10.1038/s41586-018-0386-6, PMID: PubMed DOI
Bai Y., Weibull E., Joensson H. N., Andersson-Svahn H. (2014). Interfacing picoliter droplet microfluidics with addressable microliter compartments using fluorescence activated cell sorting. Sens Actuators B Chem. 194, 249–254. doi: 10.1016/j.snb.2013.12.089 DOI
Baker R. M., Singleton F. L., Hood M. A. (1983). Effects of nutrient deprivation on Vibrio cholerae. Appl. Environ. Microbiol. 46, 930–940. doi: 10.1128/aem.46.4.930-940.1983, PMID: PubMed DOI PMC
Balaban N. (2011). Persistence: mechanisms for triggering and enhancing phenotypic variability. Curr. Opin. Genet. Dev. 21, 768–775. doi: 10.1016/j.gde.2011.10.001, PMID: PubMed DOI
Bartelme R. P., Custer J. M., Dupont C. L., Espinoza J. L., Torralba M., Khalili B., et al. . (2020). Influence of substrate concentration on the culturability of heterotrophic soil microbes isolated by high-throughput dilution-to-extinction cultivation. mSphere 5, e00024–e00020. doi: 10.1128/mSphere.00024-20 PubMed DOI PMC
Batchelor S. E., Cooper M., Chhabra S. R., Glover L. A., Stewart G. S., Williams P., et al. . (1997). Cell density-regulated recovery of starved biofilm populations of ammonia-oxidizing bacteria. Appl. Environ. Microbiol. 63, 2281–2286. doi: 10.1128/aem.63.6.2281-2286.1997, PMID: PubMed DOI PMC
Behera H. T., Mojumdar A., Ray L. (2022). “Chapter 9 – biology, genetic aspects and oxidative stress response of actinobacteria and strategies for bioremediation of toxic metals” in Microbial biodegradation and bioremediation. eds. Das S., Dash H. R. 2nd ed (Amsterdam: Elsevier; ), 181–192.
Bender K. E., Glover K., Archey A., Barton H. A. (2020). The impact of sample processing and media chemistry on the culturable diversity of bacteria isolated from a cave. Int. J. Speleol. 49, 209–220. doi: 10.5038/1827-806X.49.3.2337 DOI
Ben-Dov E., Kramarsky-Winter E., Kushmaro A. (2009). An in situ method for cultivating microorganisms using a double encapsulation technique. FEMS Microbiol. 68, 363–371. doi: 10.1111/j.1574-6941.2009.00682.x, PMID: PubMed DOI
Berdy B., Spoering A. L., Ling L. L., Epstein S. S. (2017). In situ cultivation of previously uncultivable microorganisms using the ichip. Nat. Protoc. 12, 2232–2242. doi: 10.1038/nprot.2017.074, PMID: PubMed DOI
Bhuiyan M. N. I., Takai R., Mitsuhashi S., Shigetomi K., Tanaka Y., Kamagata Y., et al. . (2016). Zincmethylphyrins and coproporphyrins, novel growth factors released by Sphingopyxis sp., enable laboratory cultivation of previously uncultured Leucobacter sp. through interspecies mutualism. J. Antibiot. 69, 97–103. doi: 10.1038/ja.2015.87, PMID: PubMed DOI
Bigger J. (1944). Treatment of staphyloeoeeal infections with penicillin by intermittent sterilisation. Lancet. 244, 497–500. doi: 10.1016/S0140-6736(00)74210-3, PMID: PubMed DOI
Biosca E. G., Amaro C., Marco-Noales E., Oliver J. D. (1996). Effect of low temperature on starvation-survival of the eel pathogen Vibrio vulnificus biotype 2. Appl. Environ. Microbiol. 62, 450–455. doi: 10.1128/aem.62.2.450-455.1996, PMID: PubMed DOI PMC
Bochu W., Lanchun S., Jing Z., Yuanyuan Y., Yanhong Y. (2003). The influence of Ca2+ on the proliferation of S. cerevisiae and low ultrasonic on the concentration of Ca2+ in the S. cerevisiae cells. Colloids Surf. B. Biointerfaces 32, 35–42. doi: 10.1016/S0927-7765(03)00129-2 DOI
Bogosian G., Aardema N. D., Bourneuf E. V., Morris P. J., O'Neil J. P. (2000). Recovery of hydrogen peroxide-sensitive culturable cells of Vibrio vulnificus gives the appearance of resuscitation from a viable but nonculturable state. J. Bacteriol. 182, 5070–5075. doi: 10.1128/JB.182.18.5070-5075.2000, PMID: PubMed DOI PMC
Boilattabi N., Barrassi L., Bouanane-Darenfed A., La Scola B. (2021). Isolation and identification of legionella spp. from hot spring water in Algeria by culture and molecular methods. J. Appl. Microbiol. 130, 1394–1400. doi: 10.1111/jam.14871, PMID: PubMed DOI
Bollmann A., Lewis K., Epstein S. S. (2007). Incubation of environmental samples in a diffusion chamber increases the diversity of recovered isolates. Appl. Environ. Microbiol. 73, 6386–6390. doi: 10.1128/AEM.01309-07, PMID: PubMed DOI PMC
Bomar L., Maltz M., Colston S., Graf J. (2011). Directed culturing of microorganisms using metatranscriptomics. MBio 2, e00012–e00011. doi: 10.1128/mBio.00012-11, PMID: PubMed DOI PMC
Börner R. A., Aliaga M. T. A., Mattiasson B. (2013). Microcultivation of anaerobic bacteria single cells entrapped in alginate microbeads. Biotechnol. Lett. 35, 397–405. doi: 10.1007/s10529-012-1094-1, PMID: PubMed DOI
Brock T. D. (1967). Life at high temperatures: evolutionary, ecological, and biochemical significance of organisms living in hot springs is discussed. Science 158, 1012–1019. doi: 10.1126/science.158.3804.1012, PMID: PubMed DOI
Brock T. D., Freeze H. (1969). Thermus aquaticus gen. n. and sp. n., a nonsporulating extreme thermophile. J. Bacteriol. 98, 289–297. doi: 10.1128/jb.98.1.289-297.1969, PMID: PubMed DOI PMC
Bruns A., Cypionka H., Overmann J. (2002). Cyclic AMP and acyl homoserine lactones increase the cultivation efficiency of heterotrophic bacteria from the Central Baltic Sea. Appl. Environ. Microbiol. 68, 3978–3987. doi: 10.1128/AEM.68.8.3978-3987.2002, PMID: PubMed DOI PMC
Bruns A., Nübel U., Cypionka H., Overmann J. (2003). Effect of signal compounds and incubation conditions on the culturability of freshwater bacterioplankton. Appl. Environ. Microbiol. 69, 1980–1989. doi: 10.1128/AEM.69.4.1980-1989.2003, PMID: PubMed DOI PMC
Buerger S., Spoering A., Gavrish E., Leslin C., Ling L., Epstein S. S. (2012). Microbial scout hypothesis, stochastic exit from dormancy, and the nature of slow growers. Appl. Environ. Microbiol. 78, 3221–3228. doi: 10.1128/AEM.07307-11, PMID: PubMed DOI PMC
Burmeister A., Hilgers F., Langner A., Westerwalbesloh C., Kerkhoff Y., Tenhaef N., et al. . (2019). A microfluidic co-cultivation platform to investigate microbial interactions at defined microenvironments. Lab Chip 19, 98–110. doi: 10.1039/C8LC00977E, PMID: PubMed DOI
Carini P., Steindler L., Beszteri S., Giovannoni S. J. (2013). Nutrient requirements for growth of the extreme oligotroph ‘Candidatus Pelagibacter ubique’ HTCC1062 on a defined medium. ISME J. 7, 592–602. doi: 10.1038/ismej.2012.122, PMID: PubMed DOI PMC
Carvalho G., Balestrino D., Forestier C., Mathias J.-D. (2018). How do environment-dependent switching rates between susceptible and persister cells affect the dynamics of biofilms faced with antibiotics? NPJ Biofilms Microbiomes 4:6. doi: 10.1038/s41522-018-0049-2, PMID: PubMed DOI PMC
Castelle C. J., Banfield J. F. (2018). Major new microbial groups expand diversity and alter our understanding of the tree of life. Cells 172, 1181–1197. doi: 10.1016/j.cell.2018.02.016, PMID: PubMed DOI
Chang C. B., Wilking J. N., Kim S. H., Shum H. C., Weitz D. A. (2015). Monodisperse emulsion drop microenvironments for bacterial biofilm growth. Small 11, 3954–3961. doi: 10.1002/smll.201403125, PMID: PubMed DOI
Chaudhary D. K., Khulan A., Kim J. (2019). Development of a novel cultivation technique for uncultured soil bacteria. Sci. Rep. 9:6666. doi: 10.1038/s41598-019-43182-x, PMID: PubMed DOI PMC
Chaudhary D. K., Kim J. (2019). Experimental setup for a diffusion bioreactor to isolate unculturable soil bacteria. Bio Protoc. 9:e3388. doi: 10.21769/BioProtoc.3388, PMID: PubMed DOI PMC
Cho J.-C., Giovannoni S. J. (2004). Cultivation and growth characteristics of a diverse group of oligotrophic marine Gammaproteobacteria. Appl. Environ. Microbiol. 70, 432–440. doi: 10.1128/AEM.70.1.432-440.2004, PMID: PubMed DOI PMC
Christensen B. T. (1992). “Physical fractionation of soil and organic matter in primary particle size and density separates” in Advances in soil science. ed. B. A. Stewart (New York, NY: Springer), 1–90.
Christensen B. T. (2001). Physical fractionation of soil and structural and functional complexity in organic matter turnover. Eur. J. Soil Sci. 52, 345–353. doi: 10.1046/j.1365-2389.2001.00417.x DOI
Cohen-Gonsaud M., Barthe P., Bagnéris C., Henderson B., Ward J., Roumestand C., et al. . (2005). The structure of a resuscitation-promoting factor domain from mycobacterium tuberculosis shows homology to lysozymes. Nat. Struct. 12, 270–273. doi: 10.1038/nsmb905, PMID: PubMed DOI
Combet-Blanc Y., Kalamba K. K., Kergoat P. Y. (1995). Effect of pH on bacillus thermoamylovorans growth and glucose fermentation. Appl. Environ. Microbiol. 61, 656–659. doi: 10.1128/aem.61.2.656-659.1995, PMID: PubMed DOI PMC
Connon S. A., Giovannoni S. J. (2002). High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Appl. Environ. Microbiol. 68, 3878–3885. doi: 10.1128/AEM.68.8.3878-3885.2002, PMID: PubMed DOI PMC
Costa O. Y. A., Oguejiofor C., Zühlke D., Barreto C. C., Wünsche C., Riedel K., et al. . (2020). Impact of different trace elements on the growth and proteome of two strains of Granulicella, class "Acidobacteriia". Front. Microbiol. 11:1227. doi: 10.3389/fmicb.2020.01227, PMID: PubMed DOI PMC
Crane K. W., Grover J. P. (2010). Coexistence of mixotrophs, autotrophs, and heterotrophs in planktonic microbial communities. J. Theor. Biol. 262, 517–527. doi: 10.1016/j.jtbi.2009.10.027, PMID: PubMed DOI
Cross K. L., Campbell J. H., Balachandran M., Campbell A. G., Cooper C. J., Griffen A., et al. . (2019). Targeted isolation and cultivation of uncultivated bacteria by reverse genomics. Nat. Biotechnol. 37, 1314–1321. doi: 10.1038/s41587-019-0260-6, PMID: PubMed DOI PMC
Das N., Triparthi N., Basu S., Bose C., Maitra S., Khurana S. (2015). Progress in the development of gelling agents for improved culturability of microorganisms. Front. Microbiol. 6:698. doi: 10.3389/fmicb.2015.00698, PMID: PubMed DOI PMC
Davis K. E., Joseph S. J., Janssen P. H. (2005). Effects of growth medium, inoculum size, and incubation time on culturability and isolation of soil bacteria. Appl. Environ. Microbiol. 71, 826–834. doi: 10.1128/AEM.71.2.826-834.2005, PMID: PubMed DOI PMC
del Mar L. M., Pierobon S., Tafi M. C., Signoretto C., Canepari P. (2000). mRNA detection by reverse transcription-PCR for monitoring viability over time in an enterococcus faecalis viable but nonculturable population maintained in a laboratory microcosm. Appl. Environ. Microbiol. 66, 4564–4567. doi: 10.1128/AEM.66.10.4564-4567.2000 PubMed DOI PMC
Dellagnezze B. M., Vasconcellos S. P., Melo I. S., Santos Neto E. V., Oliveira V. M. (2016). Evaluation of bacterial diversity recovered from petroleum samples using different physical matrices. Braz. J. Microbiol. 47, 712–723. doi: 10.1016/j.bjm.2016.04.004, PMID: PubMed DOI PMC
Dong L., Chen D.-W., Liu S.-J., Du W. (2016). Automated chemotactic sorting and single-cell cultivation of microbes using droplet microfluidics. Sci. Rep. 6:24192. doi: 10.1038/srep24192, PMID: PubMed DOI PMC
Dorofeev A. G., Grigor’eva N. V., Kozlov M. N., Kevbrina M. V., Aseeva V. G., Nikolaev Y. A. (2014). Approaches to cultivation of “nonculturable” bacteria: cyclic cultures. Microbiology 83, 450–461. doi: 10.1134/S0026261714050087, PMID: PubMed DOI
Dorofeev A. G., Nikolaev Y. A., Mardanov A. V., Pimenov N. V. (2019). Cyclic metabolism as a mode of microbial existence. Microbiology 88, 402–415. doi: 10.1134/S0026261719040052, PMID: PubMed DOI
Droce A., Sørensen J. L., Giese H., Sondergaard T. E. (2013). Glass bead cultivation of fungi: combining the best of liquid and agar media. J. Microbiol. Methods 94, 343–346. doi: 10.1016/j.mimet.2013.07.005, PMID: PubMed DOI
Du M., Chen J., Zhang X., Li A., Li Y., Wang Y. (2007). Retention of virulence in a viable but nonculturable Edwardsiella tarda isolate. Appl. Environ. Microbiol. 73, 1349–1354. doi: 10.1128/AEM.02243-06, PMID: PubMed DOI PMC
Dworkin J., Shah I. M. (2010). Exit from dormancy in microbial organisms. Nat. Rev. Microbiol. 8, 890–896. doi: 10.1038/nrmicro2453, PMID: PubMed DOI
Eichorst S. A., Kuske C. R., Schmidt T. M. (2011). Influence of plant polymers on the distribution and cultivation of bacteria in the phylum Acidobacteria. Appl. Environ. Microbiol. 77, 586–596. doi: 10.1128/AEM.01080-10, PMID: PubMed DOI PMC
Eilers H., Pernthaler J., Peplies J., Glöckner F. O., Gerdts G., Amann R. (2001). Isolation of novel pelagic bacteria from the German bight and their seasonal contributions to surface picoplankton. Appl. Environ. Microbiol. 67, 5134–5142. doi: 10.1128/AEM.67.11.5134-5142.2001, PMID: PubMed DOI PMC
Epstein S. S. (2009). Microbial awakenings. Nature 457:1083. doi: 10.1038/4571083a PubMed DOI
Epstein S. S. (2013). The phenomenon of microbial uncultivability. Curr. Opin. Microbiol. 16, 636–642. doi: 10.1016/j.mib.2013.08.003, PMID: PubMed DOI
Espina L. (2020). An approach to increase the success rate of cultivation of soil bacteria based on fluorescence-activated cell sorting. PLoS One 15:e0237748. doi: 10.1371/journal.pone.0237748, PMID: PubMed DOI PMC
Esposito F. P., Ingham C. J., Hurtado-Ortiz R., Bizet C., Tasdemir D., de Pascale D. (2018). Isolation by miniaturized culture chip of an Antarctic bacterium Aequorivita sp. with antimicrobial and anthelmintic activity. Biotechnol. Rep. 20:e00281. doi: 10.1016/j.btre.2018.e00281, PMID: PubMed DOI PMC
Estevinho L. M., Combarros-Fuertes P., Paula V. B. (2020). Recent advances in applied microbiology: editorial. Microorganisms 8:1364. doi: 10.3390/microorganisms8091364 PubMed DOI PMC
Eun Y. J., Utada A. S., Copeland M. F., Takeuchi S., Weibel D. B. (2011). Encapsulating bacteria in agarose microparticles using microfluidics for high-throughput cell analysis and isolation. ACS Chem. Biol. 6, 260–266. doi: 10.1021/cb100336p, PMID: PubMed DOI PMC
Faust K., Raes J. (2012). Microbial interactions: from networks to models. Nat. Rev. Microbiol. 10, 538–550. doi: 10.1038/nrmicro2832, PMID: PubMed DOI
Feng Y., Grogan P., Caporaso J. G., Zhang H., Lin X., Knight R., et al. . (2014). pH is a good predictor of the distribution of anoxygenic purple phototrophic bacteria in Arctic soils. Soil Biol. Biochem. 74, 193–200. doi: 10.1016/j.soilbio.2014.03.014 DOI
Ferrari B. C., Binnerup S. J., Gillings M. (2005). Microcolony cultivation on a soil substrate membrane system selects for previously uncultured soil bacteria. Appl. Environ. Microbiol. 71, 8714–8720. doi: 10.1128/AEM.71.12.8714-8720.2005, PMID: PubMed DOI PMC
Fierer N., Nemergut D., Knight R., Craine J. M. (2010). Changes through time: integrating microorganisms into the study of succession. Res. Microbiol. 161, 635–642. doi: 10.1016/j.resmic.2010.06.002, PMID: PubMed DOI
Filiatrault M. J. (2011). Progress in prokaryotic transcriptomics. Curr. Opin. Microbiol. 14, 579–586. doi: 10.1016/j.mib.2011.07.023, PMID: PubMed DOI
Flemming H.-C., Wingender J. (2010). The biofilm matrix. Nat. Rev. Microbiol. 8, 623–633. doi: 10.1038/nrmicro2415, PMID: PubMed DOI
Frimat J.-P., Becker M., Chiang Y.-Y., Marggraf U., Janasek D., Hengstler J. G., et al. . (2011). A microfluidic array with cellular valving for single cell co-culture. Lab Chip 11, 231–237. doi: 10.1039/C0LC00172D, PMID: PubMed DOI
Gao W., Navarroli D., Naimark J., Zhang W., Chao S.-h., Meldrum D. R. (2013). Microbe observation and cultivation array (MOCA) for cultivating and analyzing environmental microbiota. Microbiome 1:4. doi: 10.1186/2049-2618-1-4, PMID: PubMed DOI PMC
Gavrish E., Bollmann A., Epstein S., Lewis K. (2008). A trap for in situ cultivation of filamentous actinobacteria. J. Microbiol. Methods 72, 257–262. doi: 10.1016/j.mimet.2007.12.009, PMID: PubMed DOI PMC
Ge Z., Girguis P. R., Buie C. R. (2016). Nanoporous microscale microbial incubators. Lab Chip 16, 480–488. doi: 10.1039/C5LC00978B, PMID: PubMed DOI
Gerna D., Clara D., Allwardt D., Mitter B., Roach T. (2022). Tailored media are key to unlocking the diversity of endophytic bacteria in distinct compartments of germinating seeds. Microbiol. Spectr. 10, e00172–e00122. doi: 10.1128/spectrum.00172-22 PubMed DOI PMC
Giagnoni L., Arenella M., Galardi E., Nannipieri P., Renella G. (2018). Bacterial culturability and the viable but non-culturable (VBNC) state studied by a proteomic approach using an artificial soil. Soil Biol. Biochem. 118, 51–58. doi: 10.1016/j.soilbio.2017.12.004 DOI
Gich F., Janys M. A., König M., Overmann J. (2012). Enrichment of previously uncultured bacteria from natural complex communities by adhesion to solid surfaces. Environ. Microbiol. 14, 2984–2997. doi: 10.1111/j.1462-2920.2012.02868.x, PMID: PubMed DOI
Gilbert J. A., Blaser M. J., Caporaso J. G., Jansson J. K., Lynch S. V., Knight R. (2018). Current understanding of the human microbiome. Nat. Med. 24, 392–400. doi: 10.1038/nm.4517, PMID: PubMed DOI PMC
Goers L., Freemont P., Polizzi K. M. (2014). Co-culture systems and technologies: taking synthetic biology to the next level. J. R. Soc. Interface 11:20140065. doi: 10.1098/rsif.2014.0065, PMID: PubMed DOI PMC
Graham E. B., Knelman J. E., Schindlbacher A., Siciliano S., Breulmann M., Yannarell A., et al. . (2016). Microbes as engines of ecosystem function: when does community structure enhance predictions of ecosystem processes? Front. Microbiol. 7:214. doi: 10.3389/fmicb.2016.00214, PMID: PubMed DOI PMC
Greub G. (2012). Culturomics: a new approach to study the human microbiome. Clin. Microbiol. Infect. 18, 1157–1159. doi: 10.1111/1469-0691.12032, PMID: PubMed DOI
Grover S. C., Skirtach A. G., Gauthier R. C., Grover C. P. (2001). Automated single-cell sorting system based on optical trapping. J. Biomed. Opt. 6, 14–22. doi: 10.1117/1.1333676, PMID: PubMed DOI
Gurusinghe S., Brooks T. L., Barrow R. A., Zhu X., Thotagamuwa A., Dennis P. G., et al. . (2019). Technologies for the selection, culture and metabolic profiling of unique rhizosphere microorganisms for natural product discovery. Molecules 24:1955. doi: 10.3390/molecules24101955, PMID: PubMed DOI PMC
Gutierrez T., Biddle J. F., Teske A., Aitken M. D. (2015). Cultivation-dependent and cultivation-independent characterization of hydrocarbon-degrading bacteria in Guaymas Basin sediments. Front. Microbiol. 6:695. doi: 10.3389/fmicb.2015.00695, PMID: PubMed DOI PMC
Gutierrez T., Singleton D. R., Berry D., Yang T., Aitken M. D., Teske A. (2013). Hydrocarbon-degrading bacteria enriched by the Deepwater horizon oil spill identified by cultivation and DNA-SIP. ISME J. 7, 2091–2104. doi: 10.1038/ismej.2013.98, PMID: PubMed DOI PMC
Gutleben J., Loureiro C., Ramírez Romero L. A., Shetty S., Wijffels R. H., Smidt H., et al. . (2020). Cultivation of bacteria from Aplysina aerophoba: effects of oxygen and nutrient gradients. Front. Microbiol. 11:175. doi: 10.3389/fmicb.2020.00175, PMID: PubMed DOI PMC
Handelsman J., Rondon M. R., Brady S. F., Clardy J., Goodman R. M. (1998). Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem. Biol. 5, R245–R249. doi: 10.1016/S1074-5521(98)90108-9, PMID: PubMed DOI
Harriott M. M. (2019). “Biofilms and antibiotics” in Reference module in biomedical sciences (Elsevier; ), 1–11.
Hedlund B. P., Chuvochina M., Hugenholtz P., Konstantinidis K. T., Murray A. E., Palmer M., et al. . (2022). SeqCode: a nomenclatural code for prokaryotes described from sequence data. Nat. Microbiol. 7, 1702–1708. doi: 10.1038/s41564-022-01214-9, PMID: PubMed DOI PMC
Hemkemeyer M., Dohrmann A. B., Christensen B. T., Tebbe C. C. (2018). Bacterial preferences for specific soil particle size fractions revealed by community analyses. Front. Microbiol. 9:149. doi: 10.3389/fmicb.2018.00149, PMID: PubMed DOI PMC
Hemme C. L., Deng Y., Gentry T. J., Fields M. W., Wu L., Barua S., et al. . (2010). Metagenomic insights into evolution of a heavy metal-contaminated groundwater microbial community. ISME J. 4, 660–672. doi: 10.1038/ismej.2009.154, PMID: PubMed DOI
Hett E. C., Chao M. C., Deng L. L., Rubin E. J. (2008). A mycobacterial enzyme essential for cell division synergizes with resuscitation-promoting factor. PLoS Pathog. 4:e1000001. doi: 10.1371/journal.ppat.1000001, PMID: PubMed DOI PMC
Ho A., Di Lonardo D. P., Bodelier P. L. (2017). Revisiting life strategy concepts in environmental microbial ecology. FEMS Microbiol. 93:fix006. doi: 10.1093/femsec/fix006 PubMed DOI
Hobby G. L., Meyer K., Chaffee E. (1942). Observations on the mechanism of action of penicillin. Proc. Soc. Exp. Biol. Med. 50, 281–285. doi: 10.3181/00379727-50-13773, PMID: PubMed DOI
Hu B., Xu B., Yun J., Wang J., Xie B., Li C., et al. . (2020). High-throughput single-cell cultivation reveals the underexplored rare biosphere in deep-sea sediments along the southwest Indian ridge. Lab Chip 20, 363–372. doi: 10.1039/C9LC00761J, PMID: PubMed DOI
Huang G., Chen S., Dai C., Sun L., Sun W., Tang Y., et al. . (2017). Effects of ultrasound on microbial growth and enzyme activity. Ultrason. Sonochem. 37, 144–149. doi: 10.1016/j.ultsonch.2016.12.018, PMID: PubMed DOI
Huang X., Li P., Zhou M., Li Y., Ou X., Chen P., et al. . (2021). A high-throughput ultrasonic spraying inoculation method promotes colony cultivation of rare microbial species. Environ. Microbiol. 23, 1275–1285. doi: 10.1111/1462-2920.15386, PMID: PubMed DOI
Hugenholtz P., Pitulle C., Hershberger K. L., Pace N. R. (1998). Novel division level bacterial diversity in a Yellowstone hot spring. J. Bacteriol. 180, 366–376. doi: 10.1128/JB.180.2.366-376.1998, PMID: PubMed DOI PMC
Imachi H., Nobu M. K., Nakahara N., Morono Y., Ogawara M., Takaki Y., et al. . (2020). Isolation of an archaeon at the prokaryote–eukaryote interface. Nature 577, 519–525. doi: 10.1038/s41586-019-1916-6, PMID: PubMed DOI PMC
Imazaki I., Kobori Y. (2010). Improving the culturability of freshwater bacteria using FW70, a low-nutrient solid medium amended with sodium pyruvate. Can. J. Microbiol. 56, 333–341. doi: 10.1139/W10-019, PMID: PubMed DOI
Ingham C. J., Sprenkels A., Bomer J., Molenaar D., van den Berg A., van Hylckama Vlieg J. E., et al. . (2007). The micro-petri dish, a million-well growth chip for the culture and high-throughput screening of microorganisms. Proc. Natl. Acad. Sci. U. S. A. 104, 18217–18222. doi: 10.1073/pnas.0701693104, PMID: PubMed DOI PMC
Inglis T. J. J., Sagripanti J.-L. (2006). Environmental factors that affect the survival and persistence of Burkholderia pseudomallei. Appl. Environ. Microbiol. 72, 6865–6875. doi: 10.1128/AEM.01036-06, PMID: PubMed DOI PMC
Jacoby R., Peukert M., Succurro A., Koprivova A., Kopriva S. (2017). The role of soil microorganisms in plant mineral nutrition-current knowledge and future directions. Front. Plant Sci. 8:1617. doi: 10.3389/fpls.2017.01617, PMID: PubMed DOI PMC
Janssen P. H., Yates P. S., Grinton B. E., Taylor P. M., Sait M. (2002). Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia. Appl. Environ. Microbiol. 68, 2391–2396. doi: 10.1128/AEM.68.5.2391-2396.2002, PMID: PubMed DOI PMC
Jeon C. O., Park W., Ghiorse W. C., Madsen E. L. (2004). Polaromonas naphthalenivorans sp. nov., a naphthalene-degrading bacterium from naphthalene-contaminated sediment. Int. J. Syst. Evol. Microbiol. 54, 93–97. doi: 10.1099/ijs.0.02636-0, PMID: PubMed DOI
Jeon C. O., Park W., Padmanabhan P., DeRito C., Snape J. R., Madsen E. L. (2003). Discovery of a bacterium, with distinctive dioxygenase, that is responsible for in situ biodegradation in contaminated sediment. Proc. Natl. Acad. Sci. U. S. A. 100, 13591–13596. doi: 10.1073/pnas.1735529100, PMID: PubMed DOI PMC
Ji S., Zhao R., Yin Q., Zhao Y., Liu C., Xiao T., et al. . (2012). Gel microbead cultivation with a subenrichment procedure can yield better bacterial cultivability from a seawater sample than standard plating method. J. Ocean Univ. China 11, 45–51. doi: 10.1007/s11802-012-1869-y DOI
Jian X., Guo X., Wang J., Tan Z. L., Xing X., Wang L., et al. . (2020). Microbial microdroplet culture system (MMC): an integrated platform for automated, high-throughput microbial cultivation and adaptive evolution. Biotechnol. Bioeng. 117, 1724–1737. doi: 10.1002/bit.27327, PMID: PubMed DOI
Jiang C.-Y., Dong L., Zhao J.-K., Hu X., Shen C., Qiao Y., et al. . (2016). High throughput single-cell cultivation on microfluidic streak plates. Appl. Environ. Microbiol. 85, 2210–2218. doi: 10.1128/AEM.03588-15 PubMed DOI PMC
Jin Q., Kirk M. F. (2018). pH as a primary control in environmental microbiology: 1 Thermodynamic perspective. Front. Environ. Sci. 6:21. doi: 10.3389/fenvs.2018.00021 DOI
Jin Z., Nie M., Hu R., Zhao T., Xu J., Chen D., et al. . (2018). Dynamic sessile-droplet habitats for controllable cultivation of bacterial biofilm. Small 14:e1800658. doi: 10.1002/smll.201800658, PMID: PubMed DOI
Jung D., Aoi Y., Epstein S. S. (2016). In situ cultivation allows for recovery of bacterial types competitive in their natural environment. Microbes Environ. 31, 456–459. doi: 10.1264/jsme2.ME16079, PMID: PubMed DOI PMC
Jung D., Seo E.-Y., Epstein S. S., Joung Y., Yim J. H., Lee H. K., et al. . (2013). A new method for microbial cultivation and its application to bacterial community analysis in Buus Nuur, Mongolia. Fundam. Appl. Limnol. 182, 171–181. doi: 10.1127/1863-9135/2013/0391 DOI
Jung D., Seo E. Y., Owen J. S., Aoi Y., Yong S., Lavrentyeva E. V., et al. . (2018). Application of the filter plate microbial trap (FPMT), for cultivating thermophilic bacteria from thermal springs in Barguzin area, eastern Baikal, Russia. Biosci. Biotechnol. Biochem. 82, 1624–1632. doi: 10.1080/09168451.2018.1482194, PMID: PubMed DOI
Kaeberlein T., Lewis K., Epstein S. S. (2002). Isolating "uncultivable" microorganisms in pure culture in a simulated natural environment. Science 296, 1127–1129. doi: 10.1126/science.1070633, PMID: PubMed DOI
Kakumanu M. L., Williams M. A. (2012). Soil diffusion system enriches the growth of diverse and previously uncultivated bacterial taxa. Soil Sci. Soc. Am. J. 76, 463–474. doi: 10.2136/sssaj2011.0227 DOI
Kapinusova G., Jani K., Smrhova T., Pajer P., Jarosova I., Suman J., et al. . (2022). Culturomics of bacteria from radon-saturated water of the world’s oldest radium mine. Microbiol. Spectr. 10, e01995–e01922. doi: 10.1128/spectrum.01995-22 PubMed DOI PMC
Kaprelyants A. S., Mukamolova G. V., Kell D. B. (1994). Estimation of dormant Micrococcus luteus cells by penicillin lysis and by resuscitation in cell-free spent culture medium at high dilution. FEMS Microbiol. Lett. 115, 347–352. doi: 10.1111/j.1574-6968.1994.tb06662.x DOI
Karimi E., Keller-Costa T., Slaby B. M., Cox C. J., da Rocha U. N., Hentschel U., et al. . (2019). Genomic blueprints of sponge-prokaryote symbiosis are shared by low abundant and cultivatable Alphaproteobacteria. Sci. Rep. 9:1999. doi: 10.1038/s41598-019-38737-x, PMID: PubMed DOI PMC
Karnachuk O. V., Lukina A. P., Kadnikov V. V., Sherbakova V. A., Beletsky A. V., Mardanov A. V., et al. . (2020). Targeted isolation based on metagenome-assembled genomes reveals a phylogenetically distinct group of thermophilic spirochetes from deep biosphere. Environ. Microbiol. 23, 3585–3598. doi: 10.1111/1462-2920.15218 PubMed DOI
Kato S., Terashima M., Yama A., Sato M., Kitagawa W., Kawasaki K., et al. . (2020). Improved isolation of uncultured anaerobic bacteria using medium prepared with separate sterilization of agar and phosphate. Microbes Environ. 35:n/a. doi: 10.1264/jsme2.ME19060, PMID: PubMed DOI PMC
Kato S., Yamagishi A., Daimon S., Kawasaki K., Tamaki H., Kitagawa W., et al. . (2018). Isolation of previously uncultured slow-growing bacteria by using a simple modification in the preparation of agar media. Appl. Environ. Microbiol. 84, e00807–e00818. doi: 10.1128/AEM.00807-18 PubMed DOI PMC
Keep N. H., Ward J. M., Cohen-Gonsaud M., Henderson B. (2006). Wake up! Peptidoglycan lysis and bacterial non-growth states. Trends Microbiol. 14, 271–276. doi: 10.1016/j.tim.2006.04.003, PMID: PubMed DOI
Kell D. B., Kaprelyants A. S., Weichart D. H., Harwood C. R., Barer M. R. (1998). Viability and activity in readily culturable bacteria: a review and discussion of the practical issues. Antonie Van Leeuwenhoek 73, 169–187. doi: 10.1023/A:1000664013047, PMID: PubMed DOI
Knobloch S., Jóhannsson R., Marteinsson V. (2019). Co-cultivation of the marine sponge Halichondria panicea and its associated microorganisms. Sci. Rep. 9:10403. doi: 10.1038/s41598-019-46904-3, PMID: PubMed DOI PMC
Koch A. L. (1971). “The adaptive responses of Escherichia coli to a feast and famine existence” in Advances in microbial physiology. eds. Rose A. H., Wilkinson J. F., vol. 6 (Academic Press; ), 147–217. PubMed
Koch A. L. (2001). Oligotrophs versus copiotrophs. BioEssays 23, 657–661. doi: 10.1002/bies.1091, PMID: PubMed DOI
Konopka A. (2009). What is microbial community ecology? ISME J. 3, 1223–1230. doi: 10.1038/ismej.2009.88, PMID: PubMed DOI
Lagier J. C., Dubourg G., Million M., Cadoret F., Bilen M., Fenollar F., et al. . (2018). Culturing the human microbiota and culturomics. Nat. Rev. Microbiol. 16, 540–550. doi: 10.1038/s41579-018-0041-0, PMID: PubMed DOI
Lane D. J., Pace B., Olsen G. J., Stahl D. A., Sogin M. L., Pace N. R. (1985). Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc. Natl. Acad. Sci. U. S. A. 82, 6955–6959. doi: 10.1073/pnas.82.20.6955, PMID: PubMed DOI PMC
Larke-Mejía N. L., Crombie A. T., Pratscher J., McGenity T. J., Murrell J. C. (2019). Novel isoprene-degrading Proteobacteria from soil and leaves identified by cultivation and metagenomics analysis of stable isotope probing experiments. Front. Microbiol. 10:2700. doi: 10.3389/fmicb.2019.02700, PMID: PubMed DOI PMC
Lauber C. L., Hamady M., Knight R., Fierer N. (2009). Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 75, 5111–5120. doi: 10.1128/AEM.00335-09, PMID: PubMed DOI PMC
Lee K. C., Dunfield P. F., Morgan X. C., Crowe M. A., Houghton K. M., Vyssotski M., et al. . (2011). Chthonomonas calidirosea gen. Nov., sp. nov., an aerobic, pigmented, thermophilic micro-organism of a novel bacterial class, Chthonomonadetes classis nov., of the newly described phylum Armatimonadetes originally designated candidate division OP10. Int. J. Syst. Evol. Microbiol. 61, 2482–2490. doi: 10.1099/ijs.0.027235-0, PMID: PubMed DOI
Lewis K. (2010). Persister cells. Annu. Rev. Microbiol. 64, 357–372. doi: 10.1146/annurev.micro.112408.134306, PMID: PubMed DOI
Lewis K., Epstein S., D'Onofrio A., Ling L. L. (2010). Uncultured microorganisms as a source of secondary metabolites. J. Antibiot. 63, 468–476. doi: 10.1038/ja.2010.87, PMID: PubMed DOI
Li Y., Chen J., Wang Y., Ma D., Rui W. (2020). The effects of the recombinant YeaZ of Vibrio harveyi on the resuscitation and growth of soil bacteria in extreme soil environment. PeerJ 8:e10342. doi: 10.7717/peerj.10342, PMID: PubMed DOI PMC
Li J., Luo C., Zhang D., Cai X., Jiang L., Zhang G. (2019). Stable-isotope probing-enabled cultivation of the indigenous bacterium Ralstonia sp. strain M1, capable of degrading phenanthrene and biphenyl in industrial wastewater. Appl. Environ. Microbiol. 85, e00511–e00519. doi: 10.1128/aem.00511-19 PubMed DOI PMC
Li L., Mendis N., Trigui H., Oliver J. D., Faucher S. P. (2014). The importance of the viable but non-culturable state in human bacterial pathogens. Front. Microbiol. 5:258. doi: 10.3389/fmicb.2014.00258, PMID: PubMed DOI PMC
Li B., Yang Y., Ma L., Ju F., Guo F., Tiedje J. M., et al. . (2015). Metagenomic and network analysis reveal wide distribution and co-occurrence of environmental antibiotic resistance genes. ISME J. 9, 2490–2502. doi: 10.1038/ismej.2015.59, PMID: PubMed DOI PMC
Ling L. L., Schneider T., Peoples A. J., Spoering A. L., Engels I., Conlon B. P., et al. . (2015). A new antibiotic kills pathogens without detectable resistance. Nature 517, 455–459. doi: 10.1038/nature14098, PMID: PubMed DOI PMC
Liu S., Moon C. D., Zheng N., Huws S., Zhao S., Wang J. (2022). Opportunities and challenges of using metagenomic data to bring uncultured microbes into cultivation. Microbiome 10:76. doi: 10.1186/s40168-022-01272-5, PMID: PubMed DOI PMC
Liu X., Wang M., Nie Y., Wu X. L. (2021). Isolation chip increases culturable bacterial diversity and reduces cultivation bias. Curr. Microbiol. 78, 2025–2032. doi: 10.1007/s00284-021-02474-0, PMID: PubMed DOI
Lloyd K. G., Steen A. D., Ladau J., Yin J., Crosby L., Neufeld J. D. (2018). Phylogenetically novel uncultured microbial cells dominate earth microbiomes. mSystems 3, e00055–e00018. doi: 10.1128/mSystems.00055-18 PubMed DOI PMC
Lopez Marin M. A., Strejcek M., Junkova P., Suman J., Santrucek J., Uhlik O. (2021). Exploring the potential of Micrococcus luteus culture supernatant with resuscitation-promoting factor for enhancing the culturability of soil bacteria. Front. Microbiol. 12:1715. doi: 10.3389/fmicb.2021.685263 PubMed DOI PMC
Lopez Marin M. A., Suman J., Jani K., Ulbrich P., Cajthaml T., Filipova A., et al. . (2023). Solicola gregarius gen. nov., sp. nov., a soil actinobacterium isolated after enhanced cultivation with Micrococcus luteus culture supernatant. Int J Syst Evol Microbiol. 73. doi: PubMed
Lopez Marin M. A., Suman J., Jani K., Ulbrich P., Cajthaml T., Pajer P., et al. . (2022). Pedomonas mirosovicensis gen. Nov., sp. nov., a bacterium isolated from soil with the aid of Micrococcus luteus culture supernatant containing resuscitation-promoting factor. Int. J. Syst. Evol. Microbiol. 72. doi: 10.1099/ijsem.0.005467 PubMed DOI
Louca S., Mazel F., Doebeli M., Parfrey L. W. (2019). A census-based estimate of Earth's bacterial and archaeal diversity. PLoS Biol. 17:e3000106. doi: 10.1371/journal.pbio.3000106, PMID: PubMed DOI PMC
Lynch M. D., Bartram A. K., Neufeld J. D. (2012). Targeted recovery of novel phylogenetic diversity from next-generation sequence data. ISME J. 6:2067. doi: 10.1038/ismej.2012.50, PMID: PubMed DOI PMC
Ma L., Datta S. S., Karymov M. A., Pan Q., Begolo S., Ismagilov R. F. (2014). Individually addressable arrays of replica microbial cultures enabled by splitting SlipChips. Integr. Biol. (Camb) 6, 796–805. doi: 10.1039/C4IB00109E, PMID: PubMed DOI PMC
Manivasagan P., Kang K. H., Sivakumar K., Li-Chan E. C., Oh H. M., Kim S. K. (2014). Marine actinobacteria: an important source of bioactive natural products. Environ. Toxicol. Pharmacol. 38, 172–188. doi: 10.1016/j.etap.2014.05.014, PMID: PubMed DOI
Marchesi J. R., Ravel J. (2015). The vocabulary of microbiome research: a proposal. Microbiome 3:31. doi: 10.1186/s40168-015-0094-5, PMID: PubMed DOI PMC
Maza F., Maldonado J., Vásquez-Dean J., Mandakovic D., Gaete A., Cambiazo V., et al. . (2019). Soil bacterial communities from the Chilean Andean highlands: taxonomic composition and culturability. Front. Bioeng. Biotechnol. 7:10. doi: 10.3389/fbioe.2019.00010, PMID: PubMed DOI PMC
McLain J. E., Cytryn E., Durso L. M., Young S. (2016). Culture-based methods for detection of antibiotic resistance in agroecosystems: advantages, challenges, and gaps in knowledge. J. Environ. Qual. 45, 432–440. doi: 10.2134/jeq2015.06.0317, PMID: PubMed DOI
Mehetre G., Shah M., Dastager S. G., Dharne M. S. (2018). Untapped bacterial diversity and metabolic potential within Unkeshwar hot springs, India. Arch. Microbiol. 200, 753–770. doi: 10.1007/s00203-018-1484-4 PubMed DOI
Meyer O. (1994). “Functional groups of microorganisms” in Biodiversity and ecosystem function. eds. Schulze, Ernst-Detlef, Mooney and A. Harold (Berlin, Heidelberg: Springer), 67–96.
Miller C. N., Khan M., Ahmed S. A., Kota K., Panchal R. G., Hale M. L. (2020). Development of a Coxiella burnetii culture method for high-throughput assay to identify host-directed therapeutics. J. Microbiol. Methods 169:105813. doi: 10.1016/j.mimet.2019.105813, PMID: PubMed DOI
Mills A. L. (2003). Keeping in touch: microbial life on soil particle surfaces. Adv. Agron. 78, 2–45. doi: 10.1016/S0065-2113(02)78001-2 DOI
Mirzaie A., Mehrabadi J. F., Amirmozafari N., Nejadsattari T. (2015). Isolation and characterization of a new gamma and UV radiation resistant bacterium from soil samples of an Iranian radioactive site and analysis of its pigment. Microbiology 84, 449–452. doi: 10.1134/S0026261715030133 DOI
Mishamandani S., Gutierrez T., Aitken M. D. (2014). DNA-based stable isotope probing coupled with cultivation methods implicates Methylophaga in hydrocarbon degradation. Front. Microbiol. 5:76. doi: 10.3389/fmicb.2014.00076, PMID: PubMed DOI PMC
Molina-Menor E., Gimeno-Valero H., Pascual J., Peretó J., Porcar M. (2021). High culturable bacterial diversity from a european desert: the Tabernas desert. Front. Microbiol. 11:583120. doi: 10.3389/fmicb.2020.583120, PMID: PubMed DOI PMC
Moran N. A., Bennett G. M. (2014). The tiniest tiny genomes. Annu. Rev. Microbiol. 68, 195–215. doi: 10.1146/annurev-micro-091213-112901, PMID: PubMed DOI
Mori K., Sunamura M., Yanagawa K., Ishibashi J.-i., Miyoshi Y., Iino T., et al. . (2008). First cultivation and ecological investigation of a bacterium affiliated with the candidate phylum OP5 from hot springs. Appl. Environ. Microbiol. 74, 6223–6229. doi: 10.1128/AEM.01351-08, PMID: PubMed DOI PMC
Morrison E. W., Rettger L. F. (1930). Bacterial spores I. a study in heat resistance and dormancy. J. Bacteriol. 20, 299–311. doi: 10.1128/jb.20.5.299-311.1930, PMID: PubMed DOI PMC
Mukamolova G. V., Kaprelyants A. S., Kell D. B., Young M. (2003). Adoption of the transiently non-culturable state-a bacterial survival strategy? Adv. Microb. Physiol. 47, 66–131. doi: 10.1016/S0065-2911(03)47002-1 PubMed DOI
Mukamolova G. V., Kaprelyants A. S., Young D. I., Young M., Kell D. B. (1998). A bacterial cytokine. Proc. Natl. Acad. Sci. U. S. A. 95, 8916–8921. doi: 10.1073/pnas.95.15.8916, PMID: PubMed DOI PMC
Mukamolova G. V., Murzin A. G., Salina E. G., Demina G. R., Kell D. B., Kaprelyants A. S., et al. . (2006). Muralytic activity of Micrococcus luteus Rpf and its relationship to physiological activity in promoting bacterial growth and resuscitation. Mol. Microbiol. 59, 84–98. doi: 10.1111/j.1365-2958.2005.04930.x, PMID: PubMed DOI
Mukamolova G. V., Turapov O. A., Young D. I., Kaprelyants A. S., Kell D. B., Young M. (2002). A family of autocrine growth factors in mycobacterium tuberculosis. Mol. Microbiol. 46, 623–635. doi: 10.1046/j.1365-2958.2002.03184.x, PMID: PubMed DOI
Nguyen L. D., Kalachová L., Novotná J., Holub M., Kofroňová O., Benada O., et al. . (2005). Cultivation system using glass beads immersed in liquid medium facilitates studies of Streptomyces differentiation. Appl. Environ. Microbiol. 71, 2848–2852. doi: 10.1128/AEM.71.6.2848-2852.2005, PMID: PubMed DOI PMC
Nichols D. (2007). Cultivation gives context to the microbial ecologist. FEMS Microbiol 60, 351–357. doi: 10.1111/j.1574-6941.2007.00332.x, PMID: PubMed DOI
Nichols D., Cahoon N., Trakhtenberg E. M., Pham L., Mehta A., Belanger A., et al. . (2010). Use of ichip for high-throughput in situ cultivation of “uncultivable” microbial species. Appl. Environ. Microbiol. 76, 2445–2450. doi: 10.1128/AEM.01754-09, PMID: PubMed DOI PMC
Nichols D., Lewis K., Orjala J., Mo S., Ortenberg R., O'Connor P., et al. . (2008). Short peptide induces an “uncultivable” microorganism to grow in vitro. Appl. Environ. Microbiol. 74, 4889–4897. doi: 10.1128/AEM.00393-08, PMID: PubMed DOI PMC
Nikitushkin V. D., Demina G. R., Kaprelyants A. S. (2016). Rpf proteins are the factors of reactivation of the dormant forms of Actinobacteria. Biochem. Mosc. 81, 1719–1734. doi: 10.1134/S0006297916130095, PMID: PubMed DOI
Nowrotek M., Jałowiecki Ł., Harnisz M., Płaza G. A. (2019). Culturomics and metagenomics: in understanding of environmental resistome. Front. Environ. Sci. Eng. 13:40. doi: 10.1007/s11783-019-1121-8 DOI
Ohan J., Pelle B., Nath P., Huang J.-H., Hovde B., Vuyisich M., et al. . (2019). High-throughput phenotyping of cell-to-cell interactions in gel microdroplet pico-cultures. BioTechniques 66, 218–224. doi: 10.2144/btn-2018-0124, PMID: PubMed DOI
Omsland A., Cockrell D. C., Howe D., Fischer E. R., Virtaneva K., Sturdevant D. E., et al. . (2009). Host cell-free growth of the Q fever bacterium Coxiella burnetii. Proc. Natl. Acad. Sci. U. S. A. 106, 4430–4434. doi: 10.1073/pnas.0812074106, PMID: PubMed DOI PMC
Ota Y., Saito K., Takagi T., Matsukura S., Morita M., Tsuneda S., et al. . (2019). Fluorescent nucleic acid probe in droplets for bacterial sorting (FNAP-sort) as a high-throughput screening method for environmental bacteria with various growth rates. PLoS One 14:e0214533. doi: 10.1371/journal.pone.0214533, PMID: PubMed DOI PMC
Palmer M., Sutcliffe I., Venter S. N., Hedlund B. P. (2022). It is time for a new type of type to facilitate naming the microbial world. New Microbes New Infect. 47:100991. doi: 10.1016/j.nmni.2022.100991, PMID: PubMed DOI PMC
Panda A. K., Bisht S. S., Rana M., De Mandal S., Kumar N. S. (2018). “Biotechnological potential of thermophilic Actinobacteria associated with hot springs” in New and future developments in microbial biotechnology and bioengineering. eds. Bhim Pratap Singh, Vijai Kumar Gupta, and Ajit Kumar Passari (Elsevier), 155–164.
Pande S., Kost C. (2017). Bacterial unculturability and the formation of intercellular metabolic networks. Trends Microbiol. 25, 349–361. doi: 10.1016/j.tim.2017.02.015, PMID: PubMed DOI
Papik J., Folkmanova M., Polivkova M., Suman J., Uhlik O. (2020). The invisible life inside plants: deciphering the riddles of endophytic bacterial diversity. Biotechnol. Adv. 44:107614. doi: 10.1016/j.biotechadv.2020.107614, PMID: PubMed DOI
Parte A. C., Carbasse J. S., Meier-Kolthoff J. P., Reimer L. C., Göker M. (2020). List of prokaryotic names with standing in nomenclature (LPSN) moves to the DSMZ. Int. J. Syst. Evol. Microbiol. 70, 5607–5612. doi: 10.1099/ijsem.0.004332, PMID: PubMed DOI PMC
Pascoal F., Magalhães C., Costa R. (2020). The link between the ecology of the prokaryotic rare biosphere and its biotechnological potential. Front. Microbiol. 11:231. doi: 10.3389/fmicb.2020.00231 PubMed DOI PMC
Pascual J., García-López M., Carmona C., Sousa Tda S., de Pedro N., Cautain B., et al. . (2014). Pseudomonas soli sp. nov., a novel producer of xantholysin congeners. Syst. Appl. Microbiol. 37, 412–416. doi: 10.1016/j.syapm.2014.07.003, PMID: PubMed DOI
Pascual J., García-López M., González I., Genilloud O. (2017). Luteolibacter gellanilyticus sp. nov., a gellan-gum-degrading bacterium of the phylum Verrucomicrobia isolated from miniaturized diffusion chambers. Int. J. Syst. Evol. Microbiol. 67, 3951–3959. doi: 10.1099/ijsem.0.002227, PMID: PubMed DOI
Pathak A., Jaswal R., Xu X., White J. R., Edwards B., 3rd, Hunt J., et al. . (2020). Characterization of bacterial and fungal assemblages from historically contaminated metalliferous soils using metagenomics coupled with diffusion chambers and microbial traps. Front. Microbiol. 11:1024. doi: 10.3389/fmicb.2020.01024, PMID: PubMed DOI PMC
Pernthaler J., Pernthaler A., Amann R. (2003). Automated enumeration of groups of marine picoplankton after fluorescence in situ hybridization. Appl. Environ. Microbiol. 69, 2631–2637. doi: 10.1128/AEM.69.5.2631-2637.2003, PMID: PubMed DOI PMC
Pinto D., Almeida V., Almeida Santos M., Chambel L. (2011). Resuscitation of Escherichia coli VBNC cells depends on a variety of environmental or chemical stimuli. J. Appl. Microbiol. 110, 1601–1611. doi: 10.1111/j.1365-2672.2011.05016.x, PMID: PubMed DOI
Pinto D., Santos M. A., Chambel L. (2015). Thirty years of viable but nonculturable state research: unsolved molecular mechanisms. Crit. Rev. Microbiol. 41, 61–76. doi: 10.3109/1040841X.2013.794127, PMID: PubMed DOI
Pinto D., São-José C., Santos M. A., Chambel L. (2013). Characterization of two resuscitation promoting factors of listeria monocytogenes. Microbiology 159, 1390–1401. doi: 10.1099/mic.0.067850-0, PMID: PubMed DOI
Power J. F., Carere C. R., Lee C. K., Wakerley G. L. J., Evans D. W., Button M., et al. . (2018). Microbial biogeography of 925 geothermal springs in New Zealand. Nat. Commun. 9:2876. doi: 10.1038/s41467-018-05020-y, PMID: PubMed DOI PMC
Pudasaini S., Wilson J., Ji M., van Dorst J., Snape I., Palmer A. S., et al. . (2017). Microbial diversity of Browning peninsula, eastern Antarctica revealed using molecular and cultivation methods. Front. Microbiol. 8:591. doi: 10.3389/fmicb.2017.00591, PMID: PubMed DOI PMC
Pulschen A. A., Bendia A. G., Fricker A. D., Pellizari V. H., Galante D., Rodrigues F. (2017). Isolation of uncultured bacteria from Antarctica using long incubation periods and low nutritional media. Front. Microbiol. 8:1346. doi: 10.3389/fmicb.2017.01346, PMID: PubMed DOI PMC
Puspita I. D., Kamagata Y., Tanaka M., Asano K., Nakatsu C. H. (2012). Are uncultivated bacteria really uncultivable? Microbes Environ. 27, 356–366. doi: 10.1264/jsme2.ME12092, PMID: PubMed DOI PMC
Rahman I., Shahamat M., Kirchman P., Russek-Cohen E., Colwell R. (1994). Methionine uptake and cytopathogenicity of viable but nonculturable Shigella dysenteriae type 1. Appl. Environ. Microbiol. 60, 3573–3578. doi: 10.1128/aem.60.10.3573-3578.1994, PMID: PubMed DOI PMC
Rappé M. S., Connon S. A., Vergin K. L., Giovannoni S. J. (2002). Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature 418:630. doi: 10.1038/nature00917, PMID: PubMed DOI
Ratzke C., Gore J. (2018). Modifying and reacting to the environmental pH can drive bacterial interactions. PLoS Biol. 16:e2004248. doi: 10.1371/journal.pbio.2004248, PMID: PubMed DOI PMC
Remenár M., Karelová E., Harichová J., Zámocký M., Kamlárová A., Ferianc P. (2015). Isolation of previously uncultivable bacteria from a nickel contaminated soil using a diffusion-chamber-based approach. Appl. Soil Ecol. 95, 115–127. doi: 10.1016/j.apsoil.2015.06.013 DOI
Ren B., Hu Y., Chen B., Zhang Y., Thiele J., Shi R., et al. . (2018). Soil pH and plant diversity shape soil bacterial community structure in the active layer across the latitudinal gradients in continuous permafrost region of northeastern China. Sci. Rep. 8:5619. doi: 10.1038/s41598-018-24040-8, PMID: PubMed DOI PMC
Ren L., Jeppesen E., He D., Wang J., Liboriussen L., Xing P., et al. . (2015). pH influences the importance of niche-related and neutral processes in lacustrine bacterioplankton assembly. Appl. Environ. Microbiol. 81, 3104–3114. doi: 10.1128/AEM.04042-14, PMID: PubMed DOI PMC
Rettedal E. A., Gumpert H., Sommer M. O. A. (2014). Cultivation-based multiplex phenotyping of human gut microbiota allows targeted recovery of previously uncultured bacteria. Nat. Commun. 5:4714. doi: 10.1038/ncomms5714, PMID: PubMed DOI
Řezanka T., Gharwalová L., Nováková G., Kolouchová I., Uhlík O., Sigler K. (2019). Kocuria bacterial isolates from radioactive springs of Jáchymov spa (Joachimsthal) as sources of polyunsaturated fatty acids. Lipids 54, 177–187. doi: 10.1002/lipd.12136, PMID: PubMed DOI
Rice S. A., McDougald D., Kjelleberg S. (2000). Vibrio vulnificus: a physiological and genetic approach to the viable but nonculturable response. J. Infect. Chemother. 6, 115–120. doi: 10.1007/PL00012150, PMID: PubMed DOI
Rosero-Chasoy G., Rodríguez-Jasso R. M., Aguilar C. N., Buitrón G., Chairez I., Ruiz H. A. (2021). Microbial co-culturing strategies for the production high value compounds, a reliable framework towards sustainable biorefinery implementation – an overview. Bioresour. Technol. 321:124458. doi: 10.1016/j.biortech.2020.124458, PMID: PubMed DOI
Rosselló-Móra R., Amann R. (2015). Past and future species definitions for bacteria and Archaea. Syst. Appl. Microbiol. 38, 209–216. doi: 10.1016/j.syapm.2015.02.001, PMID: PubMed DOI
Rousk J., Bååth E., Brookes P. C., Lauber C. L., Lozupone C., Caporaso J. G., et al. . (2010). Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 4, 1340–1351. doi: 10.1038/ismej.2010.58, PMID: PubMed DOI
Sangwan P., Kovac S., Davis K. E. R., Sait M., Janssen P. H. (2005). Detection and cultivation of soil Verrucomicrobia. Appl. Environ. Microbiol. 71, 8402–8410. doi: 10.1128/AEM.71.12.8402-8410.2005, PMID: PubMed DOI PMC
Schink B. (2002). Synergistic interactions in the microbial world. Antonie Van Leeuwenhoek 81, 257–261. doi: 10.1023/A:1020579004534, PMID: PubMed DOI
Schneider Y. K.-H., Ø Hansen K., Isaksson J., Ullsten S., H Hansen E., Hammer Andersen J. (2019). Anti-bacterial effect and cytotoxicity assessment of lipid 430 isolated from Algibacter sp. Molecules 24:3991. doi: 10.3390/molecules24213991, PMID: PubMed DOI PMC
Seeger S., Monajembashi S., Hutter K. J., Futterman G., Wolfrum J., Greulich K. (1991). Application of laser optical tweezers in immunology and molecular genetics. Cytom. J. Int. Soc. Anal. Cytol 12, 497–504. doi: 10.1002/cyto.990120606, PMID: PubMed DOI
Senoh M., Ghosh-Banerjee J., Ramamurthy T., Hamabata T., Kurakawa T., Takeda M., et al. . (2010). Conversion of viable but nonculturable Vibrio cholerae to the culturable state by co-culture with eukaryotic cells. Microbiol. Immunol. 54, 502–507. doi: 10.1111/j.1348-0421.2010.00245.x, PMID: PubMed DOI
Sessitsch A., Weilharter A., Gerzabek M. H., Kirchmann H., Kandeler E. (2001). Microbial population structures in soil particle size fractions of a long-term fertilizer field experiment. Appl. Environ. Microbiol. 67, 4215–4224. doi: 10.1128/AEM.67.9.4215-4224.2001, PMID: PubMed DOI PMC
Sexton D. L., St-Onge R. J., Haiser H. J., Yousef M. R., Brady L., Gao C., et al. . (2015). Resuscitation-promoting factors are cell wall-lytic enzymes with important roles in the germination and growth of Streptomyces coelicolor. J. Bacteriol. 197, 848–860. doi: 10.1128/JB.02464-14, PMID: PubMed DOI PMC
Shah I. M., Dworkin J. (2010). Induction and regulation of a secreted peptidoglycan hydrolase by a membrane Ser/Thr kinase that detects muropeptides. Mol. Microbiol. 75, 1232–1243. doi: 10.1111/j.1365-2958.2010.07046.x, PMID: PubMed DOI
Shleeva M., Mukamolova G. V., Young M., Williams H. D., Kaprelyants A. S. (2004). Formation of ‘non-culturable’cells of mycobacterium smegmatis in stationary phase in response to growth under suboptimal conditions and their Rpf-mediated resuscitation. Microbiology 150, 1687–1697. doi: 10.1099/mic.0.26893-0, PMID: PubMed DOI
Signoretto C., del Mar L. M., Tafi M. C., Canepari P. (2000). Cell wall chemical composition of Enterococcus faecalis in the viable but nonculturable state. Appl. Environ. Microbiol. 66, 1953–1959. doi: 10.1128/AEM.66.5.1953-1959.2000, PMID: PubMed DOI PMC
Smrhova T., Jani K., Pajer P., Kapinusova G., Vylita T., Suman J., et al. . (2022). Prokaryotes of renowned Karlovy Vary (Carlsbad) thermal springs: phylogenetic and cultivation analysis. Environ. Microbiol. 17:48. doi: 10.1186/s40793-022-00440-2, PMID: PubMed DOI PMC
Song W., Kim M., Tripathi B. M., Kim H., Adams J. M. (2016). Predictable communities of soil bacteria in relation to nutrient concentration and successional stage in a laboratory culture experiment. Environ. Microbiol. 18, 1740–1753. doi: 10.1111/1462-2920.12879, PMID: PubMed DOI
Srikanth S., Dubey S. K., Javed A., Goel S. (2021). Droplet based microfluidics integrated with machine learning. Sens Actuator A Phys. 332:113096. doi: 10.1016/j.sna.2021.113096, PMID: PubMed DOI
Staley J. T., Konopka A. (1985). Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu. Rev. Microbiol. 39, 321–346. doi: 10.1146/annurev.mi.39.100185.001541, PMID: PubMed DOI
Steele J. A., Countway P. D., Xia L., Vigil P. D., Beman J. M., Kim D. Y., et al. . (2011). Marine bacterial, archaeal and protistan association networks reveal ecological linkages. ISME J. 5, 1414–1425. doi: 10.1038/ismej.2011.24, PMID: PubMed DOI PMC
Steiner P. A., Geijo J., Fadeev E., Obiol A., Sintes E., Rattei T., et al. . (2020). Functional seasonality of free-living and particle-associated prokaryotic communities in the coastal Adriatic Sea. Front. Microbiol. 11:584222. doi: 10.3389/fmicb.2020.584222, PMID: PubMed DOI PMC
Stewart E. J. (2012). Growing unculturable bacteria. J. Bacteriol. 194, 4151–4160. doi: 10.1128/JB.00345-12, PMID: PubMed DOI PMC
Strejcek M., Smrhova T., Junkova P., Uhlik O. (2018). Whole-cell MALDI-TOF MS versus 16S rRNA gene analysis for identification and dereplication of recurrent bacterial isolates. Front. Microbiol. 9:1294. doi: 10.3389/fmicb.2018.01294, PMID: PubMed DOI PMC
Sturm A., Dworkin J. (2015). Phenotypic diversity as a mechanism to exit cellular dormancy. Curr. Biol. 25, 2272–2277. doi: 10.1016/j.cub.2015.07.018, PMID: PubMed DOI PMC
Su X., Li S., Xie M., Tao L., Zhou Y., Xiao Y., et al. . (2021). Enhancement of polychlorinated biphenyl biodegradation by resuscitation promoting factor (Rpf) and Rpf-responsive bacterial community. Chemosphere 263:128283. doi: 10.1016/j.chemosphere.2020.128283, PMID: PubMed DOI
Su X., Shen H., Yao X., Ding L., Yu C., Shen C. (2013). A novel approach to stimulate the biphenyl-degrading potential of bacterial community from PCBs-contaminated soil of e-waste recycling sites. Bioresour. Technol. 146, 27–34. doi: 10.1016/j.biortech.2013.07.028, PMID: PubMed DOI
Su X., Wang Y., Xue B., Zhang Y., Mei R., Zhang Y., et al. . (2018). Resuscitation of functional bacterial community for enhancing biodegradation of phenol under high salinity conditions based on Rpf. Bioresour. Technol. 261, 394–402. doi: 10.1016/j.biortech.2018.04.048, PMID: PubMed DOI
Su X., Zhang Q., Hu J., Hashmi M. Z., Ding L., Shen C. (2015). Enhanced degradation of biphenyl from PCB-contaminated sediments: the impact of extracellular organic matter from Micrococcus luteus. Appl. Microbiol. Biotechnol. 99, 1989–2000. doi: 10.1007/s00253-014-6108-6, PMID: PubMed DOI
Suman J., Zubrova A., Rojikova K., Pechar R., Svec P., Cajthaml T., et al. . (2019). Pseudogemmobacter bohemicus gen. Nov., sp. nov., a novel taxon from the Rhodobacteraceae family isolated from heavy-metal-contaminated sludge. Int. J. Syst. Evol. Microbiol. 69, 2401–2407. doi: 10.1099/ijsem.0.003493, PMID: PubMed DOI
Sun J., Guo J., Yang Q., Huang J. (2019). Diluted conventional media improve the microbial cultivability from aquarium seawater. J. Microbiol. 57, 759–768. doi: 10.1007/s12275-019-9175-7, PMID: PubMed DOI
Sussman A. S., Halvorson H. O. Spores: their dormancy and germination, New York and London: Harper & Row.; (1966) 356.
Sylvain F.-É., Cheaib B., Llewellyn M., Gabriel Correia T., Barros Fagundes D., Luis Val A., et al. . (2016). pH drop impacts differentially skin and gut microbiota of the Amazonian fish tambaqui (Colossoma macropomum). Sci. Rep. 6:32032. doi: 10.1038/srep32032, PMID: PubMed DOI PMC
Tahon G., Willems A. (2017). Isolation and characterization of aerobic anoxygenic phototrophs from exposed soils from the Sør Rondane Mountains, East Antarctica. Syst. Appl. Microbiol. 40, 357–369. doi: 10.1016/j.syapm.2017.05.007, PMID: PubMed DOI
Tamaki H., Tanaka Y., Matsuzawa H., Muramatsu M., Meng X. Y., Hanada S., et al. . (2011). Armatimonas rosea gen. Nov., sp. nov., of a novel bacterial phylum, Armatimonadetes phyl. Nov., formally called the candidate phylum OP10. Int. J. Syst. Evol. Microbiol. 61, 1442–1447. doi: 10.1099/ijs.0.025643-0, PMID: PubMed DOI
Tamames J., Rosselló-Móra R. (2012). On the fitness of microbial taxonomy. Trends Microbiol. 20, 514–516. doi: 10.1016/j.tim.2012.08.012, PMID: PubMed DOI
Tanaka T., Kawasaki K., Daimon S., Kitagawa W., Yamamoto K., Tamaki H., et al. . (2014). A hidden pitfall in the preparation of agar media undermines microorganism cultivability. Appl. Environ. Microbiol. 80, 7659–7666. doi: 10.1128/AEM.02741-14, PMID: PubMed DOI PMC
Tandogan N., Abadian P. N., Epstein S., Aoi Y., Goluch E. D. (2014). Isolation of microorganisms using sub-micrometer constrictions. PLoS One 9:e101429. doi: 10.1371/journal.pone.0101429, PMID: PubMed DOI PMC
Tewari Kumar P., Decrop D., Safdar S., Passaris I., Kokalj T., Puers R., et al. . (2020). Digital microfluidics for single bacteria capture and selective retrieval using optical tweezers. Micromachines 11:308. doi: 10.3390/mi11030308, PMID: PubMed DOI PMC
Thompson J. N. (2020). “Population ecology” in Encyclopedia Britannica. Available at: https://www.britannica.com/science/population-ecology (Accessed November 18, 2020).
Tripathi B. M., Stegen J. C., Kim M., Dong K., Adams J. M., Lee Y. K. (2018). Soil pH mediates the balance between stochastic and deterministic assembly of bacteria. ISME J. 12, 1072–1083. doi: 10.1038/s41396-018-0082-4, PMID: PubMed DOI PMC
Turnbaugh P. J., Ley R. E., Hamady M., Fraser-Liggett C. M., Knight R., Gordon J. I. (2007). The human microbiome project. Nature 449, 804–810. doi: 10.1038/nature06244, PMID: PubMed DOI PMC
Uhlik O., Leewis M.-C., Strejcek M., Musilova L., Mackova M., Leigh M. B., et al. . (2013). Stable isotope probing in the metagenomics era: a bridge towards improved bioremediation. Biotechnol. Adv. 31, 154–165. doi: 10.1016/j.biotechadv.2012.09.003, PMID: PubMed DOI PMC
Vallejo Esquerra E., Yang H., Sanchez S. E., Omsland A. (2017). Physicochemical and nutritional requirements for axenic replication suggest physiological basis for Coxiella burnetii niche restriction. Front. Cell. Infect. Microbiol. 7:190. doi: 10.3389/fcimb.2017.00190, PMID: PubMed DOI PMC
van Dorst J. M., Hince G., Snape I., Ferrari B. C. (2016). Novel culturing techniques select for heterotrophs and hydrocarbon degraders in a subantarctic soil. Sci. Rep. 6:36724. doi: 10.1038/srep36724, PMID: PubMed DOI PMC
Versluis D., de J Bello González T., Zoetendal E. G., Passel M. W. J. V., Smidt H. (2019). High throughput cultivation-based screening on porous aluminum oxide chips allows targeted isolation of antibiotic resistant human gut bacteria. PLoS One 14:e0210970. doi: 10.1371/journal.pone.0210970, PMID: PubMed DOI PMC
Wang C., Bendle J., Yang Y., Yang H., Sun H., Huang J., et al. . (2016). Impacts of pH and temperature on soil bacterial 3-hydroxy fatty acids: development of novel terrestrial proxies. Org. Geochem. 94, 21–31. doi: 10.1016/j.orggeochem.2016.01.010 DOI
Watterson W. J., Tanyeri M., Watson A. R., Cham C. M., Shan Y., Chang E. B., et al. . (2020). Droplet-based high-throughput cultivation for accurate screening of antibiotic resistant gut microbes. eLife 9:e56998. doi: 10.7554/eLife.56998, PMID: PubMed DOI PMC
Watve M., Shejval V., Sonawane C., Rahalkar M., Matapurkar A., Shouche Y., et al. . (2000). The 'K' selected oligophilic bacteria: a key to uncultured diversity? Curr. Sci. 78, 1535–1542.
Whitman W. B., Chuvochina M., Hedlund B. P., Hugenholtz P., Konstantinidis K. T., Murray A. E., et al. . (2022). Development of the SeqCode: a proposed nomenclatural code for uncultivated prokaryotes with DNA sequences as type. Syst. Appl. Microbiol. 45:126305. doi: 10.1016/j.syapm.2022.126305, PMID: PubMed DOI PMC
Wilson L., Iqbal K. M., Simmons-Ehrhardt T., Bertino M. F., Shah M. R., Yadavalli V. K., et al. . (2019). Customizable 3D printed diffusion chambers for studies of bacterial pathogen phenotypes in complex environments. J. Microbiol. Methods 162, 8–15. doi: 10.1016/j.mimet.2019.05.002, PMID: PubMed DOI
Wirth J. S., Whitman W. B. (2018). Phylogenomic analyses of a clade within the roseobacter group suggest taxonomic reassignments of species of the genera Aestuariivita, Citreicella, Loktanella, Nautella, Pelagibaca, Ruegeria, Thalassobius, Thiobacimonas and Tropicibacter, and the proposal of six novel genera. Int. J. Syst. Evol. Microbiol. 68, 2393–2411. doi: 10.1099/ijsem.0.002833, PMID: PubMed DOI
Woese C. R. (1992). “Prokaryote systematics: the evolution of a science” in The Prokayotes. eds. A. Balows, H. G. Trüper, M. Dworkin, W. Harder and K-H. Schleifer (New York, NY: Springer), 3–18.
Wood T. K., Knabel S. J., Kwan B. W. (2013). Bacterial persister cell formation and dormancy. Appl. Environ. Microbiol. 79, 7116–7121. doi: 10.1128/AEM.02636-13, PMID: PubMed DOI PMC
Wu X., Spencer S., Gushgari-Doyle S., Yee M. O., Voriskova J., Li Y., et al. . (2020). Culturing of “unculturable” subsurface microbes: natural organic carbon source fuels the growth of diverse and distinct bacteria from groundwater. Front. Microbiol. 11:610001. doi: 10.3389/fmicb.2020.610001, PMID: PubMed DOI PMC
Wurch L., Giannone R. J., Belisle B. S., Swift C., Utturkar S., Hettich R. L., et al. . (2016). Genomics-informed isolation and characterization of a symbiotic Nanoarchaeota system from a terrestrial geothermal environment. Nat. Commun. 7, 1–10. doi: 10.1038/ncomms12115 PubMed DOI PMC
Xian W.-D., Salam N., Li M.-M., Zhou E.-M., Yin Y.-R., Liu Z.-T., et al. . (2020). Network-directed efficient isolation of previously uncultivated Chloroflexi and related bacteria in hot spring microbial mats. NPJ Biofilms Microbiomes 6, 1–10. doi: 10.1038/s41522-020-0131-4 PubMed DOI PMC
Xu B., Hu B., Wang J., Lan Y., Zhu Y., Dai X., et al. . (2018). Virgibacillus indicus sp. nov. and Virgibacillus profundi sp. nov, two moderately halophilic bacteria isolated from marine sediment by using microfluidic streak plates. Int. J. Syst. Evol. Microbiol. 68, 2015–2023. doi: 10.1099/ijsem.0.002782, PMID: PubMed DOI
Xu H.-S., Roberts N., Singleton F. L., Attwell R. W., Grimes D. J., Colwell R. R. (1982). Survival and viability of nonculturable Escherichia coli and vibrio cholerae in the estuarine and marine environment. Microb. Ecol. 8, 313–323. doi: 10.1007/BF02010671, PMID: PubMed DOI
Xu R., Zhang K., Liu P., Han H., Zhao S., Kakade A., et al. . (2018). Lignin depolymerization and utilization by bacteria. Bioresour. Technol. 269, 557–566. doi: 10.1016/j.biortech.2018.08.118, PMID: PubMed DOI
Yasumoto-Hirose M., Nishijima M., Ngirchechol M. K., Kanoh K., Shizuri Y., Miki W. (2006). Isolation of marine bacteria by in situ culture on media-supplemented polyurethane foam. Mar. Biotechnol. 8, 227–237. doi: 10.1007/s10126-005-5015-3, PMID: PubMed DOI
Zang E., Brandes S., Tovar M., Martin K., Mech F., Horbert P., et al. . (2013). Real-time image processing for label-free enrichment of Actinobacteria cultivated in picolitre droplets. Lab Chip 13, 3707–3713. doi: 10.1039/c3lc50572c, PMID: PubMed DOI
Zengler K., Toledo G., Rappé M., Elkins J., Mathur E. J., Short J. M., et al. . (2002). Cultivating the uncultured. Proc. Natl. Acad. Sci. U. S. A. 99, 15681–15686. doi: 10.1073/pnas.252630999, PMID: PubMed DOI PMC
Zengler K., Walcher M., Clark G., Haller I., Toledo G., Holland T., et al. . (2005). High-throughput cultivation of microorganisms using microcapsules. Methods Enzymol. 397, 124–130. doi: 10.1016/S0076-6879(05)97007-9, PMID: PubMed DOI
Zhang Y. (2014). Persisters, persistent infections and the Yin–Yang model. Emerg Microbes Infect 3, 1–10. doi: 10.1038/emi.2014.3 PubMed DOI PMC
Zhang X.-H., Ahmad W., Zhu X.-Y., Chen J., Austin B. (2021). Viable but nonculturable bacteria and their resuscitation: implications for cultivating uncultured marine microorganisms. Mar. Life Sci. Technol. 3, 189–203. doi: 10.1007/s42995-020-00041-3 PubMed DOI PMC
Zhang L., Chen P., Zhou Z., Hu Y., Sha Q., Zhang H., et al. . (2019). Agarose-based microwell array chip for high-throughput screening of functional microorganisms. Talanta 191, 342–349. doi: 10.1016/j.talanta.2018.08.090, PMID: PubMed DOI
Zhang A., Sun H., Wang P., Han Y., Wang X. (2012). Modern analytical techniques in metabolomics analysis. Analyst 137, 293–300. doi: 10.1039/C1AN15605E, PMID: PubMed DOI
Zhou N., Sun Y. T., Chen D. W., Du W., Yang H., Liu S. J. (2019). Harnessing microfluidic streak plate technique to investigate the gut microbiome of Reticulitermes chinensis. MicrobiologyOpen 8:e00654. doi: 10.1002/mbo3.654, PMID: PubMed DOI PMC