Cultivation system using glass beads immersed in liquid medium facilitates studies of Streptomyces differentiation
Language English Country United States Media print
Document type Evaluation Study, Journal Article, Research Support, Non-U.S. Gov't
PubMed
15932976
PubMed Central
PMC1151819
DOI
10.1128/aem.71.6.2848-2852.2005
PII: 71/6/2848
Knihovny.cz E-resources
- MeSH
- Electrophoresis, Gel, Two-Dimensional MeSH
- Bacterial Proteins metabolism MeSH
- Bacteriological Techniques MeSH
- Culture Media MeSH
- Microscopy, Electron, Scanning MeSH
- Proteomics MeSH
- Gene Expression Regulation, Bacterial MeSH
- Glass * MeSH
- Streptomyces growth & development metabolism ultrastructure MeSH
- Particle Size MeSH
- Publication type
- Journal Article MeSH
- Evaluation Study MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Bacterial Proteins MeSH
- Culture Media MeSH
A two-phase cultivation system was developed which will enable studies of streptomycete differentiation by molecular biological and global techniques such as transcriptomics and proteomics. The system is based on a solid phase formed by glass beads corresponding to particles in soil, clay, or sand natural habitats of streptomycetes. The beads are immersed in a liquid medium that allows easy modification or replacement of nutrients and growth factors as well as radioactive labeling of proteins. Scanning electron microscopy was used to analyze morphological differentiation of streptomycetes on glass beads and two-dimensional protein electrophoresis to demonstrate the potential of the system for analyses of protein synthesis profiles during the developmental program. This system facilitates studies of differentiation including expression and post-translation modifications of streptomycetes proteins, secondary metabolite biosynthesis, and morphological development.
See more in PubMed
Allan, E. J., and J. I. Prosser. 1983. Mycelial growth and branching of Streptomyces coelicolor A3(2) on solid medium. J. Gen. Microbiol. 129:2029-2036.
Bentley, S. D., K. F. Chater, A. M. Cerdeño-Tárraga, G. L. Challis, N. R. Thomson, K. D. James, D. E. Harris, M. A. Quail, H. Kieser, D. Harper, A. Bateman, S. Brown, G. Chandra, C. W. Chen, M. Collins, A. Cronin, A. Fraser, A. Goble, J. Hidalgo, T. Hornsby, S. Howarth, C. H. Huang, T. Kieser, L. Larke, L. Murphy, K. Oliver, S. O'Neil, E. Rabbinowitsch, M. A. Rajandream, K. Rutherford, S. Rutter, K. Seeger, D. Saunders, S. Sharp, R. Squares, S. Squares, K. Taylor, T. Warren, A. Wietzorrek, J. Woodward, B. G. Barrell, J. Parkhill, and D. A. Hopwood. 2002. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141-147. PubMed
Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254. PubMed
Bystrykh, L. V., M. A. Fernández-Moreno, J. K. Herrema, F. Malpartida, D. A. Hopwood, and L. Dijkhuizen. 1996. Production of actinorhodin-related “blue pigments” by Streptomyces coelicolor A3(2). J. Bacteriol. 178:2238-2244. PubMed PMC
Chater, K. F. 2001. Regulation of sporulation in Streptomyces coelicolor A3(2): a checkpoint multiplex? Curr. Opin. Microbiol. 4:667-673. PubMed
Chater, K. F. 1989. Multilevel regulation of Streptomyces differentiation. Trends Genet. 5:372-377. PubMed
Erikson, D. 1949. The morphology, cytology, and taxonomy of the actinomycetes. Annu. Rev. Microbiol. 3:23-54.
Granozzi, C., R. Billetta, R. Passantino, M. Sollazo, and A. M. Puglia. 1990. A breakdown in macromolecular synthesis preceding differentiation in Streptomyces coelicolor A3(2). J. Gen. Microbiol. 136:713-716. PubMed
Hodgson, D. A. 2000. Primary metabolism and its control in streptomycetes: a most unusual group of bacteria. Adv. Microb. Physiol. 42:47-238. PubMed
Ikeda, H., J. Ishikawa, A. Hanamoto, M. Shinose, H. Kikuchi, T. Shiba, Y. Sakaki, M. Hattori, and S. Ómura. 2003. Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat. Biotechnol. 21:526-531. PubMed
Johnson, B. 1998. Breaking up isn't hard to do: a cacophony of sonicators, cell bombs, and grinders. Scientist 12:23.
Kelemen, G. H., and M. J. Buttner. 1998. Initiation of aerial mycelium formation in Streptomyces. Curr. Opin. Microbiol. 1:656-662. PubMed
Kofroňová, O., L. D. Nguyen, J. Weiser, and O. Benada. 2002. Streptomycetes cultured on glass beads—sample preparation for SEM. Microsc. Res. Tech. 58:111-113. PubMed
Kormanec, J., A. Lempelová, R. Nováková, B. Řežuchová, and D. Homérová. 1997. Expression of the Streptomyces aureofaciens glyceraldehyde-3-phosphate dehydrogenase gene (gap) is developmentally regulated and induced by glucose. Microbiology 143:3555-3561. PubMed
Miguelez, E. M., C. Hardisson, and M. B. Manzanal. 1999. Hyphal death during colony development in Streptomyces antibioticus: morphological evidence for the existence of a process of cell deletion in a multicellular prokaryote. J. Cell Biol. 145:515-525. PubMed PMC
O'Farrell, P. H. 1975. High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250:4007-4021. PubMed PMC
Süsstrunk, U., J. Pidoux, S. Taubert, A. Ullmann, and C. J. Thompson. 1998. Pleiotropic effects of cAMP on germination, antibiotic biosynthesis and morphological development in Streptomyces coelicolor. Mol. Microbiol. 30:33-46. PubMed
Vaněk, Z., and J. Janeček. 1997. The physiology and biosynthesis of secondary metabolites. Acta Biol. Hung. 48:339-358. PubMed
Wildermuth, H. 1970. Development and organization of the aerial mycelium in Streptomyces coelicolor. J. Gen. Microbiol. 60:43-50. PubMed
Willey, J., J. Schwedock, and R. Losick. 1993. Multiple extracellular signals govern the production of a morphogenetic protein involved in aerial mycelium formation by Streptomyces coelicolor. Genes Dev. 7:895-903. PubMed
Reaching unreachables: Obstacles and successes of microbial cultivation and their reasons