Distribution of Orchids with Different Rooting Systems in the Czech Republic
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
33810576
PubMed Central
PMC8067186
DOI
10.3390/plants10040632
PII: plants10040632
Knihovny.cz E-zdroje
- Klíčová slova
- altitude, diversity, mean species specialization index, orchid distribution, phytogeographical area,
- Publikační typ
- časopisecké články MeSH
Understanding diversity patterns along altitudinal gradients and the effect of global change on abundance, distribution patterns and species survival are of the most discussed topics in biodiversity research. Here, we determined the associations of orchid species richness and the degree of their specialization to specific environmental conditions (expressed by species specialization index) with altitude in six floristic areas in the Czech Republic. We distinguished three basic trends in these relationships: linear, parabolic and cubic. We then determined whether these trends differ between three orchid groups classified by their rooting systems: rhizomatous, intermediate and tuberous. We used distributional data on 69 species and subspecies of terrestrial orchids recorded in the Czech Republic and interpolated them at 100-m intervals along an altitudinal gradient in each floristic area. The trends in both species richness and mean species specialization index differed between the six floristic areas within each of the three orchid groups studied. These patterns are probably strongly influenced by the orography of the country and the distribution of different habitats in the six floristic areas in the Czech Republic. We also found that the most widely distributed orchid group in the Czech Republic are the rhizomatous orchids, followed by intermediate and tuberous ones.
Zobrazit více v PubMed
Wotavová K., Balounová Z., Kindlmann P. Factors affecting persistence of terrestrial orchids in wet meadows and implications for their conservation in a changing agricultural landscape. Biol. Conserv. 2004;118:271–279. doi: 10.1016/j.biocon.2003.09.005. DOI
Pfeifer M., Wiegand K., Heinrich W., Jetschke G. Long-term demographic fluctuations in an orchid species driven by weather: Implications for conservation planning. J. Appl Ecol. 2006;43:313–324. doi: 10.1111/j.1365-2664.2006.01148.x. DOI
Swarts N.D., Dixon K.W. Conservation Methods for Terrestrial Orchids. J. Ross Publishing; Plantation, FL, USA: 2017.
Štípková Z., Romportl D., Černocká V., Kindlmann P. Factors associated with the distributions of orchids in the Jeseníky Mountains, Czech Republic. Eur. J. Environ. Sci. 2017;7:135–145. doi: 10.14712/23361964.2017.13. DOI
Štípková Z., Kosánová K., Romportl D., Kindlmann P. Determinants of Orchid Occurrence: A Czech Example. In: Şen B., Grillo O., editors. Selected Studies in Biodiversity. InTech Open; London, UK: 2018. pp. 1–24. DOI
Brown J.H. Macroecology. University of Chicago Press; Chicago, IL, USA: 1995.
Gaston K.J., Blackburn T.M. Pattern and Process in Macroecology. Blackwell Science Ltd.; Malden, MA, USA: 2000.
Tsiftsis S., Štípková Z., Kindlmann P. Role of way of life, latitude, elevation and climate in the richness and distribution of orchid species. Biodivers Conserv. 2019;28:75–96. doi: 10.1007/s10531-018-1637-4. DOI
Swarts N.D., Dixon W.D. Terrestrial orchid conservation in the age of extinction. Ann. Bot-Lond. 2009;104:543–556. doi: 10.1093/aob/mcp025. PubMed DOI PMC
Tsiftsis S., Tsiripidis I., Karagiannakidou V., Alifragis D. Niche analysis and conservation of orchids of east Macedonia (NE Greece) Acta Oecol. 2008;33:27–35. doi: 10.1016/j.actao.2007.08.001. DOI
Štípková Z., Tsiftsis S., Kindlmann P. How did the agricultural policy during the communist period affect the decline in orchid biodiversity in Central and Eastern Europe? Glob. Ecol. Conserv. 2021;26:e01498. doi: 10.1016/j.gecco.2021.e01498. DOI
Štípková Z., Kindlmann P. Orchid extinction over the last 150 years in the Czech Republic. Diversity. 2021;13:78. doi: 10.3390/d13020078. DOI
Dykyjová D. Ekologie Středoevropských Orchidejí. KOPP; České Budějovice, Česká republika: 2003.
Jersáková J., Kindlmann P. Zásady Péče o Orchidejová Stanoviště. KOPP; České Budějovice, Česká republika: 2004.
Průša D. Orchideje České Republiky. Computer press; Brno, Česká republika: 2005.
Slavík S., Hejný B. Květena České Republiky 8. Academia; Praha, Česká republika: 2010.
Danihelka J., Chrtek J., Jr., Kaplan Z. Checklist of vascular plants of the Czech Republic. Preslia. 2012;84:647–811.
Lepší P., Lepší M., Boublík K., Stech M., Hans V. Červená Kniha Květeny Jižní Části Čech. Jihočeské muzeum v Českých Budějovicích; České Budějovice, Česká republika: 2013.
Chytrý M., Danihelka J., Kaplan Z., Pyšek P. Flora and Vegetation of the Czech. Republic. Springer International Publishing; Cham, Switzerland: 2017.
Štípková Z., Tsiftsis S., Kindlmann P. Pollination mechanisms are driving orchid distribution in space. Sci. Rep. 2020;10:850. doi: 10.1038/s41598-020-57871-5. PubMed DOI PMC
Rasmussen H.N. Terrestrial Orchids from Seed to Mycotrophic Plant. Cambridge University Press; Cambridge, UK: 1995.
Dressler R.L. The Orchids: Natural History and Classification. Harvard University Press; Cambridge, MA, USA: 1981.
Averyanov L. A review of the genus Dactylorhiza. In: Arditti J., editor. Orchid Biology—Reviews and Perspectives. V. Timber Press Inc.; Portland, OR, USA: 1990. pp. 159–206.
Tatarenko I. Growth habits of temperate terrestrial orchids. In: Cameron K.M., Arditti J., Kull T., editors. Orchid Biology—Reviews and Perspectives, IX. The New York Botanical Garden Press; Bronx, NY, USA: 2007. pp. 91–161.
Kaplan Z. Flora and phytogeography of the Czech Republic. Preslia. 2012;84:505–573.
Stevens G.C. The latitudinal gradient in geographical range: How so many species coexist in the tropics. Am. Nat. 1989;133:240–256. doi: 10.1086/284913. DOI
Stevens G.C. The elevational gradient in altitudinal range: An extension of Rapoport’s latitudinal rule to altitude. Am. Nat. 1992;140:893–911. doi: 10.1086/285447. PubMed DOI
Bhattarai K.R., Vetaas O.R. Variation in plant species richness of different life forms along a subtropical elevation gradient in the Himalayas, east Nepal. Glob. Ecol. Biogeogr. 2003;12:327–340. doi: 10.1046/j.1466-822X.2003.00044.x. DOI
Grytnes J.A. Species-richness patterns of vascular plants along seven altitudinal transects in Norway. Ecography. 2003;26:291–300. doi: 10.1034/j.1600-0587.2003.03358.x. DOI
Hrivnák R., Gömöry D., Slezák M., Ujházy K., Hédl R., Jarčuška B., Ujházyová M. Species richness pattern along altitudinal gradient in central European beech forests. Folia. Geobot. 2014;49:425–441. doi: 10.1007/s12224-013-9174-0. DOI
Zhou Y.D., Ochola A.C., Njogu A.W., Boru B.H., Mwachala G., Hu G.W., Xin H.P., Wang Q.F. The species richness pattern of vascular plants along a tropical elevational gradient and the test of elevational Rapoport’s rule depend on different life-forms and phytogeographic affinities. Ecol. Evol. 2019;9:4495–4503. doi: 10.1002/ece3.5027. PubMed DOI PMC
Jacquemyn H., Micheneau C., Roberts D.L., Pailler T. Elevational gradients of species diversity, breeding system and floral traits of orchid species on Réunion Island. J. Biogeogr. 2005;32:1751–1761. doi: 10.1111/j.1365-2699.2005.01307.x. DOI
Del Prete C., Mazzola P. Endemism and speciation in the orchids of Mediterranean Islands. Ecol. Mediterr. 1995;21:119–134. doi: 10.3406/ecmed.1995.1760. DOI
Prach K., Jongepierová I., Řehounková K. Large-scale restoration of dry grasslands on ex-arable land using a regional seed mixture: Establishment of target species. Restor. Ecol. 2004;21:33–39. doi: 10.1111/j.1526-100X.2012.00872.x. DOI
Johanidesová E., Fajmon K., Jongepierová I., Prach K. Spontaneous colonization of restored dry grasslands by target species: Restoration proceeds beyond sowing regional seed mixtures. Grass Forage Sci. 2003;70:631–638. doi: 10.1111/gfs.12144. DOI
Kull T., Hutchings M.J. A comparative analysis of decline in the distribution ranges of orchid species in Estonia and the United Kingdom. Biol. Conserv. 2006;129:31–39. doi: 10.1016/j.biocon.2005.09.046. DOI
Swenson J.J., Young B.E., Beck S., Comer P., Cordova J.H., Dyson J., Embert D., Encarnacion F., Ferreira W., Franke I., et al. Plant and animal endemism in the eastern Andean slope: Challenges to conservation. BMC Ecol. 2012;12:1. doi: 10.1186/1472-6785-12-1. PubMed DOI PMC
Tsiftsis S., Tsiripidis I., Karagiannakidou V. Identifying areas of high importance for orchid conservation in east Macedonia (NE Greece) Biodivers Conserv. 2009;18:1765–1780. doi: 10.1007/s10531-008-9557-3. DOI
Djordjević V., Tsiftsis S., Lakušić D., Jovanović S., Stevanović V. Factors affecting the distribution and abundance of orchids in grasslands and herbaceous wetlands. Syst. Biodivers. 2016;14:355–370. doi: 10.1080/14772000.2016.1151468. DOI
Djordjević V., Tsiftsis S. The role of ecological factors in distribution and abundance of terrestrial orchids. In: Mérillon J.M., Kodja H., editors. Orchids Phytochemistry, Biology and Horticulture. Springer Nature; Cham, Switzerland: 2020. pp. 1–71.
Pecoraro K., Caruso T., Cai L., Gupta V.K., Liu Z.-J. Fungal networks and orchid distribution: New insight from above- and below-ground analyses of fungal communities. IMA Fungus. 2018;9:1–11. doi: 10.5598/imafungus.2018.09.01.01. PubMed DOI PMC
Davis B.J., Phillips R.D., Wright M., Linde C.C., Dixon K.W. Continent-wide distribution in mycorrhizal fungi: Implications for the biogeography of specialized species. Ann. Bot-Lond. 2015;116:413–421. doi: 10.1093/aob/mcv084. PubMed DOI PMC
Carvalho L.M., Correia P.M., Ryel R.J., Martins-Loucao M.A. Spatial variability of arbuscular mycorrhizal fungal spores in two natural plant communities. Plant. Soil. 2003;251:227–236. doi: 10.1023/A:1023016317269. DOI
McCormick M.K., Jacquemyn H. What constraints the distribution of orchid populations? New Phytol. 2014;202:392–400. doi: 10.1111/nph.12639. DOI
McCormick M.K., Whigham D.F., Canchani-Viruet A. Mycorrhizal fungi affect orchid distribution and population dynamics. New Phytol. 2018;219:1207–1215. doi: 10.1111/nph.15223. PubMed DOI
Geml J. Altitudinal gradients in mycorrhizal symbioses. In: Tedersoo L., editor. Biogeography of Mycorrhizal Symbiosis. Springer International Publishing; Cham, Switzerland: 2017. pp. 107–123.
Arroyo M.T.K., Primack R., Armesto J. Community studies in pollination ecology in the high temperate Andes of central Chile. I. Pollination mechanisms and altitudinal variation. Am. J. Bot. 1982;69:82. doi: 10.1002/j.1537-2197.1982.tb13237.x. DOI
Gilián L.D., Enrédi A., Zsinka B., Neményi A., Nagy J.G. Morphological and reproductive trait-variability of a food deceptive orchid, Cephalanthera rubra along different altitudes. Appl. Ecol. Environ. Res. 2019;17:5619–5639. doi: 10.15666/aeer/1703_56195639. DOI
Jacquemyn H., Brys R., Hermy M., Willems J.H. Does nectar reward affect rarity and extinction probabilities of orchid species? An assessment using historical records from Belgium and the Netherlands. Biol. Conserv. 2005;121:257–263.
Devoto M., Medan D., Montaldo N.H. Patterns of interaction between plants and pollinators along an environmental gradient. Oikos. 2005;109:461–472. doi: 10.1111/j.0030-1299.2005.13712.x. DOI
Rasmann S., Alvarez N., Pellissier L. The altitudinal niche-breadth hypothesis in insect-plant interactions. Annu. Plant. Rev. 2014;47:339–360.
Chytrý M., Kučera T., Kočí M. Katalog Biotopů České Republiky. AOPK ČR; Praha, Česká republika: 2001.
Grulich V. The Red List of vascular plants of the Czech Republic. Příroda. 2017;35:75–132.
Tremblay R.L. Trends in the pollination ecology of the Orchidaceae: Evolution and systematics. Can. J. Bot. 1992;70:642–650. doi: 10.1139/b92-083. DOI
Tylianakis J.M. The global plight of pollinators. Science. 2013;339:1532–1533. doi: 10.1126/science.1235464. PubMed DOI
Darwin C. The Various Contrivances by Which Orchids Are Fertilized by Orchids. John Murray; London, UK: 1862. PubMed
Neiland M.R.M., Wilcock C.C. Fruit set, nectar reward, and rarity in the Orchidaceae. Am. J. Bot. 1998;85:1657–1671. doi: 10.2307/2446499. PubMed DOI
Phillips R.D., Brown A.P., Dixon K.W., Hopper S.D. Orchid biogeography and factors associated with rarity in a biodiversity hotspot, the Southwest Australian Floristic Region. J. Biogeogr. 2010;28:487–501. doi: 10.1111/j.1365-2699.2010.02413.x. DOI
Crain B.J., Tremblay R.L. Do richness and rarity hotspots really matter for orchid conservation inlight of anticipated habitat loss? Divers. Distrib. 2014;20:652–662. doi: 10.1111/ddi.12179. DOI
WCSP World Checklist of Selected Plant. Families. Facilitated by the Royal Botanic Gardens, Kew. [(accessed on 5 February 2017)];2017 Available online: http://apps.kew.org/wcsp/
Fick S.E., Hijmans R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017;37:4302–4315. doi: 10.1002/joc.5086. DOI
Grytnes J.A., Vetaas O.R. Species richness and altitude: A comparison between null models and interpolated plant species richness along the Himalayan altitudinal gradient, Nepal. Am. Nat. 2002;159:294–304. doi: 10.1086/338542. PubMed DOI
Dolédec D., Chessel D., Gimaret-Carpentier C. Niche separation in community analysis: A new method. Ecology. 2000;81:2914–2927. doi: 10.1890/0012-9658(2000)081[2914:NSICAA]2.0.CO;2. DOI
R Core Team . R: A Language and Environment for Statistical Computing. 2013. [(accessed on 3 February 2016)]. Available online: http://www.R-project.org/
ESRI . ArcGIS—ArcMap: ArcInfo (version 10.1) Environmental Science Research Institute; Redlands, CA, USA: 2012.
Dray S., Dufour A., Chessel D. The ade4 Package—II: Two-Table and K-Table Methods. R News. 2007;7:47–52.