• This record comes from PubMed

Pollination Mechanisms are Driving Orchid Distribution in Space

. 2020 Jan 21 ; 10 (1) : 850. [epub] 20200121

Language English Country Great Britain, England Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 31965058
PubMed Central PMC6972782
DOI 10.1038/s41598-020-57871-5
PII: 10.1038/s41598-020-57871-5
Knihovny.cz E-resources

Understanding the abundance and distribution patterns of species at large spatial scales is one of the goals of biogeography and macroecology, as it helps researchers and authorities in designing conservation measures for endangered species. Orchids, one of the most endangered groups of plants, have a complicated system of pollination mechanisms. Their survival strongly depends on pollination success, which then determines their presence and distribution in space. Here we concentrate on how pollination mechanisms (presence/absence of nectar) are associated with orchid species density and mean niche breadth along an altitudinal gradient in six different phytogeographical regions in the Czech Republic. We found differences between these regions in terms of orchid species numbers and density. The trend (hump-shaped curve) in species density of nectarless and nectariferous orchids were very similar in all phytogeographical regions, peaking between 300-900 m. The trend strongly depends on habitat cover and pollinator availability. In general, the most specialist species of orchids were found from low to middle altitudes. The association of altitude with the richness of orchid flora is much stronger than that with the biogeography. Climate change is a factor that should not be neglected, as it may affect the presence/absence of many species in the future.

See more in PubMed

Kull T, Hutchings MJ. A comparative analysis of decline in the distribution ranges of orchid species in Estonia and the United Kingdom. Biol. Conserv. 2006;129:31–39. doi: 10.1016/j.biocon.2005.09.046. DOI

Wotavová K, Balounová Z, Kindlmann P. Factors affecting persistence of terrestrial orchids in wet meadows and implications for their conservation in a changing agricultural landscape. Biol. Conserv. 2004;118:271–279. doi: 10.1016/j.biocon.2003.09.005. DOI

Pfeifer M, Wiegand K, Heinrich W, Jetschke G. Long-term demographic fluctuations in an orchid species driven by weather: Implications for conservation planning. J. Appl. Ecol. 2006;43:313–324. doi: 10.1111/j.1365-2664.2006.01148.x. DOI

Swarts, N. D. & Dixon, K. W. Conservation Methods for Terrestrial Orchids (J. Ross Publishing, 2017).

Štípková Z, Romportl D, Černocká V, Kindlmann P. Factors associated with the distributions of orchids in the Jeseníky Mountains, Czech Republic. Eur. J. Environ. Sci. 2017;7:135–145.

Štípková Zuzana, Kosánová Kristina, Romportl Dušan, Kindlmann Pavel. Selected Studies in Biodiversity. 2018. Determinants of Orchid Occurrence: A Czech Example.

Brown, J. H. Macroecology (University of Chicago Press, 1995).

Gaston, K. J. & Blackburn, T. M. Pattern and Process in Macroecology (Blackwell Science Ltd., 2000).

Tsiftsis S, Štípková Z, Kindlmann P. Role of way of life, latitude, elevation and climate on the richness and distribution of orchid species. Biodivers. Conserv. 2019;28:75–96. doi: 10.1007/s10531-018-1637-4. DOI

Jacquemyn H, Brys R, Hermy M, Willems JH. Does nectar reward affect rarity and extinction probabilities of orchid species? An assessment using historical records from Belgium and the Netherlands. Biol. Conserv. 2005;121:257–263. doi: 10.1016/j.biocon.2004.05.002. DOI

Anderson SH, Kelly D, Ladley JJ, Molloy S, Terry J. Cascading effects of bird functional extinction reduce pollination and plant density. Science. 2011;331:1068–1071. doi: 10.1126/science.1199092. PubMed DOI

Pauw A, Bond WJ. Mutualisms matter: Pollination rate limits the distribution of oil-secreting orchids. Oikos. 2011;120:1531–1538. doi: 10.1111/j.1600-0706.2011.19417.x. DOI

Phillips RD, et al. Pollinator rarity as a threat to a plant with a specialized pollination system. Bot. J. Linn. Soc. 2015;179:511–525. doi: 10.1111/boj.12336. DOI

Simpson, B. B. & Neff, J. L. Evolution and diversity of floral rewards. In Handbook of Experimental Pollination Biology (eds. Jones, C. E. & Little, R. J.) 142–159 (Scientific and Academic Editions, 1983).

Dressler, R. L. The Orchids: Natural History and Classification (Harvard University Press, 1981).

Jersáková J, Johnson SD. Lack of floral nectar reduces self-pollination in a fly-pollinated orchid. Oecologia. 2006;147:60–68. doi: 10.1007/s00442-005-0254-6. PubMed DOI

Heinrich, B. Bumblebee Economics (Harvard University Press, 1979).

Bell G. The evolution of empty flowers. J. Theor. Biol. 1986;118:253–258. doi: 10.1016/S0022-5193(86)80057-1. DOI

Renner, S. S. Nectarless flowers in the angiosperms and the role of insect cognition in their evolution. In Plant-animal interactions: from specialization to generalization (eds. Waser, N. M. & Olerton, J.) 123–144 (University of Chicago Press, 2005).

Jersáková J, Johnson SD, Kindlmann P. Mechanisms and evolution of deceptive pollination in orchids. Biol. Rev. Camb. Philos. Soc. 2006;81:219–235. doi: 10.1017/S1464793105006986. PubMed DOI

Ackerman JD. Mechanisms and evolution of food-deceptive pollination systems in orchids. Lindleyana. 1986;1:108–113.

Anders Nilsson L. Orchid pollination biology. Trends Ecol. Evol. 1992;7:255–259. doi: 10.1016/0169-5347(92)90170-G. PubMed DOI

Tremblay RL. Trends in the pollination ecology of the Orchidaceae: evolution and systematics. Can. J. Bot. 1992;70:642–650. doi: 10.1139/b92-083. DOI

Adams PB, Lawson SD. Pollination in australian orchids:A critical-assessment of the literature 1882-1992. Aust. J. Bot. 1993;41:553–575. doi: 10.1071/BT9930553. DOI

Johnson SD, Steiner KE. Specialized pollination systems in southern Africa. S. Afr. J. Sci. 2003;99:345–348.

Tremblay RL, Ackerman JD, Zimmerman JK, Calvo RN. Variation in sexual reproduction in orchids and its evolutionary consequences: A spasmodic journey to diversification. Biol. J. Linn. Soc. 2005;84:1–54. doi: 10.1111/j.1095-8312.2004.00400.x. DOI

Micheneau C, Johnson SD, Fay MF. Orchid pollination: from Darwin to the present day. Bot. J. Linn. Soc. 2009;161:1–19. doi: 10.1111/j.1095-8339.2009.00995.x. DOI

Phillips RD, Brown AP, Dixon KW, Hopper SD. Orchid biogeography and factors associated with rarity in a biodiversity hotspot, the Southwest Australian Floristic Region. J. Biogeogr. 2011;38:487–501. doi: 10.1111/j.1365-2699.2010.02413.x. DOI

Wilcock M, Neiland C. Fruit Set, Nectar Reward, and Rarity in the Orchidaceae. Am. J. Bot. 1998;85:1657–1671. doi: 10.2307/2446499. PubMed DOI

Pellissier L, Vittoz P, Internicola AI, Gigord LDB. Generalized food-deceptive orchid species flower earlier and occur at lower altitudes than rewarding ones. J. Plant Ecol. 2010;3:243–250. doi: 10.1093/jpe/rtq012. DOI

Hobbhahn N, Johnson SD, Harder LD. The mating consequences of rewarding vs. deceptive pollination systems: Is there a quantity-quality trade-off? Ecol. Monogr. 2017;87:91–104. doi: 10.1002/ecm.1235. DOI

Cozzolino S, Widmer A. Orchid diversity: An evolutionary consequence of deception? Trends Ecol. Evol. 2005;20:487–494. doi: 10.1016/j.tree.2005.06.004. PubMed DOI

Phillips RD, Faast R, Bower CC, Brown GR, Peakall R. Implications of pollination by food and sexual deception for pollinator specificity, fruit set, population genetics and conservation of Caladenia (Orchidaceae) Aust. J. Bot. 2009;57:287–306. doi: 10.1071/BT08154. DOI

Jacquemyn H, Micheneau C, Roberts DL, Pailler T. Elevational gradients of species diversity, breeding system and floral traits of orchid species on Réunion Island. J. Biogeogr. 2005;32:1751–1761. doi: 10.1111/j.1365-2699.2005.01307.x. DOI

Arroyo MTK, Primack R, Armesto J. Community Studies in Pollination Ecology in the High Temperate Andes of Central Chile. I. Pollination Mechanisms and Altitudinal Variation. Am. J. Bot. 1982;69:82. doi: 10.1002/j.1537-2197.1982.tb13237.x. DOI

Körner C. The use of ‘altitude’ in ecological research. Trends Ecol. Evol. 2007;22:569–574. doi: 10.1016/j.tree.2007.09.006. PubMed DOI

Tassin J, Derroire G, Rivière JN. Gradient altitudinal de la richesse spécifique et de l'endémicité de la flore ligneuse indigène à l’île de La Réunion (archipel des Mascareignes) Acta Bot. Gall. 2004;151:181–196. doi: 10.1080/12538078.2004.10516033. DOI

Kluge J, Kessler M. Influence of niche characteristics and forest type on fern species richness, abundance and plant size along an elevational gradient in Costa Rica. Plant Ecol. 2011;212:1109–1121. doi: 10.1007/s11258-010-9891-x. DOI

McCreadie JW, Hamada N, Grillet ME, Adler PH. Alpha density and niche breadth of a widespread group of aquatic insects in Nearctic and Neotropical streams. Freshw. Biol. 2017;62:329–339. doi: 10.1111/fwb.12870. DOI

Herrera JM, Ploquin EF, Rasmont P, Obeso JR. Climatic niche breadth determines the response of bumblebees (Bombus spp.) to climate warming in mountain areas of the Northern Iberian Peninsula. J. Insect Conserv. 2018;22:771–779. doi: 10.1007/s10841-018-0100-x. DOI

Vargas HA, Rasmann S, Ramirez-Verdugo P, Villagra CA. Lioptilodes friasi (Lepidoptera: Pterophoridae) Niche Breadth in the Chilean Mediterranean Matorral Biome: Trophic and Altitudinal Dimensions. Neotrop. Entomol. 2018;47:62–68. doi: 10.1007/s13744-017-0514-2. PubMed DOI

Kaplan Z. Flora and phytogeography of the Czech Republic. Preslia. 2012;84:505–573.

Danihelka J, Chrtek JJ, Kaplan Z. Checklist of vascular plants of the Czech Republic. Preslia. 2012;84:647–811.

Gentry AH, Dodson CH. Diversity and Biogeography of Neotropical Vascular Epiphytes. Ann. Missouri Bot. Gard. 1987;74:205. doi: 10.2307/2399395. DOI

Wolf JHD, Flamenco-S A. Patterns in species density and distribution of vascular epiphytes in Chiapas, Mexico. J. Biogeogr. 2003;30:1689–1707. doi: 10.1046/j.1365-2699.2003.00902.x. DOI

Laverty TM. Plant interactions for pollinator visits: a test of the magnet species effect. Oecologia. 1992;89:502–508. doi: 10.1007/BF00317156. PubMed DOI

Lammi A, Kuitunen M. Deceptive pollination of Dactylorhiza incarnata: an experimental test of the magnet species hypothesis. Oecologia. 1995;101:500–503. doi: 10.1007/BF00329430. PubMed DOI

Johnson SD, Peter CI, Nilsson LA, Ågren J. Pollination success in a deceptive orchid is enhanced by co-occurring rewarding magnet plants. Ecology. 2003;84:2919–2927. doi: 10.1890/02-0471. DOI

Swenson Jennifer J, Young Bruce E, Beck Stephan, Comer Pat, Córdova Jesús H, Dyson Jessica, Embert Dirk, Encarnación Filomeno, Ferreira Wanderley, Franke Irma, Grossman Dennis, Hernandez Pilar, Herzog Sebastian K, Josse Carmen, Navarro Gonzalo, Pacheco Víctor, Stein Bruce A, Timaná Martín, Tovar Antonio, Tovar Carolina, Vargas Julieta, Zambrana-Torrelio Carlos M. Plant and animal endemism in the eastern Andean slope: challenges to conservation. BMC Ecology. 2012;12(1):1. doi: 10.1186/1472-6785-12-1. PubMed DOI PMC

Leubert, F. & Weigend, M. Phylogenetic insight into Andean plant diversification. Front. Ecol. Evol, 10.3389/fevo.2014.00027 (2014).

Chytrý, M., Kučera, T. & Kočí, M. Katalog biotopů České republiky. (AOPK ČR, 2001).

Kastinger C, Weber A. Bee-flies (Bombylius spp., Bombyliidae, Diptera) and the pollination of flowers. Flora. 2001;196:3–25. doi: 10.1016/S0367-2530(17)30015-4. DOI

Hanula JL, Ulyshen MD, Horn S. Conserving Pollinators in North American Forests: A Review. Nat. Areas J. 2016;36:427–439. doi: 10.3375/043.036.0409. DOI

Roberts HP, King DI, Milam J. Factors affecting bee communities in forest openings and adjacent mature forest. For. Ecol. Manag. 2017;394:111–122. doi: 10.1016/j.foreco.2017.03.027. DOI

Martínez-Adriano, C. A., Díaz-Castelazo, C. & Aguirre-Jaimes, A. Flower-mediated plant-butterfly interactions in an heterogeneous tropical coastal ecosystem. PeerJ2018 (2018). PubMed PMC

Nery LS, et al. Bee diversity responses to forest and open areas in heterogeneous Atlantic Forest. Sociobiology. 2018;65:686–695. doi: 10.13102/sociobiology.v65i4.3472. DOI

Eckerter T, Buse J, Förschler M, Pufal G. Additive positive effects of canopy openness on European bilberry (Vaccinium myrtillus) fruit quantity and quality. For. Ecol. Manag. 2019;433:122–130. doi: 10.1016/j.foreco.2018.10.059. DOI

Tsiftsis S, Tsiripidis I, Karagiannakidou V. Identifying areas of high importance for orchid conservation in east Macedonia (NE Greece) Biodivers. Conserv. 2009;18:1765–1780. doi: 10.1007/s10531-008-9557-3. DOI

Guth J, Kučera T. Natura 2000 habitat mapping in the Czech Republic: methods and general results. Ekológia. 2005;24:supplement 1/2005.

Baumann, H., Künkele, S. & Lorenz, R. Orchideje Evropy a Přilehlých Oblastí (Academia, 2009).

Jersáková, J. & Kindlmann, P. Zásady Péče o Orchidejová Stanoviště (KOPP, 2004).

Devoto M, Medan D, Montaldo NH. Patterns of interaction between plants and pollinators along an environmental gradient. Oikos. 2005;109:461–472. doi: 10.1111/j.0030-1299.2005.13712.x. DOI

Rasmann, S., Alvarez, N. & Pellissier, L. The altitudinal niche-breadth hypothesis in insect–plant interactions. In Insect-plant interaction (eds. Voelckel, C. & Jander, G.) 338-359 (Wiley-Blackwell, 2014).

Chytrý, M., Danihelka, J., Kaplan, Z. & Pyšek, P. Flora and Vegetation of the Czech Republic (Springer International Publishing, 2017).

Ashworth L, Aguilar R, Galetto L, Aizen MA. Why do pollination generalist and specialist plant species show similar reproductive susceptibility to habitat fragmentation? J. Ecol. 2004;92:717–719. doi: 10.1111/j.0022-0477.2004.00910.x. DOI

Pauw A. Collapse of a pollination web in small conservation areas. Ecology. 2007;88:1759–1769. doi: 10.1890/06-1383.1. PubMed DOI

Reiter N, et al. Pollinator rarity limits reintroduction sites in an endangered sexually deceptive orchid (Caladenia hastata): Implications for plants with specialized pollination systems. Bot. J. Linn. Soc. 2017;184:122–136. doi: 10.1093/botlinnean/box017. DOI

Reiter N, Bohman B, Flematti GR, Phillips RD. Pollination by nectar-foraging thynnine wasps: Evidence of a new specialized pollination system for Australian orchids. Bot. J. Linn. Soc. 2018;188:327–337.

Adams, A. E. & Adams, J. S. Men versus Systems. Agriculture in the USSR, Poland, and Czechoslovakia (Free Press, 1971).

Wädekin, K. E. Agrarian Policies in Communist Europe. A Critical Introduction (Rowman & Littlefield Pub Inc, 1982).

Koopowitz, H. Orchids and Their Conservation (B. T. Betsford Ltd, 2001).

WCSP. World Checklist of Selected Plant Families (2017). Available at, http://apps.kew.org/wcsp/. (Accessed: 5th February 2017).

van der Cingel, N. A. An Atlas of Orchid Pollination. European Orchids (A. A. Balkema, 1995).

Dykyjová, D. Ekologie Středoevropských Orchidejí (KOPP, 2003).

Claessens, J. & Kleynen, J. The Flower of the European Orchid. Form and Function (Jean Claessens and Jacques Kleynen, 2011).

AHO-Bayern. Arbeitskreis Heimische Orchideen Bayern e.V (2017). Available at: http://www.aho-bayern.de/. (Accessed: 12th May 2017).

Fick SE, Hijmans RJ. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017;37:4302–4315. doi: 10.1002/joc.5086. DOI

Grytnes JA, Vetaas OR. Species density and altitude: a comparison between null models and interpolated plant species density along the Himalayan altitudinal gradient, Nepal. Am. Nat. 2002;159:294–304. doi: 10.1086/338542. PubMed DOI

Clarke KR, Somerfield PJ, Gorley RN. Testing of null hypotheses in exploratory community analyses: similarity profiles and biota-environment linkage. J. Exp. Mar. Bio. Ecol. 2008;366:56–69. doi: 10.1016/j.jembe.2008.07.009. DOI

Somerfield PJ, Clarke KR. Inverse analysis in non-parametric multivariate analyses: Distinguishing groups of associated species which covary coherently across samples. J. Exp. Mar. Bio. Ecol. 2013;449:261–273. doi: 10.1016/j.jembe.2013.10.002. DOI

Dolédec S, Chessel D, Gimaret-Carpentier C. Niche separation in community analysis: A new method. Ecology. 2000;81:2914–2927. doi: 10.1890/0012-9658(2000)081[2914:NSICAA]2.0.CO;2. DOI

Anonymus. ArcGIS – ArcMap: ArcInfo Version 10.1, available at, www.esri.com.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...