Predictions of species distributions based only on models estimating future climate change are not reliable
Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic
Document type Journal Article
Grant support
L200872201
PPLZ Program
PubMed
39468261
PubMed Central
PMC11519670
DOI
10.1038/s41598-024-76524-5
PII: 10.1038/s41598-024-76524-5
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Changes in climate and land use are the most often mentioned factors responsible for the current decline in species diversity. To reduce the effect of these factors, we need reliable predictions of future species distributions. This is usually done by utilizing species distribution models (SDMs) based on expected climate. Here we explore the accuracy of such projections: we use orchid (Orchidaceae) recordings and environmental (mainly climatic) data from the years 1901-1950 in SDMs to predict maps of potential species distributions in 1980-2014. This should enable us to compare the predictions of species distributions in 1980-2014, based on records of species distribution in the years 1901-1950, with real data in the 1980-2014 period. We found that the predictions of the SDMs often differ from reality in this experiment. The results clearly indicate that SDM predictions of future species distributions as a reaction to climate change must be treated with caution.
Department of Evolution and Ecology University of California Davis CA 95616 USA
Global Change Research Institute AS CR Bělidla 986 4a 60300 Brno Czech Republic
See more in PubMed
Román-Palacios, C. & Wiens, J. J. Recent responses to climate change reveal the drivers of species extinction and survival. Proc. Natl. Acad. Sci. U. S .A.117 (8), 4211–4217. 10.1073/pnas.1913007117 (2020). PubMed PMC
Antonelli, A. et al. State of the World’s Plants and Fungi 2023. Royal Botanic Gardens, Kew. 10.34885/wnwn-6s63 (2023).
WWF. Living Planet Report 2022 (WWF, 2022).
Jaureguiberry, P. et al. The direct drivers of recent global anthropogenic biodiversity loss. Sci. Adv.8, eabm9982. 10.1126/sciadv.abm9982 (2022). PubMed PMC
Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature520, 45–50 (2015). PubMed
Giam, X., Bradshaw, G. J. A., Tan, H. T. W. & Sodhi, N. J. Future habitat loss and the conservation of plant biodiversity. Biol. Conserv.143, 1594–1602 (2010).
Rejmánek, M. Vascular plant extinctions in California: A critical assessment. Divers. Distrib.24, 129–136 (2018).
Rejmánek, M., Krahulec, F. & Grulich, V. Jak rychle a proč vymírají rostliny v antropocénu. Živa5, 219–223 (2021).
Moreira, H. et al. Threats of land use to the global diversity of vascular plants. Divers. Distrib.29, 688–697 (2023).
Sala, O. E. et al. Global biodiversity scenarios for the year 2100. Science287, 1770–1774. 10.1126/science.287.5459.1770 (2000). PubMed
Urban, M. C. Accelerating extinction risk from climate change. Science348, 571–573 (2015). PubMed
Wiens, J. J. Climate-related local extinctions are already widespread among plant and animal species. PLoS Biol.14(12), e2001104. 10.1371/journal.pbio.2001104 (2016). PubMed PMC
Warren, R., Price, J., Graham, E., Forstenhaeusler, N. & Vanderwal, J. The projected effect on insects, vertebrates, and plants of limiting global warming to 1.5°C rather than 2°C. Science360, 791–795 (2018). PubMed
Pigot, A. L., Merow, C., Wilson, A. & Trisos, C. H. Abrupt expansion of climate change risk for species globally. Nat. Ecol. Evol.7, 1060–1071 (2023). PubMed
Mancini, G. et al. A standard approach for including climate change responses in IUCN Red List assessments. Conserv. Biolo. e14227 (2024). PubMed
Wiens, J. J. & Zelinka, J. How many species will Earth lose to climate change? Glob. Change Biol.30, e17125. 10.1111/gcb.17125 (2024). PubMed
Stein, B., Glick, P., Edelson, N. & Staudt, A. Climate-Smart Conservation: Putting Adaptation Principles into Practice (National Wildlife Federation, 2014).
Pearson, Prg. Species’ distribution modeling for conservation educators and practitioners. Am. Museum Nat. History Lessons Conserv.3, 54–89 (2010).
Tsiftsis, S., Djordjević, V. & Tsiripidis, I. Neottia cordata (Orchidaceae) at its southernmost distribution border in Europe: Threat status and effectiveness of Natura 2000 Network for its conservation. J. Nat. Conserv.48, 27–35 (2019).
Suppula, M. et al. Climate and landscape-use change drive population decline in a red-listed plant species. Global Ecol. Conserv.45, e02526. 10.1016/j.gecco.2023.e02526 (2023).
Nunez, S. & Alkemande, R. Exploring interaction effects from mechanisms between climate and land–use changes and the projected consequences on biodiversity. Biodivers. Conserv.30, 3685–3696 (2021).
Jantz, S. M. et al. Future habitat loss and extinctions driven by land-use change in biodiversity hotspots under four scenarios of climate-change mitigation. Conserv. Biol.29, 1122–1331 (2015). PubMed
Mantyka-Pringle, C. S., Martin, T. G. & Rhodes, J. R. Interactions between climate and habitat loss effects on biodiversity: A systematic review and meta-analysis. Glob. Change Biol.18, 1239–1252 (2012).
Cabral, J. S. et al. The road to integrate climate change projections with regional land-use-biodiversity models. People Nat.10.1002/pan3.10472 (2023).
Oliver, T. H. & Morecroft, M. D. Interactions between climate change and land use change on biodiversity: Attribution problems, risks, and opportunities. Wiley Interdiscip. Rev. Clim. Change5(3), 317–335. 10.1002/wcc.271 (2014).
TravisJMJ Climate change and habitat destruction: A deadly anthropogenic cocktail. Proc. R. Soc. Lond. B270, 467–473 (2003). PubMed PMC
Gallego-Zamorano, J., Huijbregts, N. A. J. & Schipper, A. M. Changes in plant species richness due to land use and nitrogen deposition across the globe. Divers. Distribution28, 745–755 (2022).
Štípková, Z., Tsiftsis, S. & Kindlmann, P. How did the agricultural policy during the communist period affect the decline in orchid biodiversity in central and eastern Europe? Global Ecol. Conserv.26, e01498. 10.1016/j.gecco.2021.e01498 (2021).
Harrison, S. Plant community diversity will decline more than increase under climate warming. Philos. Trans. R. Soc. B375, 20190106 (2020). PubMed PMC
Miniere, A., von Schuckman, K., Sallée, J-B. & Vogt, L. Robust acceleration of Earth system heating observed over the past six decades. Sci. Rep.13, 22975. 10.1038/s41598-023-49353-1 (2023). PubMed PMC
Wudu, K., Abegaz, A., Ayele, L. & Ybabe, M. The impact of climate change on biodiversity loss and its remedial using nature-based conservation approach: A global perspective. Biodivers. Conserv.32, 3681–3701 (2023).
Moss, B. et al. Allied attack: Climate change and eutrophication. Inland Waters1(2), 101–105. 10.5268/IW-1.2.359 (2011).
Nazari-Sharabian, M., Ahmad, S. & Karakouzian, M. Climate change and eutrophication: A short review. Eng. Technol. Appl. Sci. Res.8(6), 3668–3672 (2018).
Wei, Y. Q. et al. Chinese caterpillar fungus (Ophiocordyceps Sinensis) in China: Current distribution, trading, and futures under climate change and overexploitation. Sci. Total Environ.755, 1. 10.1016/j.scitotenv.2020.142548 (2021). PubMed PMC
Raza, M. M. & Bebber, D. P. Climate change and plant pathogens. Curr. Opin. Microbiol.70, 102233. 10.1016/j.mib.2022.102233 (2022). PubMed
Elith, J. & Leathwick, J. The contribution of species distribution modelling to conservation prioritization. In Spatial Conservation Prioritization. Quantitative Methods & Computational Tools (eds. Moilanen, A., Wilson, A. K. & Possingham, H. P.) 70–93 (Oxford University Press Inc., 2009).
Pearson, R. G., Raxworthy, C., Nakamura, M. & Peterson, A. Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar. J. Biogeogr.34, 102–117 (2006).
Araújo, M. B. et al. Standards for distribution models in biodiversity assessments. Sci. Adv.5(1), eaat4858. 10.1126/sciadv.aat4858 (2019). PubMed PMC
Djordjević, V., Tsiftsis, S., Lakušić, D., Jovanović, S. & Stevanović, V. Factors affecting the distribution and abundance of orchids in grasslands and herbaceous wetlands. Syst. Biodivers.14(4), 355–370. 10.1080/14772000.2016.1151468 (2016).
Štípková, Z. & Kindlmann, P. Factors determining the distribution of orchids—a review with examples from the Czech Republic. Eur. J. Environ. Sci.11, 21–30 (2021).
Giannini, T. C. et al. Improving species distribution models using biotic interactions: A case study of parasites, pollinators and plants. Ecography36(6), 649–656 (2013).
Tsiftsis, S. & Djordjević, V. Modelling sexually deceptive orchid species distributions under future climates: The importance of plant–pollinator interactions. Sci. Rep.10, 10623. 10.1038/s41598-020-67491-8 (2020). PubMed PMC
Kolanowska, M. The future of a montane orchid species and the impact of climate change on the distribution of its pollinators and magnet species. Glob. Ecol. Conserv.32, e01939. 10.1016/j.gecco.2021.e01939 (2021).
Abdelaal, M., Fois, M., Dakhil, M. A., Bacchetta, G. & El-Sherbeny, G. A. Predicting the potential, current and future distribution of the endangered endemic vascular plant Primula Boveana Decne. Ex Duby in Egypt. Plants9(8), 957. 10.3390/plants9080957 (2020). PubMed PMC
Zhang, Y., Tang, J., Ren, G., Zhao, K. & Wang, X. Global potential distribution prediction of Xanthium italicum based on Maxent model. Sci. Rep.11, 16545. 10.1038/s41598-021-96041-z (2021). PubMed PMC
Pinto-Ledezma, J. N. & Cavender-Bares, J. Predicting species distributions and community composition using satellite remote sensing predictors. Sci. Rep.11, 16448. 10.1038/s41598-021-96047-7 (2021). PubMed PMC
Kougioumoutzis, K. et al. Plant diversity patterns and conservation implications under climate-change scenarios in the Mediterranean: The case of Crete (Aegean, Greece). Diversity12(7), 270. 10.3390/d12070270 (2020).
Shrestha, B. et al. DactyloHatagireaagirea in N distribution prediction under current and future climate change context. Plants10(3), 467 (2021). PubMed PMC
Fedorov, N. et al. Prediction of habitat suitability for Patrinia Sibirica Juss. in the southern urals. Sci. Rep.11, 19606. 10.1038/s41598-021-99018-0 (2021). PubMed PMC
Evans, A. & Jacquemyn, H. Range size and niche breadth as predictors of climate–induced habitat change in Epipactis (Orchidaceae). Front. Ecol. Evol.10, 894616. 10.3389/fevo.2022.894616 (2022).
Araújo, M. B., Alagador, D., Cabeza, M., Nogués-Bravo, D. & Thuiller, W. Climate change threatens European conservation areas. Ecol. Lett.14(5), 484–492 (2011). PubMed PMC
Santini, L., Benítez-López, A., Maiorano, L., Čengić, M. & Huijbregts, M. A. J. Assessing the reliability of species distribution projections in climate change research. Divers. Distrib.27, 1035–1050. 10.1111/ddi.13252 (2021).
Štípková, Z., Tsiftsis, S. & Kindlmann, P. Is the GBIF appropriate for use as input in models predicting species distributions? Study from the Czech Republic. Nat. Conserv. Res.9(1), 84–95. 10.24189/ncr.2024.008 (2024).
Swarts, N. D. & Dixon, K. W. Terrestrial orchid conservation in the age of extinction. Ann. Bot.104, 543–556 (2009). PubMed PMC
McCormick, M. K. & Jacquemyn, H. What constrains the distribution of orchid populations? New Phytol.202, 392–400 (2014).
Steffelová, M., Traxmandlová, I., Štípková, Z. & Kindlmann, P. Pollination strategies of deceptive orchids—a review. Eur. J. Environ. Sci.13, 110–116. 10.14712/23361964.2023.12 (2023).
Švecová, M., Štípková, Z., Traxmandlová, I. & Kindlmann, P. Difficulties in determining distribution of population sizes within different orchid metapopulations. Eur. J. Environ. Sci.13, 96–109. 10.14712/23361964.2023.11 (2023).
Štípková, Z., Tsiftsis, S. & Kindlmann, P. Pollination mechanisms are driving orchid distribution in space. Sci. Rep.10, 850 (2020). PubMed PMC
Hernandez, P. A., Graham, C. H., Master, L. L. & Albert, D. L. The effect of sample size and species characteristics on performance of different species distribution modelling methods. Ecography29(5), 773–785 (2006).
David, O. A., Akomolafe, G. F., Onwusiri, K. C. & Fabolude, G. O. Predicting the distribution of the invasive species Hyptis suaveolens in Nigeria. Eur. J. Environ. Sci.10(2), 98–106. 10.14712/23361964.2020.11 (2020).
Breiman, L. Random forests. Mach. Learn.45, 5–32. (2001).
Liaw, A. & Wiener, M. Classification and regression by RandomForest. R News2, 18–22 (2002).
Zhang, L. et al. The use of classification and regression algorithms using the random forests method with presence–only data to model species’ distribution. MethodsX6, 2281–2292 (2019). PubMed PMC
Fréjaville, T. & Benito Garzón, M. The EuMedClim database: Yearly climate data (1901–2014) of 1 km resolution grids for Europe and the Mediterranean Basin. Front. Ecol. Evol.6, 1–5 (2018).
Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data4, 170122. 10.1038/sdata.2017.122 (2017). PubMed PMC
Karger, D. N. & Zimmermann, N. E. CHELSAcruts–high resolution temperature and precipitation timeseries for the 20th century and beyond. EnviDat. 10.16904/envidat.159 (2018).
Czech Geological Survey. Geological map of the Czech Republic 1:500,000 (GEOCR500). https://micka.geology.cz/en/record/basic/5f5b4530-a87c-4bf3-b45a-57d30a010852 (1998).
Renner, I. W. et al. Point process models for presence-only analysis. Methods Ecol. Evol.6, 366–379 (2015).
Phillips, S. J. & Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography31, 161–175 (2008).
PhillipsSJ Transferability, sample selection bias and background data in presence-only modeling: A response to Peterson et al. (2007). Ecography31, 272–278 (2008).
Zhang, H., Nettleton, D. & Zhu, Z. Regression-enhanced random forests. arXiv preprint https://arxiv.org/abs/1904.10416. (2019).
Liu, C., Newell, G. & White, M. On the selection of thresholds for predicting species occurrence with presence-only data. Ecol. Evol.6, 337–348 (2016). PubMed PMC
Warren, D. L., Glor, R. E. & Turelli, M. Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution. Evolution62, 2868–2883 (2008). PubMed
Nunes, L. A. & Pearson, R. G. A null biogeographical test for assessing ecological niche evolution. J. Biogeogr.44, 1331–1343 (2017).
Martínez-Méndez, N., Mejía, O., Ortega, J. & Méndez-de la Cruz, F. Climatic niche evolution in the viviparous Sceloporus torquatus group (Squamata: Phrynosomatidae). PeerJ6, e6192. 10.7717/peerj.6192 (2019). PubMed PMC
Wang, L. et al. Potential distribution shifts of plant species under climate change in Changbai Mountains, China. Forests10(6), 498. 10.3390/f10060498 (2019).
Rather, Z. A., Ahmad, R., Dar, A. R., Dar, T. U. & Khuroo, A. A. Predicting shifts in distribution range and niche breadth of plant species in contrasting arid environments under climate change. Environ. Monit. Assess.193(7), 427. 10.1007/s10661-021-09160-5 (2021). PubMed
Auld, J., Everingham, S. E., Hemmings, F. A. & Moles, A. T. Alpine plants are on the move: Quantifying distribution shifts of Australian alpine plants through time. Divers. Distrib.28(5), 943–955. 10.1111/ddi.13494 (2022).
Feng, L. et al. Predicting potential habitat of a plant species with small populations under climate change: Ostrya rehderiana. Forests13(1), 129. 10.3390/f13010129 (2022).
Mahmoodi, S. et al. The current and future potential geographical distribution of Nepeta Crispa Willd., an endemic, rare and threatened aromatic plant of Iran: Implications for ecological conservation and restoration. Ecol. Ind.137, 108752. 10.1016/j.ecolind.2022.108752 (2022).
Soilhi, Z., Sayari, N., Benalouache, N. & Mekki, M. Predicting current and future distribution of Mentha pulegium L. in Tunisia under climate change conditions, using the MaxEnt model. Ecol. Inf.68, 101533. 10.1016/j.ecoinf.2021.101533 (2022).
Travis, J. M. J. et al. Dispersal and species’ responses to climate change. Oikos122(11), 1532–1540. 10.1111/j.1600-0706.2013.00399.x (2013).
Zhu, K., Woodall, C. W. & Clark, J. S. Failure to migrate: lack of tree range expansion in response to climate change. Glob. Change Biol.18, 1042–1052 (2012).
Mauri, A. et al. EU–Trees4F, a dataset on the future distribution of European tree species. Sci. Data9(1), 37. 10.1038/s41597-022-01128-5 (2022). PubMed PMC
Lenoir, J., Gegout, J. C., Marquet, P. A., de Ruffray, P. & Brisse, H. A significant upward shift in plant species optimum elevation during the 20th century. Science320, 1768–1771 (2008). PubMed
Geppert, C. et al. Consistent population declines but idiosyncratic range shifts in Alpine orchids under global change. Nat. Commun.11, 5835. 10.1038/s41467-020-19680-2 (2020). PubMed PMC
Rasmussen, H. Terrestrial Orchids from seed to Mycotrophic Plant (Cambridge University Press, 1995).
Arditti, J. & Ghani, A. K. A. Tansley Review 110. Numerical and Physical properties of orchid seeds and their biological implications. New Phytol.145(3), 367–421 (2000). PubMed
Průša, D. Orchideje České Republiky. (Computer Press, 2005).
Kolanowska, M. et al. Global warming not so harmful for all plants—response of holomycotrophic orchid species for the future climate change. Sci. Rep.7, 12704 (2017). PubMed PMC
Ongaro, S. et al. Distribution pattern of sardinian orchids under a climate change scenario. Community Ecol.19, 223–232 (2018).
Evans, A., Janssens, S. & Jacquemyn, H. Impact of climate change on the distribution of four closely related Orchis (Orchidaceae) species. Diversity12(8), 312. 10.3390/d12080312 (2020).
Charitonidou, M., Kougioumoutzis, K., Karypidou, M. C. & Halley, J. M. Fly to a Safer North’: Distributional shits of the Orchid Ophrys insectifera L. due to climate change. Biology11(4), 497. 10.3390/biology11040497 (2022). PubMed PMC
Benito Garzón, M., Robson, T. M. & Hampe, A. ∆Trait SDMs: species distribution models that account for local adaptation and phenotypic plasticity. New Phytol.222(4), 1757–1765. 10.1111/nph.15716 (2019). PubMed
Pareja–Bonilla, D., Arista, M., Morellato, L. P. C. & Ortiz, P. L. Better soon than never: climate change induces strong phenological reassembly in the flowering of Mediterranean shrub community. Ann. Bot.10.1093/aob/mcad193 (2024). PubMed PMC
Hutchings, M. J., Robbirt, K. M., Roberts, D. L. & Davy, A. J. Vulnerability of a specialized pollination mechanism to climate change revealed by a 356-year analysis. Bot. J. Linn. Soc.186, 498–509 (2018).
Robbirt, K. M., Roberts, D. L., Hutchings, M. J. & Davy, A. J. Potential disruption of pollination in a sexually deceptive orchid by climate change. Curr. Biol.24, 2845–2849 (2014). PubMed
Charitonidou, M., Kougioumoutzis, K. & Halley, J. M. An Orchid in Retrograde: Climate-driven range shift patterns of Ophrys helenae in Greece. Plants10(3), 470. 10.3390/plants10030470 (2021). PubMed PMC
Zangiabadi, S., Zaremaivan, H., Brotons, L., Mostafavi, H. & Ranjbar, H. Using climatic variables alone overestimate climate change impacts on predicting distribution of an endemic species. PLOS ONE16(9), e0256918. 10.1371/journal.pone.0256918 (2021). PubMed PMC
Engelhardt, E. K., Neuschulz, E. L. & Hof, C. Ignoring biotic interactions overestimates climate change effects: The potential response of the spotted nutcracker to changes in climate and resource plants. J. Biogeogr.47, 143–154 (2020).
Kougioumoutzis, K. et al. Climate and land-cover change impacts and extinction risk Assessment of rare and threatened endemic taxa of Chlemos-Vouraikos National Park (Peloponnese, Greece). Plants11(24), 3548. 10.3390/plants11243548 (2022). PubMed PMC
Adams, A. E. & Adams, J. S. Men versus Systems. Agriculture in the USSR, Poland, and Czechoslovakia (Free, 1971).
Wädekin, K. E. Agrarian Policies in Communist Europe. A Critical Introduction (Allanheld, Osmun, 1982).
Veznik, A. & Konecny, O. Agriculture of the Czech Republic after accession to the EU: Regional differentiation. Morav. Geogr. Rep.19, 50–62 (2011).
Does Reproductive Success in Orchids Affect the Evolution of Their Number of Flowers?