Global warming not so harmful for all plants - response of holomycotrophic orchid species for the future climate change
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
28983120
PubMed Central
PMC5629220
DOI
10.1038/s41598-017-13088-7
PII: 10.1038/s41598-017-13088-7
Knihovny.cz E-resources
- MeSH
- Biodiversity * MeSH
- Ecosystem * MeSH
- Global Warming * MeSH
- Climate Change MeSH
- Humans MeSH
- Orchidaceae genetics growth & development MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Current and expected changes in global climate are major threat for biological diversity affecting individuals, communities and ecosystems. However, there is no general trend in the plants response to the climate change. The aim of present study was to evaluate impact of the future climate changes on the distribution of holomycotrophic orchid species using ecological niche modeling approach. Three different scenarios of future climate changes were tested to obtain the most comprehensive insight in the possible habitat loss of 16 holomycotrophic orchids. The extinction of Cephalanthera austiniae was predicted in all analyses. The coverage of suitable niches of Pogoniopsis schenckii will decrease to 1-30% of its current extent. The reduction of at least 50% of climatic niche of Erythrorchis cassythoides and Limodorum abortivum will be observed. In turn, the coverage of suitable niches of Hexalectris spicata, Uleiorchis ulaei and Wullschlaegelia calcarata may be even 16-74 times larger than in the present time. The conducted niche modeling and analysis of the similarity of their climatic tolerance showed instead that the future modification of the coverage of their suitable niches will not be unified and the future climate changes may be not so harmful for holomycotrophic orchids as expected.
See more in PubMed
Walther GR, et al. Ecological responses to recent climate change. Nature. 2002;416:389–395. doi: 10.1038/416389a. PubMed DOI
Beaumont LJ, et al. Impacts of climate change on the world’s most exceptional ecoregions. Proc Natl Acad Sci USA. 2011;108:2306–2311. doi: 10.1073/pnas.1007217108. PubMed DOI PMC
Normand S, et al. Importance of abiotic stress as a range-limit determinant for European plants: Insights from species responses to climatic gradients. Glob Ecol Biogeogr. 2009;18:437–449. doi: 10.1111/j.1466-8238.2009.00451.x. DOI
Harsch MA, HilleRisLambers J. Climate warming and seasonal precipitation change interact to limit species distribution shifts across Western North America. PLoS ONE. 2016;11:e0159184. doi: 10.1371/journal.pone.0159184. PubMed DOI PMC
Jump AS, Peñuelas J. Running to stand still: adaptation and the response of plants to rapid climate change. Ecol Lett. 2005;8:1010–1020. doi: 10.1111/j.1461-0248.2005.00796.x. PubMed DOI
Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F. Impacts of climate change on the future of biodiversity. Ecol Lett. 2012;15:365–377. doi: 10.1111/j.1461-0248.2011.01736.x. PubMed DOI PMC
Cribb, P. J., Kell, S. P., Dixon, K. W. & Barrett, R. L. Orchid conservation: a global perspective. Orchid Conservation (eds Dixon, K. W., Kell, S. P., Barrett, R. L. & Cribb, P. J.) 1–24 (Natural History Publications, 2003).
Barman D, Devadas R. Climate change on orchid population and conservation strategies: A review. J Crop Weed. 2013;9:1–12.
Whigham, D. F. & Willems, J. H. Demographic studies and life-history strategies of temperate terrestrial orchids as a basis for conservation. Orchid Conservation (eds Dixon, K. W., Kell, S. P., Barrett, R. L. & Cribb, P. J.) 137–158 (Natural History Publications, 2003).
Swarts ND, Batty AL, Hopper S, Dixon K. Does integrated conservation of terrestrial orchids work? Lankesteriana. 2007;7:219–222.
Wang HH, et al. Species distribution modelling for conservation of an endangered endemic orchid. AoB Plants. 2015;7:plv039. doi: 10.1093/aobpla/plv039. PubMed DOI PMC
Jacquemyn H, Brys R, Hermy M, Willems JH. Does nectar reward affect rarity and extinction probabilities of orchid species? An assessment using historical records from Belgium and the Netherlands. Biol Conserv. 2005;121:257–263. doi: 10.1016/j.biocon.2004.05.002. DOI
Kull T, Hutchings MJ. A comparative analysis of decline in the distribution ranges of orchid species in Estonia and the United Kingdom. Biol Conserv. 2006;129:31–39. doi: 10.1016/j.biocon.2005.09.046. DOI
Rodríguez JP, Brotons L, Bustamante J, Seoane J. The application of predictive modelling of species distribution to biodiversity conservation. Divers Distrib. 2007;13:243–251. doi: 10.1111/j.1472-4642.2007.00356.x. DOI
Buse J, Schröder B, Assmann T. Modelling habitat and spatial distribution of an endangered longhorn beetle: a case study for saproxylic insect conservation. Biol Conserv. 2007;137:372–381. doi: 10.1016/j.biocon.2007.02.025. DOI
Guisan A, et al. Predicting species distributions for conservation decisions. Ecol Lett. 2013;16:1424–1435. doi: 10.1111/ele.12189. PubMed DOI PMC
Porfirio LL, et al. Improving the use of species distribution models in conservation planning and management under climate change. PLoS ONE. 2014;9:e113749. doi: 10.1371/journal.pone.0113749. PubMed DOI PMC
Naczk AM, Kolanowska M. Glacial refugia and future habitat coverage of selected Dactylorhiza representatives (Orchidaceae) PLoS ONE. 2015;10:e0143478. doi: 10.1371/journal.pone.0143478. PubMed DOI PMC
Kolanowska M. Niche conservatism and the future potential range of Epipactis helleborine (Orchidaceae) PLoS ONE. 2013;8:e77352. doi: 10.1371/journal.pone.0077352. PubMed DOI PMC
Kolanowska M, Konowalik K. Niche conservatism and future changes in the potential area coverage of Arundina graminifolia, an invasive orchid species from Southeast Asia. Biotropica. 2014;46:157–165. doi: 10.1111/btp.12089. DOI
Swarts ND, Dixon KW. Terrestrial orchid conservation in the age of extinction. Ann Bot. 2009;104:543–556. doi: 10.1093/aob/mcp025. PubMed DOI PMC
Coates F, Lunt ID, Tremblay RL. Effects of disturbance on population dynamics of the threatened orchid Prasophyllum correctum D.L. Jones and implications for grassland management in south-eastern Australia. Biol Conserv. 2006;129:59–69. doi: 10.1016/j.biocon.2005.06.037. DOI
Campbell F. A summary of holomycotrophic orchids. The MIOS Journal. 2014;15:6–17.
Chase MW, et al. An updated classification of Orchidaceae. Bot J Linn Soc. 2015;177:151–174. doi: 10.1111/boj.12234. DOI
Dillon ME, Wang G, Huey RB. Global metabolic impacts of recent climate warming. Nature. 2010;467:704–706. doi: 10.1038/nature09407. PubMed DOI
Pereira HM, et al. Scenarios for global biodiversity in the 21st century. Science. 2010;330:1496–1501. doi: 10.1126/science.1196624. PubMed DOI
Dawson TP, Jackson ST, House JI, Prentice IC, Mace GM. Beyond predictions: biodiversity conservation in a changing climate. Science. 2011;332:53–58. doi: 10.1126/science.1200303. PubMed DOI
McMahon SM, et al. Improving assessment and modelling of climate change impacts on global terrestrial biodiversity. Trends Ecol Evol. 2011;26:249–259. doi: 10.1016/j.tree.2011.02.012. PubMed DOI
Parmesan C, Duarte C, Poloczanska E, Richardson AJ, Singer MC. Overstretching attribution. Nat Clim Chang. 2011;1:2–4. doi: 10.1038/nclimate1056. DOI
Bellard C, et al. Vulnerability of biodiversity hotspots to global change. Glob Ecol Biogeogr. 2014;23:1376–1386. doi: 10.1111/geb.12228. DOI
Beaumont LJ, Hughes L, Pitman AJ. Why is the choice of future climate scenarios for species distribution modelling important? Ecol Lett. 2008;11:1135–1146. PubMed
Bellgard SE, Williams SE. Response of mycorrhizal diversity to current climatic changes. Diversity. 2011;3:8–90. doi: 10.3390/d3010008. DOI
Bailarote BC, Lievens B, Jacquemyn H. Does mycorrhizal specificity affect orchid decline and rarity? Am J Bot. 2012;99:1655–1665. doi: 10.3732/ajb.1200117. PubMed DOI
Wasof S, et al. Ecological niche shifts of understorey plants along a latitudinal gradient of temperate forests in north-westernEurope. Glob Ecol Biogeogr. 2013;22:1130–1140. doi: 10.1111/geb.12073. DOI
Jakubska-Busse A, Jasicka-Misiak I, Poliwoda A, Święczkowska E, Kafarski P. The chemical composition of floral extract of Epipogium aphyllum Sw. (Orchidaceae) clue on their pollination biology. Arch Biol Sci. 2014;66:989–998. doi: 10.2298/ABS1403989B. DOI
Nooten SS, Andrew NR, Hughes L. Potential impacts of climate change on insect communities: a transplant experiment. PLoS ONE. 2014;9:e85987. doi: 10.1371/journal.pone.0085987. PubMed DOI PMC
Robbirt KM, Roberts DL, Hutchings MJ, Davy AJ. Potential disruption of pollination in a sexually deceptive orchid by climatic change. Curr Biol. 2014;24:1133–1135. doi: 10.1016/j.cub.2014.10.033. PubMed DOI
Zhou X, et al. Effects of temperature on aphid phenology. Glob Chang Biol. 1995;1:303–313. doi: 10.1111/j.1365-2486.1995.tb00029.x. DOI
Gordo O, Sanz JJ. Phenology andclimate change: a long-term study in a Mediterranean locality. Oecologia. 2005;146:484–495. doi: 10.1007/s00442-005-0240-z. PubMed DOI
Harrington R, et al. Environmental change and the phenology of European aphids. Glob Chang Biol. 2007;13:1556–1565. doi: 10.1111/j.1365-2486.2007.01394.x. DOI
Visser ME, Both C. Shifts in phenology due to global climate change: the need for a yardstick. Proc R Soc Lond B. 2005;272:2561–2569. doi: 10.1098/rspb.2005.3356. PubMed DOI PMC
Sparks TH, Jeffree EP, Jeffree CE. An examination of the relationship between flowering times and temperature at the national scale using long-term phenological records from the UK. Int J Biometeorol. 2000;44:82–87. doi: 10.1007/s004840000049. PubMed DOI
Parmesan C, et al. Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature. 1999;399:579–583. doi: 10.1038/21181. DOI
Franco AMA, et al. Impacts of climate warming and habitat loss on extinctions at species’ low-latitude range boundaries. Glob Chang Biol. 2006;12:1545–1553. doi: 10.1111/j.1365-2486.2006.01180.x. DOI
Wilson RJ, et al. Changes to the elevational limits and extent of species ranges associated with climate change. Ecol Lett. 2005;8:1138–1146. doi: 10.1111/j.1461-0248.2005.00824.x. PubMed DOI
Hickling R, Roy DB, Hill JK, Fox R, Thomas CD. The distributions of a wide range of taxonomic groups are expanding polewards. Glob Chang Biol. 2006;12:450–455. doi: 10.1111/j.1365-2486.2006.01116.x. DOI
Paulson DR. Recent Odonata records from southern Florida: effects of global warming? Int J Odonatol. 2001;4:57–69. doi: 10.1080/13887890.2001.9748159. DOI
García-Barros, E. et al. Atlas de las mariposas diurnas de la Península Ibérica e islas Baleares [Atlas of the butterflies of Iberian Peninsula and Balearic Isles] (Lepidoptera: Papilionoidea & Hesperioidea) (Sociedad Entomológica Aragonesa, 2004).
Kirby SH. Active tectonic and volcanic mountain building as agents of rapid environmental changes and increased orchid diversity and long-distance orchid dispersal in the tropical Americas: opportunities and challenges. Lankesteriana. 2016;16:243–254. doi: 10.15517/lank.v16i2.26027. DOI
Ackerman JD. Rapid transformation of orchid floras. Lankesteriana. 2014;13:157–164. doi: 10.15517/lank.v13i3.14349. DOI
Root TL, et al. Fingerprints of global warming on wild animals and plants. Nature. 2003;421:57–60. doi: 10.1038/nature01333. PubMed DOI
Thomas CD, et al. Extinction risk fromclimate change. Nature. 2004;427:145–148. doi: 10.1038/nature02121. PubMed DOI
Liu H, et al. Potential challenges of climate change to orchid conservation in a wild orchid hotspot in Southwestern China. Bot Rev. 2010;76:174–192. doi: 10.1007/s12229-010-9044-x. DOI
Nadkarni NM, Solano R. Potential effects of climate change on canopy communities in a tropical cloud forest: an experimental approach. Oecologia. 2002;131:580–586. doi: 10.1007/s00442-002-0899-3. PubMed DOI
Olaya-Arenas P, Meléndez-Ackerman EJ, Pérez ME, Tremblay R. Demographic response by a small epiphytic orchid. Am J Bot. 2011;98:2040–2048. doi: 10.3732/ajb.1100223. PubMed DOI
Pearson RG, Raxworthy CJ, Nakamura M, Peterson AT. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J Biogeogr. 2007;34:102–117. doi: 10.1111/j.1365-2699.2006.01594.x. DOI
Wisz M, et al. Effects of sample size on the performance of species distribution models. Divers Distrib. 2008;14:763–773. doi: 10.1111/j.1472-4642.2008.00482.x. DOI
Franklin, J. Mapping species distributions - spatial inference and prediction (Cambridge, 2009).
Peterson, A. T. et al. Ecological Niches and Geographic Distributions (New Jersey, 2011).
Thuiller W, Lafourcade B, Engler R, Araújo MB. BIOMOD - a platform for ensemble forecasting of species distributions (version 1.1-7.00) Ecography. 2009;32:369–373. doi: 10.1111/j.1600-0587.2008.05742.x. DOI
Guo Q, Liu Y. ModEco: an integrated software package for ecological niche modeling. Ecography. 2010;33:637–642. doi: 10.1111/j.1600-0587.2010.06416.x. DOI
Souza Muñoz ME, et al. openModeller: a generic approach to species’ potential distribution modelling. GeoInformatica. 2009;15:111–135. doi: 10.1007/s10707-009-0090-7. DOI
Phillips, S. J., Dudík, M. & Schapire, R. E. A maximum entropy approach to species distribution modeling. ICML’04. Proceedings of the twenty-first international conference on Machine learning 655–662 (ACM, New York, 2004).
Phillips SJ, Anderson R, Schapire RE. Maximum entropy modeling of species geographic distributions. Ecol Modell. 2006;190:231–259. doi: 10.1016/j.ecolmodel.2005.03.026. DOI
Elith J, et al. A statistical explanation of MaxEnt for ecologists. Divers Distrib. 2011;17:43–57. doi: 10.1111/j.1472-4642.2010.00725.x. DOI
Duque-Lazo J, van Gils H, Groen TA, Navarro-Cerrillo RM. Transferability of species distribution models: The case of Phytophthora cinnamomi in Southwest Spain and Southwest Australia. Ecol Modell. 2016;320:62–70. doi: 10.1016/j.ecolmodel.2015.09.019. DOI
Hernandez PA, Graham CH, Master LL, Albert DL. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography. 2006;29:773–785. doi: 10.1111/j.0906-7590.2006.04700.x. DOI
Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. Very high resolution interpolated climate surfaces for global land areas. Int J Climatol. 2005;25:1965–1978. doi: 10.1002/joc.1276. DOI
Bystriakova N, Peregrym M, Erkens RHJ, Bezsmertna O, Schneider H. Sampling bias in geographic and environmental space and its effect on the predictive power of species distribution models. Syst Biodivers. 2012;10:305–315. doi: 10.1080/14772000.2012.705357. DOI
Coops NC, Waring RH. Estimating the vulnerability of fifteen tree species under changing climate in Northwest North America. Ecol Modell. 2011;222:2119–2129. doi: 10.1016/j.ecolmodel.2011.03.033. DOI
Ferro VG, Lemes P, Melo AS, Loyola R. The reduced effectiveness of protected areas under climate change threatens Atlantic Forest tiger moths. PLoS ONE. 2014;9:e107792. doi: 10.1371/journal.pone.0107792. PubMed DOI PMC
Barredo JI, et al. Assessing the potential distribution of insect pests: case studies on large pine weevil (Hylobius abietis L.) and horse-chestnut leaf miner (Cameraria ohridella) under present and future climate conditions in European forests. Bull OEPP. 2015;45:273–281. doi: 10.1111/epp.12208. DOI
Taylor KE, Stouffer RJ, Meehl GA. An Overview of CMIP5 and the experiment design. Bull Amer Meteor Soc. 2012;93:485–498. doi: 10.1175/BAMS-D-11-00094.1. DOI
Sneath, P. H. A. & Sokal, R. R. Principles of numerical taxonomy (Freeman, San Francisco, 1973).
Hammer Ø, Harper DAT, Ryan PD. PAST: paleontological statistics software package for education and data analysis. Palaeontol Electronica. 2001;4:1–9.
ESRI. ArcGIS 9.3 (Environmental Systems Research Institute Inc., 2006).