Ecological niche modeling of the pantropical orchid Polystachya concreta (Orchidaceae) and its response to climate change
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32908206
PubMed Central
PMC7481249
DOI
10.1038/s41598-020-71732-1
PII: 10.1038/s41598-020-71732-1
Knihovny.cz E-zdroje
- MeSH
- ekosystém * MeSH
- globální oteplování MeSH
- klimatické změny MeSH
- Orchidaceae fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Climate is the dominant control factor on the spatial distribution of organisms on a global scale and global warming is predicted to become a major cause of species extinctions. In our study ecological niche modeling (ENM) was used to estimate the effect of projected future climate changes on the pantropical orchid Polystacha concreta as well as to reconstruct changes in the distribution of the suitable climatic niches of this species since the Last Glacial Maximum (LGM). The study revealed small differences in the niches occupied by populations of P. concreta recorded in various continents; however, these alterations will become more significant in regard to future climatic change. While losses of suitable habitats of the studied orchid will occur in the Americas and Africa, global warming will be favorable for Asian populations. Our study suggests a significant loss of niches since the LGM which indicates that the currently observed loss of habitats is not only the result of human activity but also of natural changes of the Earth's climate. From the obtained models we identified the areas that will be the most resistant regarding the modifications caused by climate change.
Zobrazit více v PubMed
Dressler RL. In: Phylogeny and Classification of the Orchid Family. Dressler RL, editor. Cambridge: Cambridge University Press; 1994. pp. 7–13.
Delforge P. In: Orchids of Europe, Nord Africa and the Middle East. Delforge P, editor. London: A & C Black Publishers; 2001. pp. 67–68.
Barman D, Devadas R. Climate change on orchid population and conservation strategies: a review. J. Crop Weed. 2013;9(12):1–12.
Fay MF. Orchid conservation: how can we meet the challenges in the twenty-first century. Bot. Stud. 2018;5:1–6. PubMed PMC
Brovkin V. Climate–vegetation interaction. J. Phys. IV FRANCE. 2002;12:57–72.
Thomas CD, et al. Extinction risk from climate change. Nature. 2004;427:145–148. doi: 10.1038/nature02121. PubMed DOI
Anderson MG, Ferree CE. Conserving the stage: climate change and the geophysical underpinnings of species diversity. PLoS ONE. 2010;5(7):e11554. PubMed PMC
Bálint M, et al. Cryptic biodiversity loss linked to global climate change. Nat. Clim. Change. 2011;1:313–318. doi: 10.1038/nclimate1191. DOI
Kolanowska M. Niche conservatism and the future potential range of Epipactis helleborine (Orchidaceae) PLoS ONE. 2013;8(10):e77352. doi: 10.1371/journal.pone.0077352. PubMed DOI PMC
Kolanowska M. The naturalization status of African Spotted Orchid (Oeceoclades maculata) in Neotropics. Plant Biosyst. 2014;148(5):1049–1055. doi: 10.1080/11263504.2013.824042. DOI
Kolanowska M, Konowalik K. Niche conservatism and future changes in the potential area coverage of Arundina graminifolia, an invasive orchid species from Southeast Asia. Biotropica. 2014;46(2):157–165. doi: 10.1111/btp.12089. DOI
Konowalik K, Kolanowska M. Climatic niche shift and possible future spread of the invasive South African Orchid Disa bracteata in Australia and adjacent areas. PeerJ. 2018;6:e6107. doi: 10.7717/peerj.6107. PubMed DOI PMC
Kolanowska M, et al. Global warming not so harmful for all plants - response of holomycotrophic orchid species for the future climate change. Sci. Rep. 2017;7:12704. doi: 10.1038/s41598-017-13088-7. PubMed DOI PMC
Naczk A, Kolanowska M. Glacial refugia and future habitat coverage of selected Dactylorhiza representatives (Orchidaceae) PLoS ONE. 2015;10(11):e0143478. doi: 10.1371/journal.pone.0143478. PubMed DOI PMC
Kolanowska M, Rykaczewski M. From the past to the future – glacial refugia, current distribution patterns and future potential range changes of Diodonopsis (Orchidaceae) representatives. Lankesteriana. 2017;17(2):315–327.
Wang HH, Wonkka CL, Treglia ML, Grant WE, Smeins FE, Rogers WE. Species distribution modelling for conservation of an endangered endemic orchid. AoB Plants. 2015;7:plv039. PubMed PMC
Tsiftsis S, Djordjević V, Tsiripidis I. Neottia cordata (Orchidaceae) at its southernmost distribution border in Europe: threat status and effectiveness of Natura 2000 Network for its conservation. J. Nat. Conserv. 2019;48:27–35.
Vollering J, Schuiteman A, de Vogel E, van Vugt R, Raes N. Phytogeography of New Guinean orchids: patterns of species richness and turnover. J. Biogeogr. 2016;43(1):204–214.
Reina-Rodríguez GA, Rubiano Mejía JE, Castro Llanos FA, Soriano I. Orchid distribution and bioclimatic niches as a strategy to climate change in areas of tropical dry forest in Colombia. Lankesteriana. 2017;17(1):17–47.
Gogol-Prokurat M. Predicting habitat suitability for rare plants at local spatial scales using a species distribution model. Ecol. Appl. 2011;21:33–47. doi: 10.1890/09-1190.1. PubMed DOI
Dudley TL, Bean DW. Tamarisk biocontrol, endangered species risk and resolution of conflict through riparian restoration. Biocontrol. 2012;57:331–347. doi: 10.1007/s10526-011-9436-9. DOI
Antúnez P, et al. The potential distribution of tree species in three periods of time under a climate change scenario. Forests. 2018;9(10):628. doi: 10.3390/f9100628. DOI
Wilson CD, Roberts D, Reid N. Applying species distribution modeling to identify areas of high conservation value for endangered species: a case study using Margaritifera margaritifera (L.) Biol. Cons. 2011;144:821–829.
Koch R, Almeida-Cortez JS, Kleinschmit B. Revealing areas of high nature conservation importance in a seasonally dry tropical forest in Brazil: combination of modelled plant diversity hot spots and threat patterns. J. Nat. Conserv. 2017;35:24–39.
Spiers JA, Oatham MP, Rostant LV, Farrell AD. Applying species distribution modelling to improving conservation based decisions: a gap analysis of Trinidad and Tobago’s endemic vascular plants. Biodivers. Conserv. 2018;27(11):2931–2949.
Ramírez SR, Gravendeel B, Singer RB, Marshall CR, Pierce NE. Dating the origin of the Orchidaceae from a fossil orchid with its pollinator. Nature. 2007;448:1042–1045. PubMed
Conran JG, Bannister JM, Lee DE. Earliest orchid macrofossils: early Miocene Dendrobium and Earina (Orchidaceae: Epidendroideae) from New Zealand. Am. J. Bot. 2009;96(2):466–474. PubMed
Kenny, J. 2008. Orchids of Trinidad and Tobago (ed. Kenny, J.) 1–127 (Prospect Press, 2008).
Swarts ND, Dixon KW. Terrestrial orchid conservation in the age of extinction. Ann. Bot. 2009;104(3):543–556. PubMed PMC
Teketay D. History, botany and ecological requirements of coffee. Walia. 1999;20:28–50.
Tupac OJ, Ackerman JD, Bayman P. Diversity and host specificity of endophytic Rhizoctonia-like fungi from tropical orchids. Am. J. Bot. 2002;89(11):1852–1858. PubMed
Pellegrino G, Luca A, Bellusci F. Relationships between orchid and fungal biodiversity: mycorrhizal preferences in Mediterranean orchids. Plant Biosyst. 2016;150(2):180–189.
Suárez JP, Kottke I. Main fungal partners and different levels of specificity of orchid mycorrhizae in the tropical mountain forests of Ecuador. Lankesteriana. 2016;16(2):299–305.
Senthilkumar S. Mycorrhizal fungi of endangered orchid species in Kolli, a part of eastern ghats, South India. Lankesteriana. 2003;7:15–156.
Pereira OL, Rollemberg CL, Borges AC, Matsuoka K, Kasuya MCM. Epulorhiza epiphytica sp. nov. isolated from mycorrhizal roots of epiphytic orchids in Brazil. Mycoscience. 2003;44:153–155.
Tedersoo L. Biogeography of mycorrhizal symbiosis. Cham: Springer; 2017.
Waud M, Brys R, Van Landuyt W, Lievens B, Jacquemyn H. Mycorrhizal specificity does not limit the distribution of an endangered orchid species. Mol. Ecol. 2017;26(6):1687–1701. PubMed
van der Cingel NA. An atlas of orchid pollination: America, Africa, Asia and Australia. Rotterdam: A.A. Balkema Publishers; 2001.
Pansarin, E. R. & Maria do Carmo, E. A. Biologia reprodutiva e polinização de duas espécies de Polystachya Hook. no Sudeste do Brasil: evidência de pseudocleistogamia em Polystachyeae (Orchidaceae). Rev. Bras. Bot.29(3), 423–432 (2006).
Chakraborty D, et al. Selecting populations for non-analogous climate conditions using universal response functions: the case of Douglas-Fir in Central Europe. PLoS ONE. 2015;10(8):e0136357. PubMed PMC
Broennimann O, Guisan A. Predicting current and future biological invasions: both native and invaded ranges matter. Biol. Lett. 2008;4:585–589. PubMed PMC
Abrams MD. Adaptations of forest ecosystems to air pollution and climate change. Tree Physiol. 2011;31:258–261. PubMed
Atwater DZ, Ervine C, Barney JN. Climatic niche shifts are common in introduced plants. Nat. Ecol. Evol. 2018;2:34–43. PubMed
Konowalik K, Kolanowska M. Climatic niche shift and possible future spread of the invasive South African Orchid Disa bracteata in Australia and adjacent areas. PeerJ. 2018;6:e6107. PubMed PMC
Early R, Sax DF. Climatic niche shifts between species’ native and naturalized ranges raise concern for ecological forecasts during invasions and climate change. Global Ecol. Biogeogr. 2014;23:1356–1365.
Baranow P, Mytnik-Ejsmont J. Two new species of Polystachya Hook. (Orchidaceae) from Africa. Plant Syst Evol. 2009;281:11–16.
Mytnik-Ejsmont J, Baranow P. Taxonomic study of Polystachya Hook. (Orchidaceae) from Asia. Plant Syst. Evol. 2010;290:57–63.
Russell A, Samuel R, Rupp B, Barfuss MHJ, Šafran M, Besendorfer V, Chase M. Phylogenetics and cytology of a pantropical orchid genus Polystachya (Polystachyinae, Vandeae, Orchidaceae): Evidence from plastid DNA sequence data. Taxon. 2010;59(2):389–404.
McCartney C. African affinities, part I: the surprising relationship of some of Florida's wild orchids. Orchids. 2010;69(2):130–139.
Mytnik-Ejsmont J. A monograph of the subtribe Polystachyinae Schltr. (Orchidaceae) Gdańsk: Wydawnictwo Uniwersytetu Gdańskiego; 2011.
GBIF Occurrence Download; 10.15468/dl.ks410t (2018).
Phillips, S. J., Dudík, M. & Schapire, R. E. A maximum entropy approach to species distribution modeling. In: ICML '04. Proceedings of the Twenty-First International Conference on Machine learning. 655–662 (ACM, New York, 2004).
Phillips SJ, Anderson R, Schapire RE. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006;190:231–259.
Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 2011;17:43–57.
Barve N, Barve V, Jimenez-Valverde A, Lira-Noriega A, Maher SP, Peterson AT, Soberóna J, Villalobos F. The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol. Model. 2011;222:1810–1819.
Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 2005;25:1965–1978.
WorldClim (version 1.4) www.worldclim.org
Warren DL, Glor RE, Turelli M. ENMTools: a toolbox for comparative studies of environmental niche models. Ecography. 2010;33:607–611.
Chung MY, et al. Comparison of genetic variation between northern and southern populations of Lilium cernuum (Liliaceae): Implications for Pleistocene refugia. PLoS ONE. 2018;13(1):e0190520. doi: 10.1371/journal.pone.0190520. PubMed DOI PMC
Kim SH, et al. Phylogeography and ecological niche modeling reveal reduced genetic diversity and colonization patterns of skunk cabbage (Symplocarpus foetidus; Araceae) from Glacial Refugia in Eastern North America. Front. Plant Sci. 2018;9:648. doi: 10.3389/fpls.2018.00648. PubMed DOI PMC
Moss, R. et al. Towards New Scenarios for Analysis of Emissions, Climate Change, Impacts, and Response Strategies. (Intergovernmental Panel on Climate Change, 2008)
Weyant, J. et al. Report of 2.6 Versus 2.9 Watts/m2 RCPP Evaluation Panel (IPCC Secretariat, 2009).
Sohel SI, Akhter S, Ullah H, Haque E, Rana P. Predicting impacts of climate change on forest tree species of Bangladesh: evidence from threatened Dysoxylum binectariferum (Roxb.) Hook.f. ex Bedd. (Meliaceae) Forest. 2016;10(1):154–160.
Sony RK, Sen S, Kumar S, Sen M, Jayahari KM. Niche models inform the effects of climate change on the endangered Nilgiri Tahr (Nilgiritragus hylocrius) populations in the southern Western Ghats, India. Ecol. Eng. 2018;120:355–363.
Mason SJ, Graham NE. Areas beneath the relative operating characteristics (ROC) and relative operating levels (ROL) curves statistical significance and interpretation. Q. J. R. Meteorol. Soc. 2002;128:2145–2166.
Evangelista PH, et al. Modelling invasion for a habitat generalist and a specialist plant species. Divers. Distrib. 2008;14:808–817.
Allouche O, Tsoar A, Kadmon R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS) J. Appl. Ecol. 2006;43:1223–1232.
Hijmans, R. J., Phillips, S., Leathwick, J. & Elith J. Dismo: Species Distribution Modeling. R package version 1.1-4. https://cran.r-project.org/package=dismo (2017)
Phillips SB, Aneja VP, Kang D, Arya SP. Modelling and analysis of the atmospheric nitrogen deposition in North Carolina. Int. J. Glob. Environ. Issues. 2006;6:231–252.
Warren DL, Glor RE, Turelli M. Environmental nicheequivalency versus conservatism: quantitative approaches toniche evolution. Evolution. 2008;62:2868–2883. doi: 10.1111/evo.2008.62.issue-11. PubMed DOI
Schoener TW. The Anolis lizards of Bimini: resource partitioning in a complex fauna. Ecology. 1968;49:704–726. doi: 10.2307/1935534. DOI
Heibl, C. & Calenge, C. Phyloclim: integrating phylogenetics and climatic Niche modeling. R package version 0.9-4https://cran.rproject.org/web/packages/phyloclim/phyloclim.pdf (2015).
Kremen C, et al. Aligning conservation priorities across taxa in Madagascar with high-resolution planning tools. Science. 2008;320:222–226. PubMed
Leps J, Smilauer P. Multivariate Analysis of Ecological Data Using CANOCO. Cambridge: Cambridge University Press; 2003.
Peterson AT, Soberón J, Pearson RG, Anderson RP, Martínez-Meyer E, Nakamura M, Araújo MB. Ecological Niches and Geographic Distributions (MPB-49) Princeton: Princeton University Press; 2011.