Climatic niche shift and possible future spread of the invasive South African Orchid Disa bracteata in Australia and adjacent areas
Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection
Document type Journal Article
PubMed
30595982
PubMed Central
PMC6304271
DOI
10.7717/peerj.6107
PII: 6107
Knihovny.cz E-resources
- Keywords
- Ecological niche modeling, Flora of Australia, Flora of South Africa, Invasive plants, Niche shift, Orchidaceae,
- Publication type
- Journal Article MeSH
Orchids are generally regarded as plants with an insignificant invasive potential and so far only one species has proved to be harmful for native flora. However, previous studies on Epipactis helleborine and Arundina graminifolia indicate that the ecological aspects of range extension in their non-native geographical range are not the same for all species of orchids. Disa bracteata in its native range, South Africa, is categorized as of little concern in terms of conservation whereas in Australia it is naturalized and considered to be an environmental weed. The aim of this research was to determine the ecological preferences enabling the spread of Disa bracteata in Western and South Australia, Victoria and Tasmania and to evaluate the effect of future climate change on its potential range. The ecological niche modeling approach indicates that most of the accessible areas are already occupied by this species but future expansion will continue based on four climate change scenarios (rcp26, rcp45, rcp60, rcp85). Further expansion is predicted especially in eastern Australia and eastern Tasmania. Moreover, there are some unpopulated but suitable habitats in New Zealand, which according to climate change scenarios will become even more suitable in the future. The most striking result of this study is the significant difference between the environmental conditions recorded in the areas which D. bracteata naturally inhabits and invasive sites-that indicates a possible niche shift. In Australia the studied species continues to populate a new niche or exploit habitats that are only moderately represented in South Africa.
See more in PubMed
Ackerman J. Invasive Orchids: weeds we hate to love? Lankesteriana. 2007;7(1–2):19–21. doi: 10.15517/lank.v7i1-2.18386. DOI
Adamowski W. Expansion of native orchids in anthropogenous habitats. Polish Botanical Studies. 2006;22:35–44.
Alexander JM, Edwards PJ. Limits to the niche and range margins of alien species. Oikos. 2010;119(9):1377–1386. doi: 10.1111/j.1600-0706.2009.17977.x. DOI
Atwater DZ, Kim W, Tekiela DR, Barney JN. Competition and propagule density affect sexual and clonal propagation of a weed. Invasive Plant Science and Management. 2017;10(1):17–25. doi: 10.1017/inp.2017.4. DOI
Barker WR, Barker RM, Jessop JP, Vonow HP, editors. Census of South Australian vascular plants. 5th edition. Adelaide: Botanic Gardens of Adelaide & State Herbarium; 2005. (Journal of the Adelaide botanic gardens supplement 1).
Barve N, Barve V, Jimenez-Valverde A, Lira-Noriega A, Maher SP, Peterson AT, Soberóna J, Villalobos F. The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecological Modelling. 2011;222:1810–1819. doi: 10.1016/j.ecolmodel.2011.02.011. DOI
Batty AL, Dixon KW, Brundrett MC, Sivasithamparam K. Orchid conservation and mycorrhizal associations. In: Sivasithamparam K, Dixon KW, Barrett RL, editors. Microorganisms in plant conservation and biodiversity. Kluwer Academic Publishers; Dordrecht: 2002. pp. 195–226.
Bivand R, Keitt T, Rowlingson R. rgdal: bindings for the geospatial data abstraction library. R package version 1.2-5https://CRAN.R-project.org/package=rgdal 2016
Blood K. Environmental weeds: a field guide for SE Australia. C.H. Jerram & Associates; Mt Waverley: 2001.
Bobrowski M, Schickhoff U. Why input matters: selection of climate data sets for modeling the potential distribution of a treeline species in the Himalayan region. Ecological Modeling. 2017;359:92–102. doi: 10.1016/j.ecolmodel.2017.05.021. DOI
Bonnardeaux Y, Brundrett M, Batty A, Dixon K, Koch J, Sivasithamparam K. Diversity of mycorrhizal fungi of terrestrial orchids: compatibility webs, brief encounters, lasting relationships and alien invasions. Mycological Research. 2007;111(Pt 1):51–61. doi: 10.1016/j.mycres.2006.11.006. PubMed DOI
Broennimann O, Fitzpatrick MC, Pearman PB, Petitpierre B, Pellissier L, Yoccoz NG, Thuiller W, Fortin MJ, Randin C, Zimmermann NE, Graham CH, Guisan A. Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecology and Biogeography. 2012;21:481–497. doi: 10.1111/j.1466-8238.2011.00698.x. DOI
Broennimann O, Guisan A. Predicting current and future biological invasions: both native and invaded ranges matter. Biology Letters. 2008;4:585–589. doi: 10.1098/rsbl.2008.0254. PubMed DOI PMC
Broennimann O, Treier UA, Müller-Schärer H, Thuiller W, Peterson AT, Guisan A. Evidence of climatic niche shift during biological invasion. Ecology Letters. 2007;10(8):701–709. doi: 10.1111/j.1461-0248.2007.01060.x. PubMed DOI
Colautti R, Grigorovich I, MacIsaac H. Propagule pressure: a null model for biological invasions. Biological Invasions. 2006;8(5):1023–1037. doi: 10.1007/s10530-005-3735-y. DOI
Colautti RI, Ricciardi A, Grigorovich IA, MacIsaac HJ. Is invasion success explained by the enemy release hypothesis? Ecology Letters. 2004;7(8):721–733. doi: 10.1111/j.1461-0248.2004.00616.x. DOI
Collins M, Knutti R, Arblaster J, Dufresne J-L, Fichefet T, Friedlingstein P, Gao X, Gutowski WJ, Johns T, Krinner G, Shongwe M, Tebaldi C, Weaver AJ, Wehner M. Long-term climate change: projections, commitments and irreversibility. Cambridge University Press, Cambridge and New YorkStocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM, editors. Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. 2013:1029–1136.
Coutts-Smith AJ, Downey PO. The impact of weeds on threatened biodiversity in New South Wales. CRC for Australian Weed Management; Adelaide: 2006. (Technical series no. 11).
Cozzolino S, Widmer A. Orchid diversity: an evolutionary consequence of deception? Trends in Ecology & Evolution. 2005;20:487–494. doi: 10.1016/j.tree.2005.06.004. PubMed DOI
Di Febbraro M, Lurz PWW, Genovesi P, Maiorano L, Girardello M, Bertolino S. The use of climatic niches in screening procedures for introduced species to evaluate risk of spread: a case with the American Eastern Grey Squirrel. PLOS ONE. 2013;8:e66559. doi: 10.1371/journal.pone.0066559. PubMed DOI PMC
Duursma DE, Gallagher RV, Roger E, Hughes L, Downey PO, Leishman MR. Next-generation invaders? hotspots for naturalised sleeper weeds in australia under future climates. PLOS ONE. 2013;8(12):e84222. doi: 10.1371/journal.pone.0084222. PubMed DOI PMC
Elith J, Kearney M, Phillips S. The art of modeling range-shifting species. Methods in Ecology and Evolution. 2010;1(4):330–342. doi: 10.1111/j.2041-210X.2010.00036.x. DOI
Fischer G, Nachtergaele F, Prieler S, Van Velthuizen HT, Verelst L, Wiberg P. Global agro-ecological zones assessment for agriculture (GAEZ 2008) IIASA; Laxenburg: 2008. Rome: FAO.
Foden W, Potter L. Disa bracteata Sw. National assessment: red list of South African plants. Version 2015.1 [15 November 2015];http://redlist.sanbi.org/species.php?species=2759-185 2005
Gallagher RV, Beaumont LJ, Hughes L, Leishman MR. Evidence for climatic niche and biome shifts between native and novel ranges in plant species introduced to Australia. Journal of Ecology. 2010;98(4):790–799. doi: 10.1111/j.1365-2745.2010.01677.x. DOI
Godsoe W. Regional variation exaggerates ecological divergence in niche models. Systematic Biology. 2010;59:298–306. doi: 10.1093/sysbio/syq005. PubMed DOI PMC
Groves RH, Hosking JR, Batianoff GN, Cooke DA, Cowie ID, Johnson RW, Keighery GJ, Lepschi BJ, Mitchell AA, Moerkerk M, Randall RP, Rozefelds AC, Walsh NG, Waterhouse BM. Weed categories for natural and agricultural ecosystem management. Bureau of Rural Sciences; Canberra: 2003.
Guisan A, Petitpierre B, Broennimann O, Daehler C, Kueffer C. Unifying niche shift studies: insights from biological invasions. Trends in Ecology & Evolution. 2014;29:260–269. doi: 10.1016/j.tree.2014.02.009. PubMed DOI
Hengl T, De Jesus JM, MacMillan RA, Batjes NH, Heuvelink GB, Ribeiro E, Samuel-Rosa A, Kempen B, Leenaars JGB, Walsh MG, Gonzalez MR. SoilGrids1km—global soil information based on automated mapping. PLOS ONE. 2014;9(8):e105992. doi: 10.1371/journal.pone.0105992. PubMed DOI PMC
Hijmans RJ. raster: geographic data analysis and modeling. R package version 2.5-8https://CRAN.R-project.org/package=raster 2016
Hijmans RJ, Schreuder M, De La Cruz J, Guarino L. Using GIS to check co-ordinates of genebank accessions. Genetic Resources and Crop Evolution. 1999;46:291–296. doi: 10.1023/A:1008628005016. DOI
Hussey BMJ, Keighery GJ, Cousens RD, Dodd J, Lloyd SG. Western weeds, a guide to the weeds of Western Australia. Plant Protection Society of Western Australia; Australia: 1997.
Jiménez-Valverde A, Peterson A. Use of niche models in invasive species risk assessments. Biological Invasions. 2011;13(12):2785–2797. doi: 10.1007/s10530-011-9963-4. DOI
Jueterbock A, Smolina I, Coyer JA, Hoarau G. The fate of the Arctic seaweed Fucus distichus under climate change: an ecological niche modeling approach. Ecology and Evolution. 2016;6(6):1712–1724. doi: 10.1002/ece3.2001. PubMed DOI PMC
Karger DN, Conrad O, Böhner J, Kawohl T, Kreft H, Soria-Auza RW, Zimmermann NE, Linder HP, Kessler M. Climatologies at high resolution for the Earth land surface areas. 2016a1607.00217 PubMed PMC
Karger DN, Conrad O, Böhner J, Kawohl T, Kreft H, Soria-Auza RW, Zimmermann NE, Linder HP, Kessler M. CHELSA climatologies at high resolution for the earth’s land surface areas (Version 1.1) World Data Center for Climate. 2016b doi: 10.1594/WDCC/CHELSA_v1_1. PubMed DOI PMC
Kloot PM. Checklist of the introduced species naturalised in South Australia. Department of Agriculture South Australia Technical Paper. 1986;14:1–111.
Kolanowska M. Niche Conservatism and the Future Potential Range of Epipactis helleborine (Orchidaceae) PLOS ONE. 2013;8(10):e77352. doi: 10.1371/journal.pone.0077352. PubMed DOI PMC
Kolanowska M, Konowalik K. Niche conservatism and future changes in the potential area coverage of Arundina graminifolia, an invasive orchid species from southeast Asia. Biotropica. 2014;46(2):157–165. doi: 10.1111/btp.12089. DOI
Konowalik K, Proćków M, Proćków J. Climatic niche of Selinum alatum (Apiaceae, Selineae), a new invasive plant species in Central Europe and its alterations according to the climate change scenarios: are the European mountains threatened by invasion? PLOS ONE. 2017;12(8):e0182793. doi: 10.1371/journal.pone.0182793. PubMed DOI PMC
Kurzweil H, Johnson SD. Auto-pollination in Monadenia bracteata. South African Orchid Journal. 1993;24:21–22.
Land Management Team From the bushland: good guys and bad guys. http://www.rbg.vic.gov.au/ Naturelink. 2015;22(1):11.
Liu C, Berry P, Dawson T, Pearson R. Selecting thresholds of occurrence in the prediction of species distributions. Ecography. 2005;28(3):385–393. doi: 10.1111/j.0906-7590.2005.03957.x. DOI
Liu C, Newell G, White M. On the selection of thresholds for predicting species occurrence with presence-only data. Ecology and Evolution. 2016;6(1):337–348. doi: 10.1002/ece3.1878. PubMed DOI PMC
Mainali KP, Warren DL, Dhileepan K, McConnachie A, Strathie L, Hassan G, Karki D, Shrestha BB, Parmesan C. Projecting future expansion of invasive species: comparing and improving methodologies for species distribution modeling. Global Change Biology. 2015;21(12):4464–4480. doi: 10.1111/gcb.13038. PubMed DOI
McCormick MK, Jacquemyn H. What constrains the distribution of orchid populations? New Phytologist. 2014;202:392–400. doi: 10.1111/nph.12639. DOI
Medley KA. Niche shifts during the global invasion of the Asian tiger mosquito, Aedes albopictus Skuse (Culicidae), revealed by reciprocal distribution models. Global Ecology and Biogeography. 2010;19:122–133. doi: 10.1111/j.1466-8238.2009.00497.x. DOI
Peel MC, Finlayson BL, McMahon TA. Updated world map of the Köppen–Geiger climate classification. Hydrology and Earth System Sciences. 2007;11:1633–1644. doi: 10.5194/hess-11-1633-2007. DOI
Petersen MJ. Evidence of a climatic niche shift following North American introductions of two crane flies (Diptera; genus Tipula) Biological Invasions. 2012;15:885–897.
Peterson AT. Predicting the geography of species’ invasions via ecological niche modeling. The Quarterly Review of Biology. 2003;78(4):419–433. doi: 10.1086/378926. PubMed DOI
Peterson AT, Soberón J. Species distribution modeling and ecological niche modeling: getting the concepts right. Natureza & Conservação. 2012;10(2):102–107. doi: 10.4322/natcon.2012.019. DOI
Petitpierre B, Kueffer C, Broennimann O, Randin C, Daehler C, Guisan A. Climatic niche shifts are rare among terrestrial plant invaders. Science. 2012;335(6074):1344–1348. doi: 10.1126/science.1215933. PubMed DOI
Phillips SJ, Dudík M, Schapire RE. A maximum entropy approach to species distribution modeling. ICML ’04. Proceedings of the twenty-first international conference on machine learning; New York. 2004. pp. 655–662.
Pressey RL, Hager TC, Ryan KM, Schwarz J, Wall S, Ferrier S, Creaser PM. Using abiotic data for conservation assessments over extensive regions: quantitative methods applied across New South Wales, Australia. Biological Conservation. 2000;96(1):55–82. doi: 10.1016/S0006-3207(00)00050-1. DOI
Qiao H, Escobar LE, Peterson AT. Accessible areas in ecological niche comparisons of invasive species: recognized but still overlooked. Scientific Reports. 2017;7:1213. doi: 10.1038/s41598-017-01313-2. PubMed DOI PMC
Quantum GIS Development Team . Open Source Geospatial Foundation Project; 2016.
R Core Team . R Foundation for Statistical Computing; Vienna: 2016.
Raimondo D, Von Staden L, Foden W, Victor JE, Helme NA, Turner RC, Kamundi DA, Manyama PA. Red list of South African plants. South African National Biodiversity Institute; Pretoria: 2009.
Ramankutty N, Foley JA. Estimating historical changes in global land cover: croplands from 1700 to 1992. Global Biogeochemical Cycles. 1999;13(4):997–1027. doi: 10.1029/1999GB900046. DOI
Randall RP. The introduced flora of Australia and its weed status. CRC for Australian Weed Management; Adelaide: 2007.
Recart W, Ackerman JA, Cuevas AA. There goes the neighborhood: apparent competition between invasive and native orchids mediated by a specialist florivorous weevil. Biological Invasions. 2013;15:283–293. doi: 10.1007/s10530-012-0283-0. DOI
Rewicz A, Kołodziejek J, Jakubska-Busse A. The role of anthropogenic habitats as substitutes for natural habitats: a case study on Epipactis helleborine (L.) Crantz (Orchidaceae, Neottieae). Variations in size and nutrient composition of seeds. Turkish Journal of Botany. 2015;40:258–268. doi: 10.3906/bot-1404-69. DOI
Scott JK, Delfosse ES. Southern African plants naturalised in Australia: a review of weed status and biological control potential. Plant Protection Quarterly. 1992;7:70–80.
Scott JK, Panetta FD. Predicting the Australian weed status of Southern African plants. Journal of Biogeography. 1993;20(1):87–93. doi: 10.2307/2845742. DOI
Sinden J, Jones R, Hester S, Odom D, Kalisch C, James R, Cacho O. The economic impact of weeds in Australia. CRC for Australian Weed Management; Adelaide: 2004. (Technical series (8)).
Sol D. Predicting invaders. Trends in Ecology & Evolution. 2001;16:544. doi: 10.1016/S0169-5347(01)02277-7. PubMed DOI
Suárez-Seoane S, García de la Morena EL, Morales Prieto MB, Osborne PE, De Juana E. Maximum entropy niche-based modelling of seasonal changes in little bustard (Tetrax tetrax) distribution. Ecological Modelling. 2008;219:17–29. doi: 10.1016/j.ecolmodel.2008.07.035. DOI
Thiers B. Index herbariorum: a global directory of public herbaria and associated staff. New York Botanical Garden’s Virtual Herbarium; New York: 2018.
Thorp J, Lynch R. The determination of weeds of national significance. Natural Heritage Trust/National Weeds Strategy Executive Committee; Launceston: 2000.
Thuiller W, Alberta C, Araújo MB, Berry PM, Cabeza M, Guisan A, Hickler T, Midgley GF, Paterson J, Schurr FM, Sykes MT, Zimmermann NE. Predicting global change impacts on plant species’ distributions: future challenges. Perspectives in Plant Ecology, Evolution and Systematics. 2008;9(3–4):137–152. doi: 10.1016/j.ppees.2007.09.004. DOI
Torchin ME, Lafferty KD, Dobson AP, McKenzie VJ, Kuris AM. Introduced species and their missing parasites. Nature. 2003;421(6923):628–630. doi: 10.1038/nature01346. PubMed DOI
Tucker P. Monadenia—a trial. 2006. Trees for life. https://www.treesforlife.org.au/sites/default/files/Monadenia%20-%20A%20Trial.PDF .
Walas L, Dering M, Ganatsas P, Pietras M, Pers-Kamczyc E, Iszkuło G. The present status and potential distribution of relict populations of Aesculus hippocastanum L. in Greece and the diverse infestation by Cameraria ohridella Deschka & Dimić. Plant Biosystems. 2018;152(5):1048–1058. doi: 10.1080/11263504.2017.1415991. DOI
Wang C-J, Wan J-Z, Qu H, Zhang Z-X. Modelling plant invasion pathways in protected areas under climate change: implication for invasion management. Web Ecology. 2017;17:69–77. doi: 10.5194/we-17-69-2017. DOI
Warren DL. ENMTools: analysis of niche evolution using niche and distribution models. R package version 0.1https://github.com/danlwarren/ENMTools 2016
Warren DL, Glor RE, Turelli M. Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution. 2008;62:2868–2883. doi: 10.1111/j.1558-5646.2008.00482.x. PubMed DOI
Wileman R. Disa bracteata. The South African weed orchid. Correa Mail. 2015;312:4–5.