Clinical Improvement after Shunt Surgery in Patients with Idiopathic Normal Pressure Hydrocephalus Can Be Quantified by Diffusion Tensor Imaging
Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články
PubMed
40147831
PubMed Central
PMC11979847
DOI
10.3174/ajnr.a8571
PII: ajnr.A8571
Knihovny.cz E-zdroje
- MeSH
- anizotropie MeSH
- bílá hmota diagnostické zobrazování MeSH
- lidé středního věku MeSH
- lidé MeSH
- normotenzní hydrocefalus * chirurgie diagnostické zobrazování MeSH
- prospektivní studie MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- shunty pro odvod mozkomíšního moku * MeSH
- výsledek terapie MeSH
- zobrazování difuzních tenzorů * metody MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND AND PURPOSE: White matter changes assessed by DTI typically reflect tract functionality. This study aimed to investigate DTI parameter alterations in important regions pre- and postshunt implantation in patients with idiopathic normal pressure hydrocephalus (iNPH), alongside assessing the relationship between DTI parameters and clinical improvement. MATERIALS AND METHODS: Patients with probable iNPH underwent prospective preoperative MRI and comprehensive clinical work-up between 2017-2022. Patients with clinical symptoms of iNPH, positive result on a lumbar infusion test, and/or gait improvement after 120-hour lumbar drainage were diagnosed with iNPH and underwent shunt-placement surgery. Fractional anisotropy and mean diffusivity values for individual regions of interest were extracted from preoperative and postoperative MRI. These values were correlated with the clinical picture of individual patients. RESULTS: A total of 32 patients (73.59 ± 4.59 years) with definite iNPH were analyzed. Preoperative DTI characteristics of internal capsule and corona radiata correlated with the 1-year improvement in the Dutch Gait Scale postoperatively (all P < .036). Cognitive domain improvement after surgery in memory and psychomotor speed correlated with preoperative DTI values of cingulate gyrus (P = .050), uncinate fasciculus (P = .029), superior longitudinal fasciculus (P = .020), or corpus callosum (P < .045). CONCLUSIONS: DTI characteristics of white matter regions reflect clinical improvement after shunt surgery in patients with iNPH. They tend to improve toward physiologic DTI values, thus further accentuating the benefit of shunt surgery in both clinical and radiologic pictures.
Zobrazit více v PubMed
Adams RD, Fisher CM, Hakim S, et al. . Symptomatic occult hydrocephalus with “normal” cerebrospinal-fluid pressure. A treatable syndrome. N Engl J Med 1965;273:117–26 10.1056/NEJM196507152730301 PubMed DOI
Nakajima M, Yamada S, Miyajima M; Research Committee of Idiopathic Normal Pressure Hydrocephalus, et al.. Guidelines for management of idiopathic normal pressure hydrocephalus (third edition): endorsed by the Japanese Society of Normal Pressure Hydrocephalus. Neurol Med Chir (Tokyo) 2021;61:63–97 10.2176/nmc.st.2020-0292 PubMed DOI PMC
Malm J, Graff-Radford NR, Ishikawa M, et al. . Influence of comorbidities in idiopathic normal pressure hydrocephalus—research and clinical care. A report of the ISHCSF task force on comorbidities in INPH. Fluids Barriers CNS 2013;10:22 10.1186/2045-8118-10-22 PubMed DOI PMC
Giordan E, Palandri G, Lanzino G, et al. . Outcomes and complications of different surgical treatments for idiopathic normal pressure hydrocephalus: a systematic review and meta-analysis. J Neurosurg 2019;131:1024–36 10.3171/2018.5.JNS1875 PubMed DOI
Grazzini I, Venezia D, Cuneo GL, et al. . The role of diffusion tensor imaging in idiopathic normal pressure hydrocephalus: a literature review. Neuroradiol J 2021;34:55–69 10.1177/1971400920975153 PubMed DOI PMC
Lock C, Toh EMS, Keong NC, et al. . Structural volumetric and periodic table DTI patterns in complex normal pressure hydrocephalus—toward the principles of a translational taxonomy. Front Hum Neurosci 2024;18:1188533 10.3389/fnhum.2024.1188533 PubMed DOI PMC
O’Donnell LJ, Westin C-F. An introduction to diffusion tensor image analysis. Neurosurg Clin N Am 2011;22:185–96 10.1016/j.nec.2010.12.004 PubMed DOI PMC
Sedlák V, Bubeníková A, Skalický P, et al. . Diffusion tensor imaging helps identify shunt-responsive normal pressure hydrocephalus patients among probable iNPH cohort. Neurosurg Rev 2023;46:173 10.1007/s10143-023-02078-1 PubMed DOI PMC
Boon AJ, Tans JT, Delwel EJ, et al. . The Dutch normal-pressure hydrocephalus study. How to select patients for shunting? An analysis of four diagnostic criteria. Surg Neurol 2000;53:201–07 10.1016/s0090-3019(00)00182-8 PubMed DOI
Charlson ME, Pompei P, Ales KL, et al. . A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis 1987;40:373–83 10.1016/0021-9681(87)90171-8 PubMed DOI
Bowie CR, Harvey PD. Administration and interpretation of the Trail Making Test. Nat Protoc 2006;1:2277–81 10.1038/nprot.2006.390 PubMed DOI
Bezdicek O, Motak L, Axelrod BN, et al. . Czech version of the Trail Making Test: normative data and clinical utility. Arch Clin Neuropsychol 2012;27:906–14 10.1093/arclin/acs084 PubMed DOI
Kapur N. Neuropsychological Assessment, Fourth Edition. J Neurol 2005;252:1290–91 10.1007/s00415-005-0003-0 DOI
Rey A. L’Examen Clinique en Psychologie. 2nd ed. Presses Universitaires de France; 1964.
Zhang X, Lv L, Min G, et al. . Overview of the complex figure test and its clinical application in neuropsychiatric disorders, including copying and recall. Front Neurol 2021;12:680474 10.3389/fneur.2021.680474 PubMed DOI PMC
Jenkinson M, Beckmann CF, Behrens TEJ, et al. . FSL. NeuroImage 2012;62:782–90 10.1016/j.neuroimage.2011.09.015 PubMed DOI
Smith SM, Jenkinson M, Woolrich MW, et al. . Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 2004;23 Suppl 1:S208–19 10.1016/j.neuroimage.2004.07.051 PubMed DOI
Smith SM, Jenkinson M, Johansen-Berg H, et al. . Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. NeuroImage 2006;31:1487–505 10.1016/j.neuroimage.2006.02.024 PubMed DOI
Rueckert D, Sonoda LI, Hayes C, et al. . Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans Med Imaging 1999;18:712–21 10.1109/42.796284 PubMed DOI
Hořínek D, Štěpán-Buksakowska I, Szabó N, et al. . Difference in white matter microstructure in differential diagnosis of normal pressure hydrocephalus and Alzheimer’s disease. Clin Neurol Neurosurg 2016;140:52–59 10.1016/j.clineuro.2015.11.010 PubMed DOI
Grasso G, Torregrossa F, Leone L, et al. . Long-term efficacy of shunt therapy in idiopathic normal pressure hydrocephalus. World Neurosurg 2019;129:e458–63 10.1016/j.wneu.2019.05.183 PubMed DOI
Ammar A, Abbas F, Al Issawi W, et al. . Idiopathic normal-pressure hydrocephalus syndrome: is it understood? the comprehensive idiopathic normal-pressure hydrocephalus theory (CiNPHT). In: Ammar A, ed. Hydrocephalus: What Do We Know? And What Do We Still Not Know? Springer-Verlag International Publishing; 2017:67–82 10.1007/978-3-319-61304-8_5 DOI
Eleftheriou A, Blystad I, Tisell A, et al. . Indication of thalamo-cortical circuit dysfunction in idiopathic normal pressure hydrocephalus: a tensor imaging study. Sci Rep 2020;10:6148 10.1038/s41598-020-63238-7 PubMed DOI PMC
Herbet G, Zemmoura I, et al. . Functional anatomy of the inferior longitudinal fasciculus: from historical reports to current hypotheses. Front Neuroanat 2018;12:77 10.3389/fnana.2018.00077 PubMed DOI PMC
Ashtari M, Cottone J, Ardekani BA, et al. . Disruption of white matter integrity in the inferior longitudinal fasciculus in adolescents with schizophrenia as revealed by fiber tractography. Arch Gen Psychiatry 2007;64:1270–80 10.1001/archpsyc.64.11.1270 PubMed DOI
Hoza D, Vlasák A, Hořínek D, et al. . DTI-MRI biomarkers in the search for normal pressure hydrocephalus aetiology: a review. Neurosurg Rev 2015;38:239–244 44; discussion 10.1007/s10143-014-0584-0 PubMed DOI
Kim MJ, Seo SW, Lee KM, et al. . Differential diagnosis of idiopathic normal pressure hydrocephalus from other dementias using diffusion tensor imaging. AJNR Am J Neuroradiol 2011;32:1496–503 10.3174/ajnr.A2531 PubMed DOI PMC
Israelsson H, Eklund A, Malm J, et al. . Cerebrospinal fluid shunting improves long-term quality of life in idiopathic normal pressure hydrocephalus. Neurosurgery 2020;86:574–82 10.1093/neuros/nyz297 PubMed DOI
Allali G, Laidet M, Armand S, et al. . Apathy in idiopathic normal pressure hydrocephalus: a marker of reversible gait disorders. Int J Geriatr Psychiatry 2018;33:735–42 10.1002/gps.4847 PubMed DOI
Coenen VA, Schlaepfer TE, Sajonz B, et al. . Tractographic description of major subcortical projection pathways passing the anterior limb of the internal capsule. Corticopetal organization of networks relevant for psychiatric disorders. Neuroimage Clin 2020;25:102165 10.1016/j.nicl.2020.102165 PubMed DOI PMC
Rýdlo O, Bubeníková A, Häcklová K, et al. . Comparison of decline in different cognitive domain in patients with normal pressure hydrocephalus. Neurosurg Rev 2024;47:167 10.1007/s10143-024-02410-3 PubMed DOI PMC
Peterson KA, Savulich G, Jackson D, et al. . The effect of shunt surgery on neuropsychological performance in normal pressure hydrocephalus: a systematic review and meta-analysis. J Neurol 2016;263:1669–77 10.1007/s00415-016-8097-0 PubMed DOI PMC
Von Der Heide RJ, Skipper LM, Klobusicky E, et al. . Dissecting the uncinate fasciculus: disorders, controversies and a hypothesis. Brain 2013;136:1692–707 10.1093/brain/awt094 PubMed DOI PMC
Rolls ET. The cingulate cortex and limbic systems for emotion, action, and memory. Brain Struct Funct 2019;224:3001–18 10.1007/s00429-019-01945-2 PubMed DOI PMC
Paul LK, Erickson RL, Hartman JA, et al. . Learning and memory in individuals with agenesis of the corpus callosum. Neuropsychologia 2016;86:183–92 10.1016/j.neuropsychologia.2016.04.013 PubMed DOI
Makris N, Kennedy DN, McInerney S, et al. . Segmentation of subcomponents within the superior longitudinal fascicle in humans: a quantitative, in vivo, DT-MRI study. Cereb Cortex 2005;15:854–69 10.1093/cercor/bhh186 PubMed DOI
Voineskos AN, Rajji TK, Lobaugh NJ, et al. . Age-related decline in white matter tract integrity and cognitive performance: a DTI tractography and structural equation modeling study. Neurobiol Aging 2012;33:21–34 10.1016/j.neurobiolaging.2010.02.009 PubMed DOI PMC
Tullberg M, Jensen C, Ekholm S, et al. . Normal pressure hydrocephalus: vascular white matter changes on MR images must not exclude patients from shunt surgery. AJNR Am J Neuroradiol 2001;22:1665–73 PubMed PMC
Magistro D, Takeuchi H, Nejad KK, et al. . The relationship between processing speed and regional white matter volume in healthy young people. PLoS One 2015;10:e0136386 10.1371/journal.pone.0136386 PubMed DOI PMC
McDonald AP, D’Arcy RCN, Song X, et al. . Functional MRI on executive functioning in aging and dementia: a scoping review of cognitive tasks. Aging Med (Milton) 2018;1:209–19 10.1002/agm2.12037 PubMed DOI PMC
Abdulrahman H, Hafdi M, Mutsaerts H, et al. . Cerebral perfusion and the risk of cognitive decline and dementia in community dwelling older people. Cereb Circ Cogn Behav 2022;3:100125 10.1016/j.cccb.2022.100125 PubMed DOI PMC
Kang K, Jeong SY, Park K-S, et al. . Distinct cerebral cortical perfusion patterns in idiopathic normal-pressure hydrocephalus. Hum Brain Mapp 2023;44:269–79 10.1002/hbm.25974 PubMed DOI PMC
Tarnaris A, Toma AK, Pullen E, et al. . Cognitive, biochemical, and imaging profile of patients suffering from idiopathic normal pressure hydrocephalus. Alzheimers Dement 2011;7:501–08 10.1016/j.jalz.2011.01.003 PubMed DOI