Is the lady's-slipper orchid (Cypripedium calceolus) likely to shortly become extinct in Europe?-Insights based on ecological niche modelling
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32004339
PubMed Central
PMC6993984
DOI
10.1371/journal.pone.0228420
PII: PONE-D-19-27369
Knihovny.cz E-zdroje
- MeSH
- biologické modely MeSH
- ekosystém MeSH
- klimatické změny MeSH
- ohrožené druhy MeSH
- Orchidaceae růst a vývoj MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
Lady's-slipper orchid (Cypripedium calceolus) is considered an endangered species in most countries within its geographical range. The main reason for the decline in the number of populations of this species in Europe is habitat destruction. In this paper the ecological niche modelling approach was used to estimate the effect of future climate change on the area of niches suitable for C. calceolus. Predictions of the extent of the potential range of this species in 2070 were made using climate projections obtained from the Community Climate System Model for four representative concentration pathways: rcp2.6, rcp4.5, rcp6.0 and rcp8.5. According to these analyses all the scenarios of future climate change will result in the total area of niches suitable for C. calceolus decreasing. Considering areas characterized by a suitability of at least 0.4 the loss of habitat will vary between ca. 30% and 63%. The highest habitat loss of ca. 63% is predicted to occur in scenario rcp 8.5. Surprisingly, in the most damaging rcp 8.5 prediction the highest overlap between potential range of C. calceolus and its pollinators will be observed and in all other scenarios some pollinators will be available for this species in various geographical regions. Based on these results at least two approaches should be implemented to improve the chances of survival of C. calceolus. In view of the unavoidable loss of suitable habitats in numerous European regions, conservation activities should be intensified in areas where this species will still have suitable niches in the next 50 years. In addition, for C. calceolus ex-situ activities should be greatly increased so that it can be re-introduced in the remaining suitable areas.
Department of Biodiversity Research Global Change Research Institute AS CR Brno Czech Republic
Department of Botany Institute of Environmental Biology University of Wrocław Wrocław Poland
Zobrazit více v PubMed
Guisan A, Zimmermann NE. Predictive habitat distribution models in ecology. Ecol Modell. 2000; 135: 147–186.
Peterson AT, Soberón J, Pearson RG, Anderson RP, Martínez-Meyer E, Nakamura M, et al. Ecological Niches and Geographic Distributions. Princenton: Princenton University Press; 2011.
Brambilla M, Saporetti F. Modelling distribution of habitats required for different uses by the same species: Implications for conservation at the regional scale. Biol Conserv. 2014; 174: 39–46.
Yañez-Arenas C, Martínez-Meyer E, Mandujano S, Rojas-Soto O. Modelling geographic patterns of population density of the white-tailed deer in central Mexico by implementing ecological niche theory. Oikos. 2012; 121: 2081–2089.
Micchi de Barros Ferraz KMP, Frosini de Barros Ferraz S, de Paula RC, Beisiegel B, Breitenmoser C. Species Distribution Modelling for Conservation Purposes. Nat Conserv. 2012; 10(2): 214–220.
Micchi de Barros Ferraz PMB, Beisiegel BM, de Paula RC, Sana DA, de Campos CB, de Oliveira TG, et al. How species distribution models can improve cat conservation—jaguars in Brazil. CatNews. 2012; 7: 38–42.
Chefaoui RM, Hortal J, Lobo JM. Potential distribution modelling, niche characterization and conservation status assessment using GIS tools: a case study of Iberian Copris species. Biol Conserv. 2005; 122(2): 327–338.
Thorn JS, Nijman V, Smith D, Nekaris KAI. Ecological niche modelling as a technique for assessing threats and setting conservation priorities for Asian slow lorises (Primates: Nycticebus). Diver Distr. 2009; 15(2): 289–298.
Swarts ND, Dixon KW. Terrestrial orchid conservation in the age of extinction. Ann. Bot. 2009; 104(3): 543–556. 10.1093/aob/mcp025 PubMed DOI PMC
Gale SW, Fischer GA, Cribb PJ, Fay MF. Orchid conservation: bridging the gap between science and practice. Bot J Linn Soc. 2018; 186: 425–434.
Kull T. Identification of clones in Cypripedium calceolus (Orchidaceae). P Est Acad Sci. 1988; 37: 195–199.
Kull T. Fruit-set and recruitment in populations of Cypripedium calceolus L. in Estonia. Bot J Linn Soc. 1998; 126: 27–38.
Bergström G, Birgersson G, Groth I, Nilsson LA. Floral fragrance disparity between three taxa of Lady’s slipper Cypripedium calceolus (Orchidaceae). Phytochemistry. 1992; 31: 2315–2319.
Case MA. High levels of allozyme variation within Cypripedium calceolus (Orchidaceae) and low levels of divergence among its varieties. Syst Bot. 1993; 18(4): 663–677.
Erneberg M, Holm B. Bee size and pollen transfer in Cypripedium calceolus (Orchidaceae). Nord J Bot. 1999; 19: 363–367.
Brzosko E. Dynamics of island populations of Cypripedium calceolus in the Biebrza river valley (northeast Poland). Bot J Linn Soc. 2002; 139: 67–77.
Blinova IV. A northernmost population of Cypripedium calceolus L. (Orchidaceae): demography, flowering, pollination. Selbyana 2002; 23: 111–120.
Antonelli A, Dahlberg CJ, Carlgren KHI, Appelqvis T. Pollination of the Lady’s slipper orchid (Cypripedium calceolus) in Scandinavia. Nord. J. Bot. 2009; 27: 1–8.
Fay MF, Bone R, Cook P, Kahandawala I, Greensmith J, Harris S, et al. Genetic diversity in Cypripedium calceolus (Orchidaceae) with a focus on northwestern Europe, as revealed by plastid DNA length polymorphisms. Ann Bot 2009; 104: 517–525. 10.1093/aob/mcp116 PubMed DOI PMC
Rasmussen HN, Pedersen HÆ. Cypripedium calceolus germination in situ: seed longevity, and dormancy breakage by long incubation and cold winters Eur J Environ Sci. 2011; 1(2): 69–70.
Devilliers-Terschuren J. Action Plan for Cypripedium calceolus in Europe. Strasbourg: Council of Europe Pub; 1999.
Delforge P. Orchids of Europe, North Africa and the Middle East. Portland: Timber Press; 2006.
Rankou H, Bilz M. Cypripedium calceolus. The IUCN Red List of Threatened Species 2014, e.T162021A43316125; 2014. Available at: 10.2305/IUCN.UK.2014-1.RLTS.T162021A43316125.en DOI
Kull T. Biological flora of the British Isles. Cypripedium calceolus L. J Ecol. 1999; 87: 913–924.
Govaerts R, Dransfield J, Zona SF, Hodel DR, Henderson A. World checklist of selected plant families. Kew: The Board of Trustees of the Royal Botanic Gardens; 2009.
eřovský J. Endangered plants. London: Sunburst Books; 1995
Matuszkiewicz W. Przewodnik do oznaczania zbiorowisk roślinnych Polski. Warszawa: Wydawnictwo Naukowe PWN; 2006.
Limpricht W. Kalkpflanzen der östlichen Grafschaft Glatz. Feddes Repert Spec Nov Regni Veg. 1942; 131: 126–141.
Limpricht W. Kalkpflanzen der westlichen Grafschaft Glatz. Englers Bot Jahr. 1943; 3: 151–174.
Jakubska-Busse A, Szczęśniak E, Śliwiński M, Narkiewicz C. Zanikanie stanowisk obuwika pospolitego Cypripedium calceolus L., 1753 (Orchidaceae) w Sudetach. Przyroda Sudetów. 2010; 13: 43–52.
Szczęśniak E, Jakubska-Busse A, Śliwiński M. Zróżnicowanie i rozmieszczenie zbiorowisk z udziałem Cypripedium calceolus L. (Orchidaceae) na Dolnym Śląsku. Acta Bot Siles. 2012; 8: 97–128.
Edens-Meier R, Arduser ME, Westhus E, Bernhardt P. Pollination ecology of Cypripedium reginae Walter (Orchidaceae): size matters. Telopia. 2011; 13: 327–340.
Pemberton RW. Pollination of slipper orchids (Cypripedioideae): a review. Lankesteriana. 2013; 13(1–2): 65–73.
Robbirt KM, Roberts DL, Hutchings MJ, Davy AJ. Potential Disruption of Pollination in a Sexually Deceptive Orchid by Climatic Change. Curr Biol. 2014; 24(23): 2845–2849. 10.1016/j.cub.2014.10.033 PubMed DOI
Roberts DL. Pollination biology: the role of sexual reproduction in orchid conservation In: Dixon KW, Kell SP, Barrett RL, Cribb PJ, editors. Orchid Conservation. London: Natural History Publications; 2003. pp. 113–136.
Lazare J-J, Miralles J, Villar L. Cypripedium calceolus L. (Orchidaceae) en el Pirineo. Anales Jard Bot. Madrid. 1986; 43: 375–382.
Perazza G. Cartografia della orchidee (Orchidaceae) spontanee in Trentino-Alto Adige (Italia). Ricerca Sull'erbario dell'Universita di firence (FI). Ann Mus Civ Rovereto. 1995; 11: 231–256.
Perezza G, Decarli Perezza M. Cartogrfia orchidee trdentine (COT): Cypripedium calceolus L. e Liparis loeselii (L.) Rich., specie citate nella directiva habitat della CEE. Atti Acc Rov Agiati. 2002; 252: 129–210.
Isaja A, Dotti L. Le orchidee spontanee della Val di Susa (Piemonte-Italia) primi dati sulla distribuzione di tre orchidee rare: Cypripedium calceolus L. (1735), Corallorhiza trifida Chatelain (1760) e Aceras anthropophorum R.Br ex Aiton fil. (1814). Riv Piem St Nat. 2003; 24: 205–215.
Gudžinskas Z, Ryla M. Lietuvos gegužraibiniai (Orchidaceae) Orchids (Orchidaceae) of Lithuania. Vilnius: Botanikos instituto leidykla; 2006.
Raðomavièius V. Lietuvos Raudonoji Knyga Red Data Book of Lithuania. Vilnius: Publishing Company; 2007.
Petrović D, Stešević D, Vuksanović S. Materials for the Red Book of Montenegro. Natura Montenegrina. Podgorica. 2008; 7(2): 605–631.
Didukh YP. Red data book of Ukraine Vegetable kingdom. Kyiv: Globalconsalting; 2009.
Teteryuk LV, Kirillova IA. Rare and protected Orchids of the Komi Republic. Arbeitskreis Heimische Orchideen. 2011; 28(1): 133–179.
Balázs ZR, Roman A, Balázs HE, Căpraş D, Podar D. Rediscovery of Cypripedium calceolus L. In the vicinity of Cluj-Napoca (Romania) after 80 years. Contrib. Bot. 2016; 51: 43–53.
Tsiftsis S, Tsiripidis I. Threat categories of the Greek orchids (Orchidaceae). Chronia Botanica. 2016; 21: 43–74.
Khapugin AA, Chugunov G, Vargot EV. Cypripedium calceolus (Orchidaceae) in central Russia: A case study for its populations in two protected areas in the Republic of Mordovia (Russia). Lankesteriana. 2017; 17(3): 417–431.
Melnyk V, Shynder OI, Nesyn Y. Distribution of Cypripedium calceolus (Orchidaceae) in Ukraine. Ukr Bot J. 2018; 75(1), 20–32 (2018).
Melnyk V, Shynder OI, Nesyn Y. Habitats and the current state of populations of Cypripedium calceolus (Orchidaceae) in Ukraine. Ukr Bot J. 2018; 75(2): 160–168.
Pedrini P, Brambilla M, Bertolli A, Prosse F. Definizione di "linee guida provinciali" per l’attuazione dei monitoraggi nei siti trentinidella rete Natura 2000. LIFE+T.E.N—Azione A5; 2014.
Müller H. Beobachtungen an westphälischen Orchideen. Verh Naturh Ver Rheinl. 1868; 25: 1–62.
Müller H. Die Befruchtung der Blumen durch Insekten und die gegenseitigen Anpassungen beider. Leipzig: Kessinger Publishingl; 1873.
Daumann E. Zur Bestäubungsbiologie von Cypripedium calceolus L. Österreichische Botanische Zeitung. 1969; 115: 434–446.
Ishmuratova MM, Zhimova TV, Ishbirdin AR, Sujundukov IV, Magafurov AM. Ant ecology, phenology and consorts of Cypripedium calceolus L. and Cypripedium guttatum Sw. in the southern Ural. Bull Moscow Soc Nat. 2006; 110: 40–46.
Claessens J, Kleynen J. The flower of the European orchid. Form and function. Voerendaal, Netherlands: Jean Claessens & Jacques Kleynen; 2011.
Phillips SJ, Dudík M, Schapire RE. A maximum entropy approach to species distribution modeling. ICML '04. Proceedings of the twenty-first international conference on Machine learning 655–662. New York: ACM; 2004.
Phillips SJ, Anderson R, Schapire RE. Maximum entropy modeling of species geographic distributions. Ecol Modell. 2006; 190: 231–259.
Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ. A statistical explanation of MaxEnt for ecologists. Divers Distrib. 2011; 17: 43–57.
Barve N, Barve V, Jimenez-Valverde A, Lira-Noriega A, Maher SP, Peterson AT, et al. The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol Mod. 2011; 222: 1810–1819.
Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. Very high resolution interpolated climate surfaces for global land areas. Int J Climatol. 2005; 25: 1965–1978.
Warren DL, Glor RE, Turelli M. ENMTools: a toolbox for comparative studies of environmental niche models. Ecography. 2010; 33: 607–611.
Braunisch V, Coppes J, Arlettaz R, Suchant R, Schmid H, Bollmann K. Selecting from correlated climate variables: a major source of uncertainty for predicting species distributions under climate change. Ecography. 2013; 36: 971–983.
Feng X, Park DS, Liang Y, Pandey R, Papeş M. Collinearity in ecological niche modeling: Confusions and challenges. Ecol Evol. 2019; 9: 10.1002/ece3.5555 PubMed DOI PMC
Naczk A, Kolanowska M. Glacial Refugia and Future Habitat Coverage of Selected Dactylorhiza Representatives (Orchidaceae). PLoS ONE. 2015; 10(11): e0143478 10.1371/journal.pone.0143478 PubMed DOI PMC
Gamisch A, Comes HP. Clade-age-dependent diversification under high species turnover shapes species richness disparities among tropical rainforest lineages of Bulbophyllum (Orchidaceae). BMC Evol Biol. 2019; 19: 93 10.1186/s12862-019-1416-1 PubMed DOI PMC
Moss R, Babiker M, Brinkman S, Calvo E, Carter T, Edmonds J, et al. Towards New Scenarios for Analysis of Emissions, Climate Change, Impacts, and Response Strategies. Geneva: Intergovernmental Panel on Climate Change; 2008.
Weyant J, Azar C, Kainuma M, Kejun J, Nakicenovic N, Shukla PR, et al. Report of 2.6 Versus 2.9 Watts/m2 RCPP Evaluation Panel. Geneva: IPCC Secretariat; 2009.
Sohel SI, Akhter S, Ullah H, Haque E, Rana P. Predicting impacts of climate change on forest tree species of Bangladesh: evidence from threatened Dysoxylum binectariferum (Roxb.) Hook.f. ex Bedd. (Meliaceae). iForest. 2016; 10(1): 154–160.
Xu X, Zhang H, Xie T, Xu Y, Zhao L, Tian W. Effects of Climate Change on the Potentially Suitable Climatic Geographical Range of Liriodendron chinense. Forests. 2017; 8(399): 1–14.
Lamsal P, Kumar L, Aryal A, Atreya K. Future climate and habitat distribution of Himalayan Musk Deer (Moschus chrysogaster). Ecol Inform. 2018; 44: 101–108.
Sony RK, Sen S, Kumar S, Sen M, Jayahari KM. Niche models inform the effects of climate change on the endangered Nilgiri Tahr (Nilgiritragus hylocrius) populations in the southern Western Ghats, India. Ecol Eng. 2018; 120: 355–363.
Briscoe DK, Hiatt S, Lewison R, Hines E. Modeling habitat and bycatch risk for dugongs in Sabah, Malaysia. Endanger Species Res. 2014; 24: 237–247.
Oraie H, Rahimian H, Rastegar-Pouyani N, Rastegar-Pouyani E, Ficetola GF, Hosseinian Yousefkhani SS, et al. Distribution pattern of the Snake-eyed Lizard, Ophisops elegans Ménétriés, 1832 (Squamata: Lacertidae), in Iran. Zool Middle East. 2014; 60: 125–132.
Ashraf U, Ali H, Nawaz Chaudry M, Ashraf I, Batool A, et al. Predicting the Potential Distribution of Olea ferruginea in Pakistan incorporating Climate Change by Using Maxent Model. Sustainability. 2016; 8: 722.
Tobeña M, Prieto R, Machete M, Silva MA. Modeling the Potential Distribution and Richness of Cetaceans in the Azores from Fisheries Observer Program Data. Front Mar Sci. 2016; 3: 202.
Slater H, Michael E. Predicting the current and future potential distributions of lymphatic filariasis in Africa using maximum entropy ecological niche modelling. PLoS One. 2012; 7: e32202 10.1371/journal.pone.0032202 PubMed DOI PMC
Hosmer DW, Lemeshow S. Applied Logistic Regression. New York: John Wiley and Sons; 2000.
Mason SJ, Graham NE. Areas beneath the relative operating characteristics (ROC) and relative operating levels (ROL) curves statistical significance and interpretation. Q J R Meteorol Soc. 2002; 128: 2145–2166.
Evangelista PH, Kumar S, Stohlgren TJ, Jarnevich CS, Crall AW, Norman III JB, et al. Modelling invasion for a habitat generalist and a specialist plant species. Divers Distrib. 2008; 14: 808–817.
Heibl C, Calenge C. Phyloclim: Integrating Phylogenetics and Climatic Niche Modelling. R package version 0.9–4; 2013. Available from: http://CRAN.R-project.org/package=phyloclim
Kremen C, Cameron A, Moilanen A, Phillips SJ, Thomas CD, Beentje H, et al. Aligning conservation priorities across taxa in Madagascar with high-resolution planning tools. Science. 2008; 320: 222–226. 10.1126/science.1155193 PubMed DOI
Brown JL. SDMtoolbox: a python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods Ecol Evol. 2014; 5: 694–700. PubMed PMC
Kolanowska M, Kras M, Lipińska M, Mystkowska K, Szlachetko DL, Naczk A. Global warming not so harmful for all plants—response of holomycotrophic orchid species for the future climate change. Sc Rep. 2017; 7: 12704. PubMed PMC
Kaye TN, Bahm MA, Thorpe AS, Gray EC, Pfingsten I, Waddell C. Population extinctions driven by climate change, population size, and time since observation may make rare species databases inaccurate. PLoS ONE. 2019; 14(10): e0210378 10.1371/journal.pone.0210378 PubMed DOI PMC
Dwyer JD, Biasutti M, Sobel AH. Projected Changes in the Seasonal Cycle of Surface Temperature. American Meteor Society. 2012; 25: 6359–6374.
Shefferson RP, Weiss M, Kull T, Taylor DL. High specificity generally characterizes mycorrhizal association in rare lady's slipper orchids, genus Cypripedium. Mol Ecol. 2005; 14(2): 613–626. 10.1111/j.1365-294X.2005.02424.x PubMed DOI
Shefferson RP, Taylor DL, Weiß M, Garnica S, McCormick ML, Adams S, et al. The evolutionary history of mycorrhizal specificity among lady’s slipper orchids. Evolution. 2007; 61: 1380–1390. 10.1111/j.1558-5646.2007.00112.x PubMed DOI
Seaton P, Kendon JP, Pritchard HW, Puspitaningtyas DW, Marks TR. Orchid conservation: the next ten years. Lankesteriana. 2013; 13(1–2): 93–101.
Ramsay MR, Stewart J. Re-establishment of the lady's slipper orchid (Cypripedium calceolus L.) in Britain. Bot J Linn Soc. 2008; 126(1–2): 173–181.