Suitability of Habitats in Nepal for Dactylorhiza hatagirea Now and under Predicted Future Changes in Climate
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
13-07KU
Danish Ministry of Foreign Affairs
RSG-19960-1, RSG-11891-1, RSG-11881, RSG-16864-2
Rufford Foundation
EN02
USAID-funded Hariyo Ban Program of WWF Nepal
PubMed
33801220
PubMed Central
PMC8000360
DOI
10.3390/plants10030467
PII: plants10030467
Knihovny.cz E-zdroje
- Klíčová slova
- Dactylorhiza hatagirea, Himalaya, Nepal, Orchidaceae, climate change, medicinal plant,
- Publikační typ
- časopisecké články MeSH
Dactylorhiza hatagirea is a terrestrial orchid listed in Appendix II of the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) and classified as threatened by International Union for Conservation of Nature (IUCN). It is endemic to the Hindu-Kush Himalayan region, distributed from Pakistan to China. The main threat to its existence is climate change and the associated change in the distribution of its suitable habitats to higher altitudes due to increasing temperature. It is therefore necessary to determine the habitats that are suitable for its survival and their expected distribution after the predicted changes in climate. To do this, we use Maxent modelling of the data for its 208 locations. We predict its distribution in 2050 and 2070 using four climate change models and two greenhouse gas concentration trajectories. This revealed severe losses of suitable habitat in Nepal, in which, under the worst scenario, there will be a 71-81% reduction the number of suitable locations for D. hatagirea by 2050 and 95-98% by 2070. Under the most favorable scenario, this reduction will be 65-85% by 2070. The intermediate greenhouse gas concentration trajectory surprisingly would result in a greater reduction by 2070 than the worst-case scenario. Our results provide important guidelines that local authorities interested in conserving this species could use to select areas that need to be protected now and in the future.
Central Department of Botany Tribhuvan University Kirtipur 44618 Nepal
Department of Food and Resource Economics University of Copenhagen 1165 Copenhagen Denmark
Zobrazit více v PubMed
Intergovernmental Panel on Climate Change . Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In: Barros V.R., Field C.B., Dokken D.J., Mastrandrea M.D., Mach K.J., Bilir T.E., Chatterjee M., Ebi K.L., Estrada Y.O., Genova R.C., editors. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Cambridge University Press; Cambridge, UK: New York, NY, USA: 2014. pp. 1–669.
Hanski I., Zurita G.A., Bellocq M.I., Rybicki J. Species-fragmented area relationship. Proc. Natl. Acad. Sci. USA. 2013;110:12715–12720. doi: 10.1073/pnas.1311491110. PubMed DOI PMC
Qin A., Liu B., Guo Q., Bussmann R.W., Ma F., Jian Z., Xu G., Pei S. Maxent modeling for predicting impacts of climate change on the potential distribution of Thuja sutchuenensis Franch., an extremely endangered conifer from southwestern China. Glob. Ecol. Conserv. 2017;10:139–146. doi: 10.1016/j.gecco.2017.02.004. DOI
Antúnez P., Suárez-Mota M.E., Valenzuela-Encinas C., Ruiz-Aquino F. The potential distribution of tree species in three periods of time under a climate change scenario. Forests. 2018;9:628. doi: 10.3390/f9100628. DOI
Xu X., Zhang H., Yue J., Xie T., Xu Y., Tian Y. Predicting shifts in the suitable climatic distribution of walnut (Juglans regia L.) in China: Maximum entropy model paves the way to forest management. Forests. 2018;9:103.
Pramanik M., Paudel U., Mondal B., Chakraborti S., Deb P. Predicting climate change impacts on the distribution of the threatened Garcinia indica in the Western Ghats, India. Clim. Risk Manag. 2018;19:94–105. doi: 10.1016/j.crm.2017.11.002. DOI
Zhang L., Jing Z., Li Z., Liu Y., Fang S. Predictive modeling of suitable habitats for Cinnamomum Camphora (L.) presl using maxent model under climate change in China. Int. J. Environ. Res. 2019;16:3185. doi: 10.3390/ijerph16173185. PubMed DOI PMC
Cotrina Sánchez D.A., Barboza Castillo E., Rojas Briceño N.B., Oliva M., Torres Guzman C., Amasifuen Guerra C.A., Bandopadhyay S. Distribution Models of Timber Species for Forest Conservation and Restoration in the Andean-Amazonian Landscape, North of Peru. Sustainability. 2020;12:7945. doi: 10.3390/su12197945. DOI
Gilani H., Arif Goheer M., Ahmad H., Hussain K. Under predicted climate change: Distribution and ecological niche modelling of six native tree species in Gilgit-Baltistan, Pakistan. Ecol. Indic. 2020;111:106049. doi: 10.1016/j.ecolind.2019.106049. DOI
Rojas N.B., Cotrina D.A., Castillo E.B., Oliva M., Salas R. Current and Future Distribution of Five Timber Forest Species in Amazonas, Northeast Peru: Contributions towards a Restoration Strategy. Diversity. 2020;12:305. doi: 10.3390/d12080305. DOI
Guo Y., Wei H., Lu C., Gao B., Gu W. Predictions of potential geographical distribution and quality of Schisandra sphenanthera under climate change. PeerJ. 2016;4:e2554. doi: 10.7717/peerj.2554. PubMed DOI PMC
Rana S.K., Rana H.K., Ghimire S.K., Shrestha K.K., Ranjitkar S. Predicting the impact of climate change on the distribution of two threatened Himalayan medicinal plants of Liliaceae in Nepal. J. Mt. Sci. 2017;14:558–570. doi: 10.1007/s11629-015-3822-1. DOI
Bai Y., Wei X., Li X. Distributional dynamics of a vulnerable species in response to past and future climate change: A window for conservation prospects. PeerJ. 2018;6:e4287. doi: 10.7717/peerj.4287. PubMed DOI PMC
Abolmaali S.M.R., Tarkesh M., Bashari H. Maxent modeling for predicting suitable habitats and identifying the effects of climate change on a threatened species, Daphne mucronata, in central Iran. Ecol. Inform. 2018;43:116–123. doi: 10.1016/j.ecoinf.2017.10.002. DOI
You J., Qin X., Ranjitkar S., Lougheed S.C., Wang M., Zhou W., Ouyang D., Zhou Y., Xu J., Zhang W., et al. Response to climate change of montane herbaceous plants in the genus Rhodiola predicted by ecological niche modelling. Sci. Rep. 2018;8:5879. doi: 10.1038/s41598-018-24360-9. PubMed DOI PMC
Zhao Q., Li R., Gao Y., Yao Q., Guo X., Wang W. Modeling impacts of climate change on the geographic distribution of medicinal plant Fritillaria cirrhosa D. Don. Plant Biosyst. 2018;152:349–355. doi: 10.1080/11263504.2017.1289273. DOI
Abdelaal M., Fois M., Fenu G., Bacchetta G. Using Maxent modeling to predict the potential distribution of the endemic plant Rosa arabica Crép. Egypt. Ecol. Inform. 2019;50:68–75. doi: 10.1016/j.ecoinf.2019.01.003. DOI
Yuan H.S., Wei Y.L., Wang X.G. Maxent modeling for predicting the potential distribution of Sanghuang, an important group of medicinal fungi in China. Fungal Ecol. 2015;17:140–145. doi: 10.1016/j.funeco.2015.06.001. DOI
Shrestha U.B., Sharma K.P., Devkota A., Siwakoti M., Shrestha B.B. Potential impact of climate change on the distribution of six invasive alien plants in Nepal. Ecol. Indic. 2018;95:99–107. doi: 10.1016/j.ecolind.2018.07.009. DOI
Kariyawasam C.S., Kumar L., Ratnayake S.S. Invasive plant species establishment and range dynamics in Sri Lanka under climate change. Entropy. 2019;21:571. doi: 10.3390/e21060571. PubMed DOI PMC
Ongaro S., Martellos S., Bacaro G., Agostini A.D., Cogoni A., Cortis P. Distributional pattern of Sardinian orchids under a climate change scenario. Community Ecol. 2018;19:223–232. doi: 10.1556/168.2018.19.3.3. DOI
Cavaliere C. The effects of climate change on medicinal and aromatic plants. Herb. Gram. 2008;81:44–57.
Kelly A.E., Goulden M.L. Rapid shifts in plant distribution with recent climate change. Proc. Natl. Acad. Sci. USA. 2008;105:11823–11826. doi: 10.1073/pnas.0802891105. PubMed DOI PMC
Chen I.C., Hill J.K., Ohlemüller R., Roy D.B., Thomas C.D. Rapid range shifts of species associated with high levels of climate warming. Science. 2011;333:1024–1026. doi: 10.1126/science.1206432. PubMed DOI
Lenoir J., Svenning J.C. Latitudinal and elevational Range Shifts under contemporary Climate Change. In: Levin S., editor. Encyclopedia of Biodiversity. 2nd ed. Elsevier; Amsterdam, The Netherlands: 2013. pp. 599–611.
Suggitt A.J., Platts P.J., Barata I.M., Bennie J., Burgess M.D., Bystriakova N., Duffield S., Ewing S.R., Gillingham P.K., Harper A.B., et al. Conducting robust ecological analyses with climate data. Oikos. 2017;126:1533–1541. doi: 10.1111/oik.04203. DOI
Štípková Z., Romportl D., Černocká V., Kindlmann P. Factors associated with the distributions of orchids in the Jeseníky Mountains, Czech Republic. Eur. J. Environ. Sci. 2017;7:135–145. doi: 10.14712/23361964.2017.13. DOI
La Sorte F.A., Jetz W. Projected range contractions of montane biodiversity under global warming. Proc. R. Soc. Lond. 2010;277:3401–3410. doi: 10.1098/rspb.2010.0612. PubMed DOI PMC
Intergovernmental Panel on Climate Change . The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. In: Solomon S., Qin D., Manning M., Chen Z., Marquis M., Averyt K.B., Tignor M., Miller H.L., editors. Climate Change 2007. Cambridge University Press; Cambridge, UK: New York, NY, USA: 2007. pp. 1–996.
Shrestha U.B., Gautam S., Bawa K.S. Widespread climate change in the Himalayas and associated changes in local ecosystems. PLoS ONE. 2012;7:e36741. doi: 10.1371/journal.pone.0036741. PubMed DOI PMC
Xu J., Grumbine R.E., Shrestha A., Eriksson M., Yang X., Wang Y., Wilkes A. The melting Himalayas: Cascading effects of climate change on water, biodiversity, and livelihoods. Conserv. Biol. 2009;23:520–530. doi: 10.1111/j.1523-1739.2009.01237.x. PubMed DOI
González-Salazar C., Stephens C.R., Marquet P.A. Comparing the relative contributions of biotic and abiotic factors as mediators of species’ distributions. Ecol. Model. 2013;248:57–70. doi: 10.1016/j.ecolmodel.2012.10.007. DOI
Telwala Y., Brook B.W., Manish K., Pandit M.K. Climate-induced elevational range shifts and increase in plant species richness in a Himalayan biodiversity epicentre. PLoS ONE. 2013;8:e57103. doi: 10.1371/journal.pone.0057103. PubMed DOI PMC
Thomas C.D., Cameron A., Green R.E., Bakkenes M., Beaumont L.J., Collingham Y.C., Erasmus B.F.N., de Siqueira M.F., Grainger A., Hannah L., et al. Extinction risk from climate change. Nature. 2004;42:145–148. doi: 10.1038/nature02121. PubMed DOI
Dixon K.W., Kell S.P., Barrett R.L., Cribb P.J. Orchid Conservation. Sabah Natural History Publications; Kota Kinabalu, Malaysia: 2003.
Sharma P.K., Sharita S., Prell J. Dactylor hizahatagirea (D. Don) Soo—A West Himalayan Orchid in Peril. Curr. Sci. 2005;89:610–612.
Swarts N.D., Dixon K.W. Terrestrial orchid conservation in the age of extinction. Ann. Bot. 2009;104:543–556. doi: 10.1093/aob/mcp025. PubMed DOI PMC
Aggarwal S., Zettler L.W. Reintroduction of an endangered terrestrial orchid Dactylorhiza hatagirea (D. Don) Soo, assisted by symbiotic seed germination: First report from the Indian subcontinent. Nat. Sci. 2010;8:139–145.
Duffy K.J., Johnson S.D. Specialized mutualisms may constrain the geographical distribution of flowering plants. Proc. R. Soc. B. 2017;284:1841. doi: 10.1098/rspb.2017.1841. PubMed DOI PMC
Kolanowska M., Jakubska-Busse A. Is the lady’s-slipper orchid (Cypripedium calceolus) likely to shortly become extinct in Europe?—Insights based on ecological niche modelling. PLoS ONE. 2020;15:e0228420. PubMed PMC
Tsiftsis S., Djordjević V. Modelling sexually deceptive orchid species distributions under future climates: The importance of plant–pollinator interactions. Sci. Rep. 2020;10:10623. doi: 10.1038/s41598-020-67491-8. PubMed DOI PMC
Conservation Assessment and Management Plan Executive Summary Report of the Conservation Assessment and Management Plan (CAMP) of the Biodiversity Conservation Prioritization Project on Selected Medicinal Plants of Northern, North-Eastern and Central India. [(accessed on 29 March 2014)]; Available online: http://msubiology.info/vesna/nauka/pillon2006.pdf.
Samant S.S., Dhar U., Rawal R.S., editors. Himalayan Medicinal Plants- Potential and Prospects. Gyanodaya Prakashan; Nainital, India: 2001.
Go N. Protected Plants of Nepal: Its amendments. Kathmandu, Nepal: Ministry of Forests and Soil Conservation. Nepal Gaz. 2011;60:38–45.
Raskoti B.B. The Orchids of Nepal. Bhakta Bahadur Raskoti and Rita Ale; Kathmandu, Nepal: 2009.
Bhattarai P., Pandey B., Gautam K.R., Chhetri R. Ecology and Conservation Status of Threatened Orchid Dactylorhiza hatagirea (D. Don) Soo in Manaslu Conservation Area, Central Nepal. Am. J. Plant Sci. 2014;5:3483–3491. doi: 10.4236/ajps.2014.523364. DOI
Shrestha B., Kindlmann P., Jnawali S.R. Interactions between the Himalayan tahr, livestock and snow leopards in the Sagarmatha National Park. In: Kindlmann P., editor. Himalayan Biodiversity in the Changing World. Springer; Dordrecht, The Netherlands: 2012. pp. 115–145.
Khadka C., Hammet A., Singh A., Balla M., Timilsina Y. Ecological status and diversity indices of Panchaule (Dactylorhiza hatagirea) and its associates in Lete village of Mustang district, Nepal. Banko Janakari. 2016;26:45–52. doi: 10.3126/banko.v26i1.15501. DOI
Chhetri H.B., Gupta V.N.P. A survey of non-timber forest products (NTFPS) in Upper Mustang. Sci. World. 2007;5:89–94. doi: 10.3126/sw.v5i5.2663. DOI
International Union for Nature Conservation Nepal . National Register of Medicinal and Aromatic Plants. International Union for Nature Conservation Nepal; Kathmandu, Nepal: 2004.
Pant S., Tsewang R. Dactylorhiza hatagirea: A high value medicinal orchid. J. Med. Plant Res. 2012;6:3522–3524.
Chamoli K.P., Sharan H. Ethno-medicinal properties of Dactylorhiza hatagirea in higher Himalayan villages of Rudraprayag district of Uttarakhand. J. Mt. Res. 2019;14:85–88.
Thakur M., Dixit V.K. Aphrodisiac Activity of Dactylorhiza hatagirea (D. Don) Soo in Male Albino Rats. Evid. Based Complementary Altern. Med. 2007;4:29–31. doi: 10.1093/ecam/nem111. PubMed DOI PMC
Popli D. Master’s Dissertation. Biotechnology, Jaypee University of Information and Technology; Waknaghat, India: 2017. Elicitation of Dactylorhin–E and Studying Anti-Cancerous Potential of Dactylorhiza Hatagirea (D. Don)
Kindlmann P., Kull T., Whigham D.F., Willems J. Ecology and population dynamics of terrestrial orchids: An introduction. Folia Geobot. 2006;41:1–2. doi: 10.1007/BF02805257. DOI
Dubuis A., Pottier J., Rion V., Pellissier L., Theurillat J.P., Guisan A. Predicting spatial patterns of plant species richness: A comparison of direct macroecological and species stacking approaches. Divers. Distrib. 2011 doi: 10.1111/j.1472-4642.2011.00792.x. DOI
Kaky E., Gilbert F. Using species distribution models to assess the importance of Egypt’s protected areas for the conservation of medicinal plants. J. Arid Environ. 2016;135:140–146. doi: 10.1016/j.jaridenv.2016.09.001. DOI
Pandey B., Timilsina A., Pandey B., Thapa C.L., Nepali K.B., Neupane P., Thapa R., Gaire S.K., Siwakoti M. Peoples’ perception and conservation of Dactylorhiza hatagirea (D. Don) Soó in Manaslu Conservation Area, Central Nepal. Am. J. Plant Sci. 2016;7:1662–1672. doi: 10.4236/ajps.2016.712157. DOI
Kunwar R.M., Rimal B., Sharma H.P., Poudel R.C., Pyakurel D., Tiwari A., Magar S.T., Karki G., Bhandari G.S., Pandey P., et al. Distribution and habitat modeling of Dactylorhiza hatagirea (D. Don) Soo, Paris polyphylla Sm. and Taxus species in Nepal Himalaya. J. Appl. Res. Med. Aromat. Plants. 2021;20:100274.
Djordjević V., Tsiftsis S. The Role of Ecological Factors in Distribution and Abundance of Terrestrial Orchids. In: Mérillon J.M., Kodja H., editors. Orchids Phytochemistry, Biology and Horticulture. Springer; Cham, Switerland: 2020. pp. 1–71.
Pearson R.G., Raxworthy C., Nakamura M., Peterson A. Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar. J. Biogeogr. 2006;34:102–117. doi: 10.1111/j.1365-2699.2006.01594.x. DOI
Hernandez P.A., Graham C.H., Master L.L., Albert D.L. The effect of sample size and species characteristics on performance of different species distribution modelling methods. Ecography. 2006;29:773–785. doi: 10.1111/j.0906-7590.2006.04700.x. DOI
Bhattarai S., Chaudhary R.P., Taylor R.S.L. Prioritization and trade of ethnomedicinal plants by the people of Manang district, central Nepal. In: Chaudhary R.P., Subedi B.P., Vetaas O., editors. Vegetation and Society: Their Interaction in the Himalayas. Tribhuvan University; Kathmandu, Nepal: University of Bergen Norway; Bergen, Norway: 2002. pp. 151–169.
Subedi A., Kunwar B., Choi Y., Dai Y., van Andel T., Chaudhary R.P., de Boer H.J., Gravendeel B. Collection and trade of wild-harvested orchids in Nepal. J. Ethnobiol. Ethnomed. 2013;9:64. doi: 10.1186/1746-4269-9-64. PubMed DOI PMC
Thakur R.B., Yadav R.P., Thakur N.P. Enumerating the status of orchid species of Makawanpur district. Hamro Kalpabricha. 2010;20:1–18.
Zaniewski A.E., Lehman A., Overton J. Predicting species spatial distributions using presence-only data: A case study of native New Zealand ferns. Ecol. Model. 2002;157:261–280. doi: 10.1016/S0304-3800(02)00199-0. DOI
de Mesquita C.P.B., Tillmann L.S., Bernard C.D., Katherine C.R., Noah P.M., Suding K.N. Topographic heterogeneity explains patterns of vegetation response to climate change (1972–2008) across a mountain landscape, Niwot Ridge, Colorado. Arct. Antarct. Alp. Res. 2018;50:e1504492. doi: 10.1080/15230430.2018.1504492. DOI
Amagai Y., Kudo G., Sato K. Changes in alpine plant communities under climate change: Dynamics of snow-meadow vegetation in northern Japan over the last 40 years. Appl. Veg. Sci. 2018;21:561–571. doi: 10.1111/avsc.12387. DOI
Shrestha K.B., Hofgaard A., Vandvik V. Recent treeline dynamics are similarbetween dry and mesic areas of Nepal, central Himalaya. J. Plant Ecol. 2015;8:347–358. doi: 10.1093/jpe/rtu035. DOI
Gaire N.P., Koirala M., Bhuju D.R., Carrer M. Site- and species-specific treeline responses to climatic variability in eastern Nepal Himalaya. Dendrochronologia. 2017;41:44–56. doi: 10.1016/j.dendro.2016.03.001. DOI
Sakai A., Larcher W. Frost Survival of Plants: Responses and Adaptation to Freezing Stress. Springer; Berlin, Germany: 1987.
Thakur D., Rathore M., Sharma M.K., Chawla A. Enhanced reproductive success revealed key strategy for persistence of devastated populations in Himalayan food-deceptive orchid, Dactylorhiza hatagirea. Plant Species Biol. 2018;33:191–202. doi: 10.1111/1442-1984.12205. DOI
Memmott J., Craze P.G., Waser N.M., Price M.V. Global warming and the disruption of plant–pollinator interactions. Ecol. Lett. 2007;10:710–717. doi: 10.1111/j.1461-0248.2007.01061.x. PubMed DOI
Kosanic A., Anderson K., Frère C.H., Harrison S. Regional vegetation change and implications for local conservation: An example from West Cornwall (United Kingdom) Glob. Ecol. Conserv. 2015;4:405–413. doi: 10.1016/j.gecco.2015.08.006. DOI
Magar M., Dhital S., Yamada T., Pun U. Dactylorhiza hatagirea: A Critical Issue for Research and Development in Nepal. Nepal J. Sci. Technol. 2020;19:26–38. doi: 10.3126/njst.v19i1.29735. DOI
Pearson R.G. Species’ distribution modeling for conservation educators and practitioners. Lessons Conserv. 2010;3:54–89.
Phillips S.J., Dudík M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography. 2008;31:161–175. doi: 10.1111/j.0906-7590.2008.5203.x. DOI
Phillips S.J., Anderson R.P., Dudík M., Schapire R.E., Blair M.E. Opening the black box: An open-source release of Maxent. Ecography. 2017;40:887–893. doi: 10.1111/ecog.03049. DOI
Corsi F., De Leeuw J., Skidmore A. Modelling species distribution with GIS. In: Boitan L., Fuller T.K., editors. Research Techniques in Animal Ecology. Columbia University Press; New York, NY, USA: 2000. pp. 389–434. Controversies and Consequences.
Elith J., Graham C.H., Anderson R.P., Dudik M., Ferrier S., Guisan A., Hijmans R.J., Huettmann F., Leathwick J.R., Lehmann A., et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography. 2006;29:129–151. doi: 10.1111/j.2006.0906-7590.04596.x. DOI
Guisan A., Zimmerman N.E. Predictive habitat distribution models in ecology. Ecol. Model. 2000;135:147–186. doi: 10.1016/S0304-3800(00)00354-9. DOI
Scott J.M., Heglund P.J., Morrison M.L., Haufler J.B., Raphael M.G., Wall W.A., Samson F.B., editors. Predicting Species Occurrences: Issues of Scale and Accuracy. Island Press; Washington, DC, USA: 2002.
Franklin J. Mapping Species Distributions: Spatial Inference and Prediction. Cambridge University Press; Cambridge, UK: 2009.
Boyce M., McDonald L. Relating populations to habitats using resource selection functions. Trends Ecol. Evol. 1999;14:268–272. doi: 10.1016/S0169-5347(99)01593-1. PubMed DOI
Manly B.F.J., McDonald L.L., Thomas D.L., MacDonald T.L., Erickson W.P., editors. Statistical Design and Analysis for Field Studies. 2nd ed. Kluwer Academic Publisher; London, UK: 2002. Resource selection by animals.
McCullagh P., Nelder J.A. Generalized Linear Models. 2nd ed. Chapman and Hall/CRC; Washington, DC, USA: 1989.
Ripley B.D. Pattern Recognition and Neural Networks. Cambridge University Press; Cambridge, UK: 1996.
Elith J., Leathwick J. The contribution of species distribution modelling to conservation prioritization. In: Moilanen A., Wilson A.K., Possingham H.P., editors. Spatial Conservation Prioritization. Quantitative Methods & Computational Tools. Oxford University Press Inc.; New York, NY, USA: 2009. pp. 70–93.
David O.A., Akomolafe G.F., Onwusiri K.C., Fabolude G.O. Predicting the distribution of the invasive species Hyptis suaveolens in Nigeria. Eur. J. Environ. Sci. 2020;10:98–106. doi: 10.14712/23361964.2020.11. DOI
Fick S.E., Hijmans R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Clim. 2017;37:4302–4315. doi: 10.1002/joc.5086. DOI
Dijkshoorn J.A., Huting J.R.M. Soil and Terrain Database for Nepal. ISRIC—World Soil Information; Wageningen, The Netherlands: 2009. [(accessed on 9 April 2019)]. Available online: http://www.isric.org.
Warren D.L., Glor R.E., Turelli M. ENMTools: A toolbox for comparative studies of environmental niche models. Ecography. 2010;33:607–611. doi: 10.1111/j.1600-0587.2009.06142.x. DOI
Warren D.L., Seifert S.N. Ecological niche modeling in Maxent: The importance of model complexity and the performance of model selection criteria. Ecol. Appl. 2011;21:335–342. doi: 10.1890/10-1171.1. PubMed DOI
Jiang H., Liu T., Li L., Zhao Y., Pei L., Zhao J. Predicting the potential distribution of Polygala tenuifolia Willd. under climate change in China. PLoS ONE. 2016;11:e0163718. doi: 10.1371/journal.pone.0163718. PubMed DOI PMC
Freeman E.A., Moisen G.G. A comparison of the performance of threshold criteria for binary classification in terms of predicted prevalence and kappa. Ecol. Model. 2008;217:48–58. doi: 10.1016/j.ecolmodel.2008.05.015. DOI
Kremen C.A., Cameron A., Moilanen S.J., Phillips C.D., Thomas H., Beentje J., Dransfield B.L., Fisher F., Glaw T.C., Good G.J., et al. Aligning conservation priorities across taxa in Madagascar with high-resolution planning tools. Science. 2008;320:222–226. doi: 10.1126/science.1155193. PubMed DOI