Suitability of Habitats in Nepal for Dactylorhiza hatagirea Now and under Predicted Future Changes in Climate

. 2021 Mar 02 ; 10 (3) : . [epub] 20210302

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33801220

Grantová podpora
13-07KU Danish Ministry of Foreign Affairs
RSG-19960-1, RSG-11891-1, RSG-11881, RSG-16864-2 Rufford Foundation
EN02 USAID-funded Hariyo Ban Program of WWF Nepal

Dactylorhiza hatagirea is a terrestrial orchid listed in Appendix II of the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) and classified as threatened by International Union for Conservation of Nature (IUCN). It is endemic to the Hindu-Kush Himalayan region, distributed from Pakistan to China. The main threat to its existence is climate change and the associated change in the distribution of its suitable habitats to higher altitudes due to increasing temperature. It is therefore necessary to determine the habitats that are suitable for its survival and their expected distribution after the predicted changes in climate. To do this, we use Maxent modelling of the data for its 208 locations. We predict its distribution in 2050 and 2070 using four climate change models and two greenhouse gas concentration trajectories. This revealed severe losses of suitable habitat in Nepal, in which, under the worst scenario, there will be a 71-81% reduction the number of suitable locations for D. hatagirea by 2050 and 95-98% by 2070. Under the most favorable scenario, this reduction will be 65-85% by 2070. The intermediate greenhouse gas concentration trajectory surprisingly would result in a greater reduction by 2070 than the worst-case scenario. Our results provide important guidelines that local authorities interested in conserving this species could use to select areas that need to be protected now and in the future.

Zobrazit více v PubMed

Intergovernmental Panel on Climate Change . Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In: Barros V.R., Field C.B., Dokken D.J., Mastrandrea M.D., Mach K.J., Bilir T.E., Chatterjee M., Ebi K.L., Estrada Y.O., Genova R.C., editors. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Cambridge University Press; Cambridge, UK: New York, NY, USA: 2014. pp. 1–669.

Hanski I., Zurita G.A., Bellocq M.I., Rybicki J. Species-fragmented area relationship. Proc. Natl. Acad. Sci. USA. 2013;110:12715–12720. doi: 10.1073/pnas.1311491110. PubMed DOI PMC

Qin A., Liu B., Guo Q., Bussmann R.W., Ma F., Jian Z., Xu G., Pei S. Maxent modeling for predicting impacts of climate change on the potential distribution of Thuja sutchuenensis Franch., an extremely endangered conifer from southwestern China. Glob. Ecol. Conserv. 2017;10:139–146. doi: 10.1016/j.gecco.2017.02.004. DOI

Antúnez P., Suárez-Mota M.E., Valenzuela-Encinas C., Ruiz-Aquino F. The potential distribution of tree species in three periods of time under a climate change scenario. Forests. 2018;9:628. doi: 10.3390/f9100628. DOI

Xu X., Zhang H., Yue J., Xie T., Xu Y., Tian Y. Predicting shifts in the suitable climatic distribution of walnut (Juglans regia L.) in China: Maximum entropy model paves the way to forest management. Forests. 2018;9:103.

Pramanik M., Paudel U., Mondal B., Chakraborti S., Deb P. Predicting climate change impacts on the distribution of the threatened Garcinia indica in the Western Ghats, India. Clim. Risk Manag. 2018;19:94–105. doi: 10.1016/j.crm.2017.11.002. DOI

Zhang L., Jing Z., Li Z., Liu Y., Fang S. Predictive modeling of suitable habitats for Cinnamomum Camphora (L.) presl using maxent model under climate change in China. Int. J. Environ. Res. 2019;16:3185. doi: 10.3390/ijerph16173185. PubMed DOI PMC

Cotrina Sánchez D.A., Barboza Castillo E., Rojas Briceño N.B., Oliva M., Torres Guzman C., Amasifuen Guerra C.A., Bandopadhyay S. Distribution Models of Timber Species for Forest Conservation and Restoration in the Andean-Amazonian Landscape, North of Peru. Sustainability. 2020;12:7945. doi: 10.3390/su12197945. DOI

Gilani H., Arif Goheer M., Ahmad H., Hussain K. Under predicted climate change: Distribution and ecological niche modelling of six native tree species in Gilgit-Baltistan, Pakistan. Ecol. Indic. 2020;111:106049. doi: 10.1016/j.ecolind.2019.106049. DOI

Rojas N.B., Cotrina D.A., Castillo E.B., Oliva M., Salas R. Current and Future Distribution of Five Timber Forest Species in Amazonas, Northeast Peru: Contributions towards a Restoration Strategy. Diversity. 2020;12:305. doi: 10.3390/d12080305. DOI

Guo Y., Wei H., Lu C., Gao B., Gu W. Predictions of potential geographical distribution and quality of Schisandra sphenanthera under climate change. PeerJ. 2016;4:e2554. doi: 10.7717/peerj.2554. PubMed DOI PMC

Rana S.K., Rana H.K., Ghimire S.K., Shrestha K.K., Ranjitkar S. Predicting the impact of climate change on the distribution of two threatened Himalayan medicinal plants of Liliaceae in Nepal. J. Mt. Sci. 2017;14:558–570. doi: 10.1007/s11629-015-3822-1. DOI

Bai Y., Wei X., Li X. Distributional dynamics of a vulnerable species in response to past and future climate change: A window for conservation prospects. PeerJ. 2018;6:e4287. doi: 10.7717/peerj.4287. PubMed DOI PMC

Abolmaali S.M.R., Tarkesh M., Bashari H. Maxent modeling for predicting suitable habitats and identifying the effects of climate change on a threatened species, Daphne mucronata, in central Iran. Ecol. Inform. 2018;43:116–123. doi: 10.1016/j.ecoinf.2017.10.002. DOI

You J., Qin X., Ranjitkar S., Lougheed S.C., Wang M., Zhou W., Ouyang D., Zhou Y., Xu J., Zhang W., et al. Response to climate change of montane herbaceous plants in the genus Rhodiola predicted by ecological niche modelling. Sci. Rep. 2018;8:5879. doi: 10.1038/s41598-018-24360-9. PubMed DOI PMC

Zhao Q., Li R., Gao Y., Yao Q., Guo X., Wang W. Modeling impacts of climate change on the geographic distribution of medicinal plant Fritillaria cirrhosa D. Don. Plant Biosyst. 2018;152:349–355. doi: 10.1080/11263504.2017.1289273. DOI

Abdelaal M., Fois M., Fenu G., Bacchetta G. Using Maxent modeling to predict the potential distribution of the endemic plant Rosa arabica Crép. Egypt. Ecol. Inform. 2019;50:68–75. doi: 10.1016/j.ecoinf.2019.01.003. DOI

Yuan H.S., Wei Y.L., Wang X.G. Maxent modeling for predicting the potential distribution of Sanghuang, an important group of medicinal fungi in China. Fungal Ecol. 2015;17:140–145. doi: 10.1016/j.funeco.2015.06.001. DOI

Shrestha U.B., Sharma K.P., Devkota A., Siwakoti M., Shrestha B.B. Potential impact of climate change on the distribution of six invasive alien plants in Nepal. Ecol. Indic. 2018;95:99–107. doi: 10.1016/j.ecolind.2018.07.009. DOI

Kariyawasam C.S., Kumar L., Ratnayake S.S. Invasive plant species establishment and range dynamics in Sri Lanka under climate change. Entropy. 2019;21:571. doi: 10.3390/e21060571. PubMed DOI PMC

Ongaro S., Martellos S., Bacaro G., Agostini A.D., Cogoni A., Cortis P. Distributional pattern of Sardinian orchids under a climate change scenario. Community Ecol. 2018;19:223–232. doi: 10.1556/168.2018.19.3.3. DOI

Cavaliere C. The effects of climate change on medicinal and aromatic plants. Herb. Gram. 2008;81:44–57.

Kelly A.E., Goulden M.L. Rapid shifts in plant distribution with recent climate change. Proc. Natl. Acad. Sci. USA. 2008;105:11823–11826. doi: 10.1073/pnas.0802891105. PubMed DOI PMC

Chen I.C., Hill J.K., Ohlemüller R., Roy D.B., Thomas C.D. Rapid range shifts of species associated with high levels of climate warming. Science. 2011;333:1024–1026. doi: 10.1126/science.1206432. PubMed DOI

Lenoir J., Svenning J.C. Latitudinal and elevational Range Shifts under contemporary Climate Change. In: Levin S., editor. Encyclopedia of Biodiversity. 2nd ed. Elsevier; Amsterdam, The Netherlands: 2013. pp. 599–611.

Suggitt A.J., Platts P.J., Barata I.M., Bennie J., Burgess M.D., Bystriakova N., Duffield S., Ewing S.R., Gillingham P.K., Harper A.B., et al. Conducting robust ecological analyses with climate data. Oikos. 2017;126:1533–1541. doi: 10.1111/oik.04203. DOI

Štípková Z., Romportl D., Černocká V., Kindlmann P. Factors associated with the distributions of orchids in the Jeseníky Mountains, Czech Republic. Eur. J. Environ. Sci. 2017;7:135–145. doi: 10.14712/23361964.2017.13. DOI

La Sorte F.A., Jetz W. Projected range contractions of montane biodiversity under global warming. Proc. R. Soc. Lond. 2010;277:3401–3410. doi: 10.1098/rspb.2010.0612. PubMed DOI PMC

Intergovernmental Panel on Climate Change . The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. In: Solomon S., Qin D., Manning M., Chen Z., Marquis M., Averyt K.B., Tignor M., Miller H.L., editors. Climate Change 2007. Cambridge University Press; Cambridge, UK: New York, NY, USA: 2007. pp. 1–996.

Shrestha U.B., Gautam S., Bawa K.S. Widespread climate change in the Himalayas and associated changes in local ecosystems. PLoS ONE. 2012;7:e36741. doi: 10.1371/journal.pone.0036741. PubMed DOI PMC

Xu J., Grumbine R.E., Shrestha A., Eriksson M., Yang X., Wang Y., Wilkes A. The melting Himalayas: Cascading effects of climate change on water, biodiversity, and livelihoods. Conserv. Biol. 2009;23:520–530. doi: 10.1111/j.1523-1739.2009.01237.x. PubMed DOI

González-Salazar C., Stephens C.R., Marquet P.A. Comparing the relative contributions of biotic and abiotic factors as mediators of species’ distributions. Ecol. Model. 2013;248:57–70. doi: 10.1016/j.ecolmodel.2012.10.007. DOI

Telwala Y., Brook B.W., Manish K., Pandit M.K. Climate-induced elevational range shifts and increase in plant species richness in a Himalayan biodiversity epicentre. PLoS ONE. 2013;8:e57103. doi: 10.1371/journal.pone.0057103. PubMed DOI PMC

Thomas C.D., Cameron A., Green R.E., Bakkenes M., Beaumont L.J., Collingham Y.C., Erasmus B.F.N., de Siqueira M.F., Grainger A., Hannah L., et al. Extinction risk from climate change. Nature. 2004;42:145–148. doi: 10.1038/nature02121. PubMed DOI

Dixon K.W., Kell S.P., Barrett R.L., Cribb P.J. Orchid Conservation. Sabah Natural History Publications; Kota Kinabalu, Malaysia: 2003.

Sharma P.K., Sharita S., Prell J. Dactylor hizahatagirea (D. Don) Soo—A West Himalayan Orchid in Peril. Curr. Sci. 2005;89:610–612.

Swarts N.D., Dixon K.W. Terrestrial orchid conservation in the age of extinction. Ann. Bot. 2009;104:543–556. doi: 10.1093/aob/mcp025. PubMed DOI PMC

Aggarwal S., Zettler L.W. Reintroduction of an endangered terrestrial orchid Dactylorhiza hatagirea (D. Don) Soo, assisted by symbiotic seed germination: First report from the Indian subcontinent. Nat. Sci. 2010;8:139–145.

Duffy K.J., Johnson S.D. Specialized mutualisms may constrain the geographical distribution of flowering plants. Proc. R. Soc. B. 2017;284:1841. doi: 10.1098/rspb.2017.1841. PubMed DOI PMC

Kolanowska M., Jakubska-Busse A. Is the lady’s-slipper orchid (Cypripedium calceolus) likely to shortly become extinct in Europe?—Insights based on ecological niche modelling. PLoS ONE. 2020;15:e0228420. PubMed PMC

Tsiftsis S., Djordjević V. Modelling sexually deceptive orchid species distributions under future climates: The importance of plant–pollinator interactions. Sci. Rep. 2020;10:10623. doi: 10.1038/s41598-020-67491-8. PubMed DOI PMC

Conservation Assessment and Management Plan Executive Summary Report of the Conservation Assessment and Management Plan (CAMP) of the Biodiversity Conservation Prioritization Project on Selected Medicinal Plants of Northern, North-Eastern and Central India. [(accessed on 29 March 2014)]; Available online: http://msubiology.info/vesna/nauka/pillon2006.pdf.

Samant S.S., Dhar U., Rawal R.S., editors. Himalayan Medicinal Plants- Potential and Prospects. Gyanodaya Prakashan; Nainital, India: 2001.

Go N. Protected Plants of Nepal: Its amendments. Kathmandu, Nepal: Ministry of Forests and Soil Conservation. Nepal Gaz. 2011;60:38–45.

Raskoti B.B. The Orchids of Nepal. Bhakta Bahadur Raskoti and Rita Ale; Kathmandu, Nepal: 2009.

Bhattarai P., Pandey B., Gautam K.R., Chhetri R. Ecology and Conservation Status of Threatened Orchid Dactylorhiza hatagirea (D. Don) Soo in Manaslu Conservation Area, Central Nepal. Am. J. Plant Sci. 2014;5:3483–3491. doi: 10.4236/ajps.2014.523364. DOI

Shrestha B., Kindlmann P., Jnawali S.R. Interactions between the Himalayan tahr, livestock and snow leopards in the Sagarmatha National Park. In: Kindlmann P., editor. Himalayan Biodiversity in the Changing World. Springer; Dordrecht, The Netherlands: 2012. pp. 115–145.

Khadka C., Hammet A., Singh A., Balla M., Timilsina Y. Ecological status and diversity indices of Panchaule (Dactylorhiza hatagirea) and its associates in Lete village of Mustang district, Nepal. Banko Janakari. 2016;26:45–52. doi: 10.3126/banko.v26i1.15501. DOI

Chhetri H.B., Gupta V.N.P. A survey of non-timber forest products (NTFPS) in Upper Mustang. Sci. World. 2007;5:89–94. doi: 10.3126/sw.v5i5.2663. DOI

International Union for Nature Conservation Nepal . National Register of Medicinal and Aromatic Plants. International Union for Nature Conservation Nepal; Kathmandu, Nepal: 2004.

Pant S., Tsewang R. Dactylorhiza hatagirea: A high value medicinal orchid. J. Med. Plant Res. 2012;6:3522–3524.

Chamoli K.P., Sharan H. Ethno-medicinal properties of Dactylorhiza hatagirea in higher Himalayan villages of Rudraprayag district of Uttarakhand. J. Mt. Res. 2019;14:85–88.

Thakur M., Dixit V.K. Aphrodisiac Activity of Dactylorhiza hatagirea (D. Don) Soo in Male Albino Rats. Evid. Based Complementary Altern. Med. 2007;4:29–31. doi: 10.1093/ecam/nem111. PubMed DOI PMC

Popli D. Master’s Dissertation. Biotechnology, Jaypee University of Information and Technology; Waknaghat, India: 2017. Elicitation of Dactylorhin–E and Studying Anti-Cancerous Potential of Dactylorhiza Hatagirea (D. Don)

Kindlmann P., Kull T., Whigham D.F., Willems J. Ecology and population dynamics of terrestrial orchids: An introduction. Folia Geobot. 2006;41:1–2. doi: 10.1007/BF02805257. DOI

Dubuis A., Pottier J., Rion V., Pellissier L., Theurillat J.P., Guisan A. Predicting spatial patterns of plant species richness: A comparison of direct macroecological and species stacking approaches. Divers. Distrib. 2011 doi: 10.1111/j.1472-4642.2011.00792.x. DOI

Kaky E., Gilbert F. Using species distribution models to assess the importance of Egypt’s protected areas for the conservation of medicinal plants. J. Arid Environ. 2016;135:140–146. doi: 10.1016/j.jaridenv.2016.09.001. DOI

Pandey B., Timilsina A., Pandey B., Thapa C.L., Nepali K.B., Neupane P., Thapa R., Gaire S.K., Siwakoti M. Peoples’ perception and conservation of Dactylorhiza hatagirea (D. Don) Soó in Manaslu Conservation Area, Central Nepal. Am. J. Plant Sci. 2016;7:1662–1672. doi: 10.4236/ajps.2016.712157. DOI

Kunwar R.M., Rimal B., Sharma H.P., Poudel R.C., Pyakurel D., Tiwari A., Magar S.T., Karki G., Bhandari G.S., Pandey P., et al. Distribution and habitat modeling of Dactylorhiza hatagirea (D. Don) Soo, Paris polyphylla Sm. and Taxus species in Nepal Himalaya. J. Appl. Res. Med. Aromat. Plants. 2021;20:100274.

Djordjević V., Tsiftsis S. The Role of Ecological Factors in Distribution and Abundance of Terrestrial Orchids. In: Mérillon J.M., Kodja H., editors. Orchids Phytochemistry, Biology and Horticulture. Springer; Cham, Switerland: 2020. pp. 1–71.

Pearson R.G., Raxworthy C., Nakamura M., Peterson A. Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar. J. Biogeogr. 2006;34:102–117. doi: 10.1111/j.1365-2699.2006.01594.x. DOI

Hernandez P.A., Graham C.H., Master L.L., Albert D.L. The effect of sample size and species characteristics on performance of different species distribution modelling methods. Ecography. 2006;29:773–785. doi: 10.1111/j.0906-7590.2006.04700.x. DOI

Bhattarai S., Chaudhary R.P., Taylor R.S.L. Prioritization and trade of ethnomedicinal plants by the people of Manang district, central Nepal. In: Chaudhary R.P., Subedi B.P., Vetaas O., editors. Vegetation and Society: Their Interaction in the Himalayas. Tribhuvan University; Kathmandu, Nepal: University of Bergen Norway; Bergen, Norway: 2002. pp. 151–169.

Subedi A., Kunwar B., Choi Y., Dai Y., van Andel T., Chaudhary R.P., de Boer H.J., Gravendeel B. Collection and trade of wild-harvested orchids in Nepal. J. Ethnobiol. Ethnomed. 2013;9:64. doi: 10.1186/1746-4269-9-64. PubMed DOI PMC

Thakur R.B., Yadav R.P., Thakur N.P. Enumerating the status of orchid species of Makawanpur district. Hamro Kalpabricha. 2010;20:1–18.

Zaniewski A.E., Lehman A., Overton J. Predicting species spatial distributions using presence-only data: A case study of native New Zealand ferns. Ecol. Model. 2002;157:261–280. doi: 10.1016/S0304-3800(02)00199-0. DOI

de Mesquita C.P.B., Tillmann L.S., Bernard C.D., Katherine C.R., Noah P.M., Suding K.N. Topographic heterogeneity explains patterns of vegetation response to climate change (1972–2008) across a mountain landscape, Niwot Ridge, Colorado. Arct. Antarct. Alp. Res. 2018;50:e1504492. doi: 10.1080/15230430.2018.1504492. DOI

Amagai Y., Kudo G., Sato K. Changes in alpine plant communities under climate change: Dynamics of snow-meadow vegetation in northern Japan over the last 40 years. Appl. Veg. Sci. 2018;21:561–571. doi: 10.1111/avsc.12387. DOI

Shrestha K.B., Hofgaard A., Vandvik V. Recent treeline dynamics are similarbetween dry and mesic areas of Nepal, central Himalaya. J. Plant Ecol. 2015;8:347–358. doi: 10.1093/jpe/rtu035. DOI

Gaire N.P., Koirala M., Bhuju D.R., Carrer M. Site- and species-specific treeline responses to climatic variability in eastern Nepal Himalaya. Dendrochronologia. 2017;41:44–56. doi: 10.1016/j.dendro.2016.03.001. DOI

Sakai A., Larcher W. Frost Survival of Plants: Responses and Adaptation to Freezing Stress. Springer; Berlin, Germany: 1987.

Thakur D., Rathore M., Sharma M.K., Chawla A. Enhanced reproductive success revealed key strategy for persistence of devastated populations in Himalayan food-deceptive orchid, Dactylorhiza hatagirea. Plant Species Biol. 2018;33:191–202. doi: 10.1111/1442-1984.12205. DOI

Memmott J., Craze P.G., Waser N.M., Price M.V. Global warming and the disruption of plant–pollinator interactions. Ecol. Lett. 2007;10:710–717. doi: 10.1111/j.1461-0248.2007.01061.x. PubMed DOI

Kosanic A., Anderson K., Frère C.H., Harrison S. Regional vegetation change and implications for local conservation: An example from West Cornwall (United Kingdom) Glob. Ecol. Conserv. 2015;4:405–413. doi: 10.1016/j.gecco.2015.08.006. DOI

Magar M., Dhital S., Yamada T., Pun U. Dactylorhiza hatagirea: A Critical Issue for Research and Development in Nepal. Nepal J. Sci. Technol. 2020;19:26–38. doi: 10.3126/njst.v19i1.29735. DOI

Pearson R.G. Species’ distribution modeling for conservation educators and practitioners. Lessons Conserv. 2010;3:54–89.

Phillips S.J., Dudík M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography. 2008;31:161–175. doi: 10.1111/j.0906-7590.2008.5203.x. DOI

Phillips S.J., Anderson R.P., Dudík M., Schapire R.E., Blair M.E. Opening the black box: An open-source release of Maxent. Ecography. 2017;40:887–893. doi: 10.1111/ecog.03049. DOI

Corsi F., De Leeuw J., Skidmore A. Modelling species distribution with GIS. In: Boitan L., Fuller T.K., editors. Research Techniques in Animal Ecology. Columbia University Press; New York, NY, USA: 2000. pp. 389–434. Controversies and Consequences.

Elith J., Graham C.H., Anderson R.P., Dudik M., Ferrier S., Guisan A., Hijmans R.J., Huettmann F., Leathwick J.R., Lehmann A., et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography. 2006;29:129–151. doi: 10.1111/j.2006.0906-7590.04596.x. DOI

Guisan A., Zimmerman N.E. Predictive habitat distribution models in ecology. Ecol. Model. 2000;135:147–186. doi: 10.1016/S0304-3800(00)00354-9. DOI

Scott J.M., Heglund P.J., Morrison M.L., Haufler J.B., Raphael M.G., Wall W.A., Samson F.B., editors. Predicting Species Occurrences: Issues of Scale and Accuracy. Island Press; Washington, DC, USA: 2002.

Franklin J. Mapping Species Distributions: Spatial Inference and Prediction. Cambridge University Press; Cambridge, UK: 2009.

Boyce M., McDonald L. Relating populations to habitats using resource selection functions. Trends Ecol. Evol. 1999;14:268–272. doi: 10.1016/S0169-5347(99)01593-1. PubMed DOI

Manly B.F.J., McDonald L.L., Thomas D.L., MacDonald T.L., Erickson W.P., editors. Statistical Design and Analysis for Field Studies. 2nd ed. Kluwer Academic Publisher; London, UK: 2002. Resource selection by animals.

McCullagh P., Nelder J.A. Generalized Linear Models. 2nd ed. Chapman and Hall/CRC; Washington, DC, USA: 1989.

Ripley B.D. Pattern Recognition and Neural Networks. Cambridge University Press; Cambridge, UK: 1996.

Elith J., Leathwick J. The contribution of species distribution modelling to conservation prioritization. In: Moilanen A., Wilson A.K., Possingham H.P., editors. Spatial Conservation Prioritization. Quantitative Methods & Computational Tools. Oxford University Press Inc.; New York, NY, USA: 2009. pp. 70–93.

David O.A., Akomolafe G.F., Onwusiri K.C., Fabolude G.O. Predicting the distribution of the invasive species Hyptis suaveolens in Nigeria. Eur. J. Environ. Sci. 2020;10:98–106. doi: 10.14712/23361964.2020.11. DOI

Fick S.E., Hijmans R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Clim. 2017;37:4302–4315. doi: 10.1002/joc.5086. DOI

Dijkshoorn J.A., Huting J.R.M. Soil and Terrain Database for Nepal. ISRIC—World Soil Information; Wageningen, The Netherlands: 2009. [(accessed on 9 April 2019)]. Available online: http://www.isric.org.

Warren D.L., Glor R.E., Turelli M. ENMTools: A toolbox for comparative studies of environmental niche models. Ecography. 2010;33:607–611. doi: 10.1111/j.1600-0587.2009.06142.x. DOI

Warren D.L., Seifert S.N. Ecological niche modeling in Maxent: The importance of model complexity and the performance of model selection criteria. Ecol. Appl. 2011;21:335–342. doi: 10.1890/10-1171.1. PubMed DOI

Jiang H., Liu T., Li L., Zhao Y., Pei L., Zhao J. Predicting the potential distribution of Polygala tenuifolia Willd. under climate change in China. PLoS ONE. 2016;11:e0163718. doi: 10.1371/journal.pone.0163718. PubMed DOI PMC

Freeman E.A., Moisen G.G. A comparison of the performance of threshold criteria for binary classification in terms of predicted prevalence and kappa. Ecol. Model. 2008;217:48–58. doi: 10.1016/j.ecolmodel.2008.05.015. DOI

Kremen C.A., Cameron A., Moilanen S.J., Phillips C.D., Thomas H., Beentje J., Dransfield B.L., Fisher F., Glaw T.C., Good G.J., et al. Aligning conservation priorities across taxa in Madagascar with high-resolution planning tools. Science. 2008;320:222–226. doi: 10.1126/science.1155193. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Predictions of species distributions based only on models estimating future climate change are not reliable

. 2024 Oct 28 ; 14 (1) : 25778. [epub] 20241028

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...